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Abstract—The tendency of users to connect with peers of
similar interests and social demography (homophily) is one of
the sources of information for user behavior modeling and
classification. However this is yet an open question for structural
roles where nodes at similar structural position in the network
play the same roles: are structurally equivalent nodes more prone
to have connections between themselves? In this paper, we tackle
this open question by studying the patterns of homophily for
structural roles. We propose a new method named SR-Diffuse
to simultaneously identify structural roles in a network and to
model the role membership matrix of users. In this method,
we integrate pairwise role dependency alongside with structural
features of users for role mining. We show that pairwise role
dependency is necessary to distinguish some structural roles
but it is a misleading factor for some others. We design an
optimization model to capture structural roles with the guidance
of pairwise dependency, and devise an iterative algorithm to
learn structural roles simultaneously from structural properties
and social dependency of users. We examine the efficacy of our
new method in a users classification problem for information
cascades. We compare the predictability of discovered roles by
our method against some baseline methods for predicting social
classes of users in different information cascades in two social
networks, Flickr and Digg. The experimental results suggest that
our method can improve the quality of roles membership of users
and can better represent the profile of users in the network, hence
it is a better predictor for social classes of users in an information
cascade.

I. INTRODUCTION

The structure of a network is determined by its connections.
By observing these links, one can derive a set of features
that characterizes each node’s structural position. This can in
turn be used to help identify the structural role of each node.
Structural roles in a social network can often be associated with
various functional or organizational roles such as star-center,
star-edge nodes, member of-cliques or bridges in different
parts of the network. This type of structural role mining has
applications in many domains. For example, in the case of
online social networks, it is important to know users’ position
in the network in order to create personalized marketing
campaign. Another example is viral marketing, where the
structural role of users is essential in targeting the appropriate
users in order to achieve maximum coverage of the network,
to spread ideas such as ads or news. In fact, structural roles
are gaining increased attention in the last years, and they are
now used as a tool for tasks such as node classification [1],
identity resolution [2], [3], exploratory network analysis [2]
and anomaly detection [4].

Pairwise dependency suggests that nodes with a similar

Fig. 1: Pairwise dependency across structural roles, different
colors correspond to different structural roles; the pairwise role
dependency exists in some structural roles such as member-of-
clique (blue nodes) but it does not hold on some others such
as member-of-star (green nodes).

structural position may have a tendency to have connections
between themselves. Figure 1 exemplifies that, with the blue
nodes (member-of-clique) having connections to other blue
nodes. However, this it not the case for all types of structural
roles. For instance, the green nodes (member-of-star) have no
connections to other green nodes, as their structural features
do not give origin to pairwise connections. In this paper, one
of our main goals is to incorporate pairwise dependency of
different structural roles in role mining framework. For that,
we first examine how actually the pairwise relations are across
structural roles by running a pilot experiment on a real social
network. We use the results for structural role modeling. We
want to infer a role configuration L over the social network
of users, using two assumptions: 1) ego-role dependence: the
structural role of users is correlated to their ego properties X
and users in the same role k have similar feature vectors; 2)
pairwise role dependence: the role of a user is not independent
from its neighbors’ roles.

In the second part of this paper, we study the application of
structural role mining for user classification in in the context of
message communication. In our approach, we use the structural
roles of users in the network instead of using the activity log of
users to classify them to the social classes. In an information
cascade, the capability of users in spreading information is
of great interest. An important parameter for categorizing
users in a cascade is their effect on the network which we
measure as the consequence of users action. The time interval
of involvement of users in the process is also important as
the late adopters are not of interest for diffusion modeling and
spreading the story. We define a new classification for users in
an information cascade by two factors, detailed in section V-B.



Our main research contributions in this work are the
following:

• We study the patterns of pairwise dependency for
structural roles, showing that we can improve role
discovery for some roles, while in others this does
not happen. For example, highly connected users tend
to connect to users at similar structural position (hubs
attract hubs); however singular nodes connect with the
hubs as well. Hence, to accurately infer a role, we
cannot propagate role labels through all connections.

• We propose a new relational framework called SR-
diffusion to jointly model pairwise dependence and
structural positions of users. To the best of our knowl-
edge this is the first study to incorporate pairwise
relations in structural role mining.

• We design an algorithm to learn the SR-diffusion
model in social networks, where the hidden variable
role is inferred regarding the observed variables of
ego properties of users and connections. We define
a cost function to model the pairwise dependencies
and structural similarities. This algorithm, iteratively
infers the social roles of users based on structural
similarities in the network and by propagating roles
through connections.

• We show how information cascade modeling can
benefit from role mining by predicting influential users
in an information cascade solely from the structural
role membership of users.

The remainder of the article is organized as follows.
Section II reviews previous approaches and related problems.
Section IV explains the problem statement and modeling and
describes the proposed algorithm for SR-diffusion. Section V
provides results about the experimental evaluation of our
proposed method on social networks. Section VI gives the final
comments on the obtained results and concludes the article.

II. RELATED WORKS

A. Structural role mining

For a static network, role extraction is defined as the
process of finding groups of nodes with similar properties.
In other words, this is a clustering task where nodes are
grouped, not based on their connectivity, but because they
hold a similar position in the network. This has been studied
by other researchers, where nodes with the most outstand-
ing properties are detected as singular motifs using outliers
detection methods [5]. Henderson et al. [2] found roles of
nodes regarding their properties in their neighborhood by
non-negative matrix factorization. In their method, the matrix
of node-role is derived from matrix factorization of node-
features and features-role matrices and the number of roles
is determined by a Minimum Description Length (MDL)
method [6].

Rossi et al. [7], used the methodology proposed by [2] for
dynamic role extraction. They measure a set of features for
nodes at each time snapshot. Then, by stacking all the node-
by-feature matrices, they derive the matrix of feature-roles by
factorizing the stacked node-by-feature matrix and iteratively

generate the matrix of node-role for each time. Role discovery
methods are essentially unsupervised.

However a more supervised approach for role discovery
is presented by [1] where they used structural properties
of users to infer their pre-defined social statuses of users.
They proposed a probabilistic model to integrate users’ social
properties and network features for prediction of users roles.
Danilevsky et al. [8] studies role discovery in hierarchical
topical communities.

B. Social roles in information cascades

Information propagation in social networks has been
widely studied for a number of years from different aspects.
Several influence models have been proposed and studied,
and the most popular ones are the linear threshold model
(LT) and the independent cascade model (IC), by Kempe
et al. [9]. These models study spread of influence through
social networks, where the influence probabilities between
users are predefined. Saito et al. [10] predict the influence
probabilities in independent cascade models of propagation by
maximum likelihood estimation and Goyal et al. [11] study the
probabilities in the threshold model by counting the number
of correlated social actions. They both consider the temporal
nature of influence of users.

Other research works in this field, measure users’ influence
by using some structural models of influence like PageRank
and in-degree centrality in the network [12], number of fol-
lowers, mentions, retweets [13], [14] or the size of the infor-
mation cascades [15]. Earlier studies of social influence and
propagation, showed that the most influential bloggers were
not necessarily the most active [16]. Temporal information
has been used in modeling influence using the influence-
passivity score [17]. Although the structure of the Flickr social
network holds small-world properties, which in theory says a
piece of information will spread quickly and widely through
social links, photos on Flickr are spread with delay [18]. This
study concludes that propagation is not only due to activity
of users but also due to information availability at the time
of users’ activity. Zhou and Liu [19] integrated three sources
of information to derive the influence group of users. They
defined a new similarity matrix between users based on three
sources of information including a social network of users,
activity networks and influence networks.

All referred work use both the activity log of users and
their social network to characterize the influence process. This
contrasts with our proposal in which we only use topological
properties of users to categorize their role in the influence
spread.

III. PAIRWISE DEPENDENCY AND STRUCTURAL ROLES

In this section, we quantify the correlations between the
structural roles. For the pilot experiment, we use a very basic
role mining method on a network to extract a set of structural
roles and examine the pairwise dependencies between roles.
We use the static role mining method where the k-means
algorithm is employed over the structural properties of nodes
in the network, to group them into their respective roles. The
measured structural roles are the same as the one explained in
section IV-B.



Fig. 2: Pairwise dependency across structural roles in Digg
social network; The percentage of connected users varies
significantly across roles; A: “cliquey”, B: ”2nd periphery”,
C: ”periphery-cliquey”, D: ”periphery”, E: ”local-star”. For
example, 65% of users in role “A” are connected, but users
of role “D” never connect.

Fig. 3: A subgraph of Digg social network, including active
users in one information propagation process; color-coded
regarding the structural roles; A: “cliquey” (purple nodes),
B: ”2nd periphery” (blue nodes), C: ”periphery-cliquey” (dark
blue), D: ”periphery” (red nodes), E: ”local-star” (green nodes)
. The percentage of connected users varies significantly across
roles. For example, 65% of users in role “A” are connected,
but users of role “D” never connect.

A. Data

For this experiment we use a dataset from Digg Digg1

social network. Digg is a news aggregator in which users
can submit links to interesting news stories and they can rate
these stories by voting on them. Users also can designate
other users as friends. More specifically, each user has a list
of followers (fans who follow him) and a list of followees
(friends whom he follows). All activities are visible to her fans,
including all stories he submitted or voted for. We use the Digg
data collected by Lerman and Ghosh [20] which contains the
friendship network of users and all the posts submitted during
one month, including the id, submitter id, voters for each post
and the date of votes. This dataset includes 3,018,197 votes
on 3,553 popular stories made by 139,409 users and the social
network of active users (who have at least one vote) containing
71,367 users and 1,731,658 friendship links. We built our
social network from active users and their connections, where
active users are those who voted for at least one story.

B. Experiment results

We derived five structural roles in the network. Then we
study the pairwise relations for different roles by counting the

1http://www.isi.edu/ lerman/downloads/digg2009.html

number of connected users in each role. Figure 2 depicts the
results of this experiment for users in the social network of
Digg. The percentage of connected users varies significantly
across roles. For example, 65% of users in role “A” are
connected, however users of role “D” are never connected.
These two roles are depicted in Figure 3, with role “A” shown
in orange and role “D” in yellow, corresponding to a subgraph
of active users in an information cascade in a Digg social
network including all of their connections to the rest of the
network. We can clearly see that pairwise dependency is valid
for role “A” but not for role “D”. Therefore, this dependency
will be of great help in categorizing the users for some roles,
but it can also be highly misleading for some other roles. In the
next section we show how we can take advantage of pairwise
dependency in role mining modeling.

IV. PAIRWISE STRUCTURAL ROLE MINING

In this section we explain our proposed method for role
mining where both ego- and pairwise-role dependencies are
considered following the framework of probabilistic graphical
models [21]. Our approach aims to detect groups of users that
have the same structural properties and are socially connected.
The likelihood of the data is higher when users in the same
group have the same structural properties, and it is also higher
when users have interactions.

We model these two dependencies in the framework of role
mining. We first introduce the variables in the problem that are
utilized for defining the objective function of our model. The
first variable xi represents the ego features of user ui and it
is derived by measuring a set of structural properties such as
degree centrality and clustering coefficient. We define the set
of ego features to be utilized in our model in section IV-B . All
features in this vector are normalized to the interval [0, 1]. The
latent variable li shows the role label of user ui and has value
from 1 to K to indicate to which role the user belongs to.
We quantify the pairwise dependency by variable λkr which
measures the non-compatibility of roles k and r. Last, to
represent the association between roles and ego features, we
use an association variable µk for each role. Each dimension
of this vector variable indicates the corresponding feature in
the ego feature vector of xi in the role k. Since we do not
know which ego features are associated to role k, µk is an
unknown vector and need to be learned.

For every two users ui and uj in the same role their ego
feature vector xi and xj should be close on the dimensions
designed by µk. Hence, by using a distance measure between
ego feature vectors and association variable, we want to
minimize:

K∑
k=1

∑
ui∈Rk

D(xi, µk) (1)

where D is a distortion measure between users and Rk is the
set of nodes with the label role k. Our model should also
minimize the cost of pairwise role assignment to achieve a
minimum role conflict between connected users:∑

(ui,uj)∈E

λkrI[(li = k, lj = r)] (2)

where λkr is the cost of non-compatibility of role k, r and
I is the indicator function showing if the role labels of the



connected users ui, uj are k and r. As discussed before
pairwise role dependency is more important for some roles
than for others. We tune Λ = {λ11, ..., λkk} in a way that it
does not sacrifice the ego-role dependency for the sake of the
pairwise dependency.

Our final objective function is derived from the linear
combination of the two elements:

obj =

K∑
k=1

∑
ui∈Rk

D(xi, µk) +
∑

(ui,uj)∈E

λkrI[(li = k, lj = r)]

(3)

A. SR-Diffuse Algorithm

In this section we introduce our algorithm to find the
values of unknown variables such that they minimize Eq. 3.
We have three sets of unknown variables, the role label li
of user ui, the association vector fk for each role and the
pairwise dependency cost λkr between the two roles k and r.
Since the association vector as well as the role labels for the
users are unknown, minimizing Eq. 3 is an “incomplete-data
problem”, for which a popular solution method is Expectation
Maximization (EM) [22]. In the following we describe a
soft role assignment (SR-Diffuse) algorithm which iteratively
updates each set of variables.

The algorithm starts with an initialization of the three sets
of variables and then in the E-step, given the association
vectors F = {f1, ..., fK} and the pairwise dependency cost
λkr for every pair of roles, every user is re-assigned to
the roles that minimize her contribution to obj. In the M-
step, the association vectors and the pairwise dependency cost
are re-estimated from the role assignments L = {li, ..., lN}
to minimize obj for the current assignment. Note that this
corresponds to the generalized EM algorithm [22], where the
objective function is reduced but not necessarily minimized in
the M-step.

Algorithm 1 SR-Diffuse

1: procedure SR-DIFFUSE(G = (V,E),K, σ)
2: X ← egoFeatures(G)
3: L0 ← initialize(X)
4: Λ← updateV ariables(L0) . Λ = {λ11, ..., λKK}

5: while (not Converged) do
6: Lt ← roleAssignment({f1, ..., fK},Λ) .
E-step

7: Λ, {f1, ..., fK} ← updateV ariables(Lt) .
M-step

8: if ||Lt − Lt−1|| < σ then
9: Converged← True

10: end if
11: end while
12: return Lt

13: end procedure

1) Initialization: To initialize the model, we applied the
fuzzy k-means clustering algorithm [23] to the data set result-
ing in a partitioning of users into K clusters. We use this
assignment to provide the values to the association vector,

and compute the variables relative to that assignment. These
variables form the starting point for EM, which is then run to
convergence.

2) Role assignment (E-step): The assignments of users to
roles are updated using the current estimates of the asso-
ciation vector and the pairwise dependency cost. In simple
role assignment when pairwise interactions of users is not
considered, and the E-step is a simple assignment of every
user to the role representative that is nearest to it according
to the distance function. In contrast, our model incorporates
interaction between the users. As a result, computing the
assignment of users to cluster representatives to minimize the
objective function is computationally intractable in any non-
trivial model [24]. We follow the iterated conditional modes
(ICM) [25], [26] approach, which is a greedy strategy to
sequentially update the role assignment of each user, keeping
the assignments for the other users fixed. The algorithm
performs role assignments in random order for all users. Each
user ui is assigned to the role label k that minimizes the user’s
contribution to the objective function. Optimal assignment for
each user is the one that minimizes the distance between the
users in the same role and maximizes the association between
roles and ego features (first term of obj) with a minimal penalty
for pairwise dependence assumption violations caused by this
assignment (second term of obj). After all users are assigned,
they are randomly re-ordered, and the assignment process
is repeated. This process proceeds until no user changes its
role assignment between two successive iterations. ICM is
guaranteed to reduce obj or keep it unchanged (if obj is
already at a local minimum) in the E-step [25]. Overall, the
assignment of points to roles incorporates pairwise supervision
by discouraging assumption violations proportionally to their
severity, which guides the algorithm towards a desirable role
configuration over the network.

3) Update variables (M-step): The M-step of the algorithm
consists of two parts. First we discuss the update of the associa-
tion vector fk for users in role k when labels L = {li, ..., lN}
for all users are fixed. The association variables {f1, ..., fk}
are re-estimated from users currently assigned to the roles
to decrease the objective function obj in Eq. 3. Each role
association calculated in the M-step of the EM algorithm is
equivalent to the expectation value over the points in that
cluster, which is essentially their arithmetic mean.

fk =

∑
xi∈Rk

xi

|Rk|
(4)

The second set of variables that we discuss is the pairwise
dependency cost λkr for the roles k and r. The main intuition
for this variable is that users of certain roles tend to connect to
each other but some others do not. Hence for fixed association
vectors F = {f1, ..., fK} and role assignment L = {li, ..., lN},
we estimate the pairwise dependency cost λkr as follows:

λkr =
|ui : li = k|.|ui : li = r| ∗ α
|(ui, uj) ∈ E : li = k, lj = r|

(5)

where the denominator measures the number of pairs of
(k, r) in the network and it is normalized by the number of
connections if these roles where always connected. The basic
idea is that cost of having same role for connected nodes is
higher if it is a rare case in the network.



To complete the model parameterization, we need to spec-
ify α, the variable used in Eq. 3 to represent the strength of the
preference towards assigning connected users to the same role.
We experimented with a range of values for α for both data
sets, measuring both the number of connections in each role
and the coherence of the clusters with respect to the structural
properties. We evaluated the structural coherence of a role as
the average distance between every pair of users that were
assigned to the role. As expected, increasing α results in a
larger number of connections among users in the same role.
Our method results in roles configuration consistent with the
pairwise role dependence assumption, while not sacrificing the
structural properties quality. This parameter also helps to find
appropriate number of roles for a network, we discuss this
issue more in section IV-C.

B. Ego features

In this section we define the ego feature vector for the users.
It is possible to use a different feature set for role mining such
as local features [27] or recursive feature aggregation [28] We
selected the structural properties of users that have been shown
to be correlated to social classes of users [5], [27]:

• the normalized node degree (K): quantifies the linkage
of node i; it is the degree of node i divided by the
sum of all nodes’ degree in the network.

• the normalized average degree (r): shows the intensity
of connectivity in the neighborhood of node i; it is
calculated by averaging over all degree of immediate
neighbors of node i.

• the standard deviation of degree (cv): coefficient vari-
ation of the degrees of the immediate neighbors of a
node characterizes the coherence of the connectivity;
it is measured by the standard deviation of the degrees
in the neighborhood of node i.

• the clustering coefficient (cc): quantifies the connectiv-
ity between neighbors; it is measured as the proportion
of existing connections between neighbors of node i
to the number of all possible links between them [29].

• the locality index (loc): characterizes the structure of
neighbors’ connectivity to the rest of the network; it is
the ratio of links to the nodes outside of neighborhood
to the number of links within the neighborhood to.

• the common neighbors (CN ): measures the commit-
ment of users to the neighborhood. This feature shows
if neighborhood of a user has an overlap with its
neighbors. It is the number of common neighbors
between a user’s direct connections.

CNi =
∑

uj∈Nui

∣∣Nui
∩Nuj

∣∣∣∣Nui ∪Nuj

∣∣ (6)

where Nui is the set of neighbors of user i.
• the eigenvector centrality (eig−cntr): ranks users re-

garding their importance in the network. This central-
ity measure acts similar to degree centrality however it
gives higher score to the nodes which are themselves
connected to high score nodes.

This feature vector has the advantage of measuring the con-
nectivity of a node in its neighborhood structure and also it
is fast to calculate. However any other feature set can also be
used in our method.

C. Determining number of structural roles

The number of roles is one of the challenges in role mining.
Our role mining method solves this issue by initializing the
number of roles to a relatively large number (n/2) and when
it stops the non-empty roles are the final roles. The final
number of non-empty roles is determined by the value of α in
equation 5. We study the effect of value of α by measuring the
quality of roles in two terms: 1) isolation and 2) compactness.
Isolation assesses how well roles are separated by calculating
the distance between centers of roles and compactness assess
the coherence of roles by measuring the distance between users
in the same role, measured respectively by first and second part
of equation 7. We calculate the quality score QS of discovered
roles by:

QS = min
∀r,k∈[1,K]2

dist(fk, fr)− mean
∀k∈[1:K]

max
xi∈Rk

dist(fk, xi)

(7)

The higher score shows higher quality for a role set as it
shows roles are well separated by high value of isolation and
have high coherency by low value for compactness component.
We find the appropriate number of role K by varying value α
as long as it improves the equation 7.

V. EXPERIMENTS

We demonstrate the efficacy of our method through user
classification in information cascades. For S cascades we
label involved users in each cascade regarding the class label
definition in section V-B. The classification task is to predict
the labels of users in a cascade based on role membership
matrix. We use logistic regression for this purpose. We com-
pare the predictability of discovered roles by our method to
three baseline methods. The first method evaluates the effect
of pairwise role dependence assumption, the second evaluates
the effect of ego properties of users on the roles and the third
one compares the predicta bility of structural roles to ego
properties.

A. Data

Throughout this section we will be using two different data
sets, coming from two well known and established internet
communities: Digg, as explained in section III-A and Flickr2.
Flickr is a popular photo and video hosting website with
a large community of users. We use data collected by Cha
et al. [30], which includes a social friendship network of
users and information propagation from one user to another.
The associated mechanism is similar to Digg, but instead of
URLs, photos are shared and voted. We sample 4000 photos
from those which number of favorite marking is higher than
100. This sample contains a network with 914,400 users and
18,595,048 links. The social network includes all users who
have marked the selected photos as favorites and all their
connections in the original data.

Both datasets include a static social network with social
relationships between users and a dynamic evolving network
describing information propagation.

2http://socialnetworks.mpi-sws.org/datasets.html



B. Class definition in information cascade

In this section, we define a set of social classes for users
in an information cascade. Different categorizations for active
users in a cascade are defined in literature [31], [32], [33],
[34], however all these definitions are one dimensional and
only consider either time of action or influence of a user’s
action. In this paper, by inspiration from existing definitions,
we define a new categorization of users based on two factors
to capture both time and consequence of a user’s action.

1) time of action: Borge-Holthoefer et al. [34] divide the
lifetime of a cascade in to three phases based on the
final size of th cascade: 1) slow growth: the time slot
when the cascade size is less than 5% of final size; 2)
explosive phase: when cascade size grow from 5 to
90% of final size; 3) saturation phase: when cascade
size is above 90% of its final size

2) consequence of action: Baños et al. measure the effect
of a user by multiplicative number of the given user.
The multiplicative number of user ui is the quotient
of the number of listeners reached one time step
after ui showed activity, l(t+ τ), and the number of
nearest listeners of ui, i.e., those who instantaneously
received its message, l(t) (which is given by the
number of followers of ui that are involved in the
cascade). Thus, the ratio l(t + τ)/l measures the
multiplicative capacity of a user: δl = l(t+ τ)/l > 1
indicates that a user has been able to increase the
number of listeners who received the message beyond
her immediate followers.

Figure. 4 shows the distribution of users in defined time
phased and in a multiplicative number of users for a cascade.
The blue distribution shows influential users, and the red one
belongs to those that were not able to affect network beyond
their 1-hop neighborhood. As we can see not all the early
adopters in the “slow growth” phase are influential enough to
affect users for further voting. The red distribution has higher
frequency but lower influence mean comparing to the blue
one. Regarding the aforementioned factors and Figure. 4, we
categorize users that are active in a cascade into six groups or
classes: 1) initiators: active users in slow growth phase with
δl > 1. 2) promoters: active users in explosive phase with
δl > 1. 3) early adopters: active users in slow growth phase
with δl < 1. 4) common users: active users in explosive phase
with δl < 1. 5) late adopters: active users in saturation phase
with δl > 1. 6) passives: active users in saturation phase with
δl < 1.

These six groups constitute our class labels and we call
them social classes to differentiate them from structural roles
that we have from the structural role mining framework. In
this paper we investigate how social classes correlate to the
structural roles and we demonstrate the predictability of our
role mining method through predicting social classes in a
cascade.

C. Experiment configuration and results

The first step of structural role minins is to determine the
suitable number of roles in a network regarding the method
explained in section IV-C. Figure 6 shows the quality of
discovered roles for different values of α. As we can see,

Fig. 4: The influence distribution of active users at different
phase of a cascade lifetime in Digg social network; blue
distribution belongs to the users with l(t+τ)/l > 1, who could
influence the network beyond their immediate neighbors. In the
“slow growth” phase these users have larger degree (number
of immediate neighbors) .

the worst quality belong to the setting with α = 0 which
is basically when pairwise dependency has zero effect in the
role mining. This demonstrates that our method improves role
mining results by incorporating the pairwise dependency. Our
method specially improves the quality of role sets in the
network when the roles are very similar and relying only on
structural features is not enough for learning the roles. For
example, Figure 5 shows a subgraph of Digg social network,
where nodes are positioned regarding their first and second
principle component of the matrix of nodes ego features. In this
figure nodes with similar ego features are located closely. In
the network (a) nodes are color coded regarding their role from
k-means algorithm while nodes in the network (b) are color
coded by their roles discovered from SR-Diffuse. As we can
see for the same number of roles, different role configuration
is derived by two methods. SR-Diffuse puts connected nodes
that are close regarding ego vectors in the same role while k-
means can not; green and dark blue nodes in network (a) are
placed in the same group (dark red) by SR-Diffuse and cyan
nodes in network (a) are divided into two roles (dark and light
blue) in network (b).

From Figure 6, we can see that SR-Diffuse finds the best
roles configuration on Digg social network when α = 56
and on Flickr network α = 72. With this configuration the
number of roles that SR-Diffuse found on these networks are
respectively 8 and 11. We use the same number of roles for
the baseline methods. Next we explain how discovered roles
can predict social classes of users in an information cascade.

We select S disjoint cascades that do not have any active
users in common. We measure the ego properties of the N
active users in the cascades and then learn structural roles
of users by a role mining method (our method (SR-Diffuse),
pair-means and c-means). This gives us the role membership
matrix of users which we use as predictor to build the classifier
using logistic regression. In order to be able to evaluate the
predictability and generality of discovered roles we use 50%
of users to build the role membership matrix and put the rest
aside as the test set. We use the role membership matrix of
users in the train set to build the classifier and evaluation result



(a) Color-coded by discovered roles
using k-means; quality score = 0.21

(b) Color-coded by discovered roles
using SR-Diffuse; quality score =
0.43

Fig. 5: A subgraph of Digg social network, including active
users in one cascade; color-coded regarding the structural roles.
Nodes are positioned regarding their first and second principle
component of the ego features matrix of nodes. Nodes with
similar ego feature vectors are located closely; SR-Diffuse puts
connected nodes that are similar regarding ego feature vectors
in the same role better than the way k-means does.

Fig. 6: The quality of discovered role set by SR-Diffuse for
different values of α (pairwise dependency parameter).

is derived from the classification of users in test set.

Table I demonstrates the evaluation results of our method
and the baseline methods. We measure the performance of each
method in terms of F-score for the predicted roles in the test
set. F-score is the harmonic mean of precision and recall which
are respectively equal to |p∩r||p| and |p∩r||r| for the predicted role
p with reference to actual role r. We can see that SR-Diffuse
can better predict roles of users in an information cascade

We compare the predictability of discovered roles by our
method to three baseline methods, the first one evaluates the
effect of pairwise role dependence assumption, the second one
evaluate the effect of ego properties of users on the roles and
the third one compare the predictability of structural roles to
ego properties:

• pair-means: this method uses pairwise role dependence
for cluster assignments, but does not perform distance
learning; This method applies majority votes on the
labels of neighbors of a user to infer her role. This
method is initialized by clustering a subset of users
using the fuzzy k-means algorithm and then the role
labels for the rest of the users are assigned by majority
votes.

• c-means: the fuzzy k-means algorithm over structural
properties are utilized for role discovery.

• ego-feat: this method uses the ego features of users
as described in section IV-B to make the prediction
model.

TABLE I: Performance of SR-Diffuse in classifying users in
information cascade in comparison to baseline methods.

Digg F1 precision recall
SR-Diffuse 0.50 0.67 0.41
c-means 0.44 0.52 0.39
pair-means 0.46 0.67 0.36
ego-feat 0.29 0.76 0.18
Flickr F1 precision recall
SR-Diffuse 0.46 0.58 0.39
c-means 0.44 0.61 0.35
pair-means 0.40 0.57 0.31
ego-feat 0.33 0.62 0.23

Table I reports the classification performance of discovered
roles by our method comparing to the baseline methods in
terms of F1, precision and recall. We can see that worst
performance (lowest F1) belongs to the ego-feat method, its
precision is the highest though. This shows that the ego
features are good indicators for social classes of users in
information cascade. The recall is low, it suggests that ego
features are not enough for predicting roles. The classifier
performs better when the structural role membership is used as
the predictor instead of ego features. As we can see from the
Table I, we have better classification performance for all three
role mining methods (SR-Diffuse, c-means and pair-means)
over the ego-feat method. Overall, the role configuration
discovered by SR-Diffuse is a better classifier for social classes
in information cascade as we have the best classification results
from the classifier trained over this role membership matrix.
This suggests that combination of ego features and pairwise
dependencies can improve the quality of role mining results
and better detect existing structural roles in the network.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we studied patterns of homophily for struc-
tural roles in a network. We showed how structural compati-
bility varies across different structural roles and devise a new
method to take advantage of this property for discovering some
of structural roles and avoiding misclassification for the others.
We proposed a novel relational structural role mining method
to find roles configuration over a network. Our method is
capable of finding roles membership of users regarding their
structural features and pairwise dependencies. It iteratively
assigns users into structural roles in a way that the derived
roles set has the most coherency in terms of including most
similar users and has the least non-compatibility of roles in the
neighborhood of each user. This algorithm automatically finds



the appropriate number of roles in a network by controlling
the pairwise dependency parameter.

The experimental results, using two real social network
data sets, show that the proposed model greatly outperforms a
number of baseline models and is able to effectively infer roles
of users in an information cascade scenario. In our experiment,
we have shown that the predictability of discovered roles by
our method is higher than baselines.

In this study, we also explore how influential users mod-
eling in information cascade can benefit from structural role
mining in a network. We defined a set of class labels for
active users in information propagation events on a social
network based on their influence and time of action and then
used structural roles membership of users to predict their class
labels in an information cascade. We showed that discovered
structural roles by our method are better predictors for social
classes of users in a cascade comparing to a set of baseline
methods.

One of the emerging challenges in structural role mining is
spotting roles of a users relative to the community they belong
to. As a future work we intend to extend our method in a way
to be capable of finding roles of users in each community they
are part of.
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