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Abstract. Markov Logic is an expressive and widely used knowledge
representation formalism that combines logic and probabilities, provid-
ing a powerful framework for inference and learning tasks. Most Markov
Logic implementations perform inference by transforming the logic rep-
resentation into a set of weighted propositional formulae that encode a
Markov network, the ground Markov network. Probabilistic inference is
then performed over the grounded network.

Constructing, simplifying, and evaluating the network are the main
steps of the inference phase. As the size of a Markov network can grow
rather quickly, Markov Logic Network (MLN) inference can become very
expensive, motivating a rich vein of research on the optimization of MLN
performance. We claim that parallelism can have a large role on this
task. Namely, we demonstrate that widely available Graphics Processing
Units (GPUs) can be used to improve the performance of a state-of-the-
art MLN system, Tuffy, with minimal changes. Indeed, comparing the
performance of our GPU-based system, TuGPU, to that of the Alchemy,
Tuffy and RockIt systems on three widely used applications shows that
TuGPU is up to 15x times faster than the other systems.

Keywords: Statistical relational learning · Markov logic · Markov logic
networks · Datalog · Parallel computing · GPUs

1 Introduction

Statistical relational learning (SRL) integrates statistical reasoning, machine
learning and relational representations. SRL systems rely on a first-order logic
language to represent the structure and relationships in the data, and on graphi-
cal models to address noisy and incomplete information. Various SRL frameworks
have been proposed, Stochastic Logic Programs (SLP), Probabilistic Relational
Models (PRM), PRISM, Bayesian Logic Programs, ProbLog, CLP(BN ), PFL,
and Markov Logic [13,30].
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The last few years have seen significant progress in models that can repre-
sent and learn from complex data. One important such model is Markov logic,
“a language that combines first-order logic and Markov networks. A knowledge
base in Markov logic is a set of first-order [logic] formulas with weights” [11].
Markov Logic thus builds upon logic and probabilities. The logical foundation
of Markov Logic provides the ability to use first-order logic formulas to establish
soft constraints over worlds, or interpretations. Worlds that violate a formula
are less likely to be true, but still possible. In contrast, formulas in standard
first-order logic are hard constraints: a world that falsifies a formula is not pos-
sible. Worlds that violate a formula can be possible in Markov Logic because
worlds are an assignment to a set of random variables, and follow a probability
distribution. The distribution is obtained by identifying each ground atom as a
random variable, and each grounded formula as a clique in a factor graph. This
ground network thus forms a Markov Random Field (MRF) [17].

Markov logic systems address two major tasks [31]: inference and learning. In
inference, we receive an MLN model M and a set of observations, or evidence E,
and we want to ask questions about the unobserved variables. Typical queries are:

– probability estimation queries: one wants to find out the probability of an atom
given the evidence E. A typical example would be “What is the probability
of rain in Kobe and Kyoto, given that it is raining in Tokyo and Nagoya,
but sunny in Fukuoka and Okinawa”. Notice that MLNs naturally allow for
collective inference, that is, we can ask for all the different cities in a single
query.

– Maximum a posteriori (MAP) or most likely world queries: one wants to find
out what is the most likely set of values for the variables of interest. From our
example above, instead of outputting probabilities, the model would output
the places where it is more likely to rain.

A large number of inference techniques have been developed for MLNs. Most
of them operate on the ground network, that is, given the query and the observed
data, they enumerate all relevant atoms and then use statistical inference on
the resulting network. They then search for the set of grounded clauses that
maximize the sum of the satisfied clauses weights.

The second task, learning, is about constructing the actual MLNs. Often
the formulas of interest can be obtained from the experts, but it is still nec-
essary to learn the weights. Parameter learning addresses this task. Structure
learning goes further and tries to construct the actual model, by searching for
relationships or important properties of the data.

Markov logic networks have been widely adopted. Applications include the
Semantic Network Extractor (SNE) [19], a large scale system that can learn
semantic networks from the Web; the work by We et al. to refine Wikipedia’s
Infobox Ontology [43]; and Riedel and Meza-Ruiz’s work to carry out collective
semantic role labelling [33], among others [11, p. 97].

Alchemy was the first widely available Markov Logic system [11]. It is still
a reference in the field, as it includes a very large number of algorithms that
address most MLN tasks. However, as it did not scale well to large real-world
applications, several new implementations have been proposed [4,26,27,32].
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Grounding is, arguably, the step that mostly affects performance of MLNs,
preventing them from scaling to large applications. For large domains, we may
need to ground a very large number of atoms, which can be quite time and
space-consuming. Often (but not always) the solver algorithm converges in few
iterations and grounding will dominate running time [26]. We claim that GPU
processing can significantly expedite grounding, and that this can be done effec-
tively with few changes to the state-of-the-art systems. To verify our hypoth-
esis, we designed TuGPU, a Markov Logic system based on: Tuffy [26], YAP
Prolog [35], and GPU-Datalog, a GPU-based engine that evaluates Datalog pro-
grams [22]. We compare the performance of TuGPU to that of Alchemy [11],
Tuffy and RockIt [27], with three applications of different types: information
extraction, entity resolution and relational classification. The performance of
TuGPU is on par or better than the other systems for most applications.

This paper is organized as follows. Section 2 presents background on Markov
logic and its implementation, Tuffy, Datalog, and GPUs. Section 3 presents the
design and implementation of our TuGPU platform for Markov logic networks.
Section 4 presents an experimental evaluation of our platform. In Sect. 5, we
discuss about our system and other related systems. We conclude in Sect. 6.

2 Markov Logic, Tuffy, Datalog and GPUs

First-order (predicate) logic is widely used for knowledge representation and
inference tasks. Datalog is a language based on first-order logic that was ini-
tially investigated as a data model for relational databases in the 80s [41,42];
recent applications include declarative networking, program analysis, and secu-
rity [15]. Interest in Datalog has always stemmed from its ability to compute the
transitive closure of relations through recursive queries which, in effect, turns
relational databases into deductive databases. Relational Learning is the task of
learning from databases, modelling relationships among data items from multiple
tables (relations); Inductive Logic Programming (ILP) [9] is a popular relational
learning approach that employs logic-based formalisms, often based on subsets
of first-order logic such as Horn clauses.

Statistical Relational Learning (SRL), in the form of probabilistic induc-
tive logic programming, extends logic-based approaches by combining relational
learning and probabilistic models (e.g., graphical models such as Bayesian net-
works and Markov networks), in order to manage the uncertainty arising from
noise and incomplete information which is typical of real-world applications.
Markov logic networks (MLNs) are a very popular approach that combines first-
order logic and Markov networks in a simple manner: a weight is attached to each
first-order logic formula that represents how strong the formula is as a constraint
in all possible worlds. MLNs use inference to answer queries of the form: “What
is the probability that formula F1 holds given that formula F2 does?” [31].

2.1 Inference in Markov Logic

A Markov Logic network is a set of formulas with attached weights. Inter-
nally, the program is stored as a conjunction of clauses, where each clause is a
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disjunction of positive and negative atoms, as shown in the well-known smokers
example, which determines the probability of people having cancer (Ca) based
on who their friends (Fr) are and whether or not their friends smoke (Sm):

1.5 : ¬Sm(x) ∨ Ca(x)
1.1 : ¬Fr(x, y) ∨ ¬Sm(y) ∨ Sm(x)
0.7 : ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z)

Each ground instance of a literal, say Ca(Anna) can be seen as a boolean
random variable (RV). RVs in a clause form a clique, and the set of all cliques
a hypergraph. Assuming the network includes N ground atoms and R rules or
cliques, such that clique i has size ki, the Markov property says that the joint
probability over the hypergraph is a normalized sum of products:

P (a1, . . . , aN ) =
1
Z

∏

R

ewiφ(ai1,...,aiki
)

Each RV can take two values (0 or 1), hence we have 2N disjoint configura-
tions. The partition function Z =

∑(a1=1...aN=1)
(a1=0...aN=0)

∏
R ewiφ(ai1...aiki

) sums up all
the different values and ensures that the total probabilities add up to one (1).
Usually there is no closed form for Z.

The boolean function φ is 1 if the clause i is true under this grounding, 0
otherwise. Thus, a false grounding contributes e0 = 1 to the product, and a true
grounding ew: in other words, if w = 1.5, a world with that grounding is e1.5,
which is approximately 5 times more likely than a world whose grounding is false.
As wF ≡ −w¬F (where F is a a clique i), we can always ensure that weights
are positive or zero, hence the probability of a world where all constraints are
soft is 0 < 1

Z <
∏

ewi

Z < 1 : strictly larger than zero and always less than one.
Inference is most often divided in two phases: grounding and search. Ground-

ing is the process of assigning values to all free variables in each clause. While
we can ground a clause by assigning all possible values to its variables, it is
impractical even for small domains. There are several, more efficient alternatives
that discard unnecessary groundings, such as lazy closure grounding and infer-
ence [28]. In a number of cases, one can obtain even better results by using lifted
inference, that avoids grounding the program [38].

Next we focus on the most common inference task, Maximum a Posteriori
(MAP), where we search for the most probable state of the world given the
observed data or evidence E; that is, we search for an assignment of a1 . . . aN

that maximizes P (E|a1 . . . aN ) ∝ P (a1 . . . aN |E) = P (a1...aN ,E)
P (E) . Thus, we have:

argmaxa1...aN
P (a1 . . . aN |E) = argmaxa1...aN

1
P (E)Z

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN
log

∏
R ewiφ(ai1...aiki

)

= argmaxa1...aN

∑
R wiφ(ai1 . . . aiki

)

Z and P (E) are the same for every world, so they do not affect the optimization
problem. Moreover, applying a monotonic function such as the logarithm will
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preserve the maximum, but enable us to work on a sum. Observing closely, the
problem reduces to finding the maximal value of discrete function of boolean vari-
ables. Notice that if the coefficients wi are positive, and the underlying boolean
formula is satisfiable, an assignment that satisfies the model will be optimal.
Thus, finding a solution to this problem requires solving the satisfiability prob-
lem with weights.

Several Markov logic systems use MaxWalkSAT [16] for its ability to solve
hard problems with thousands of variables in a short time. MaxWalkSAT works
by selecting an unsatisfied clause and switching the truth value of one of its
atoms. The atom is chosen either randomly or to maximize the sum of the
satisfied clause weights.

2.2 Optimizations

A ground MLN may quickly have thousands of boolean variables, making it hard
to find even an approximate solution. Thus, it is important to start by simplifi-
cations of the system. Typically, one applies a combination of two techniques:

– Elimination: Consider a clause ¬Sm(j) ∨ ¬Sm(k), with evidence ¬Sm(j) and
query variable Sm(k). The clause is always true, hence it does not affect the
total score, and can be dropped.

– Partitioning : Consider c1 ≡ a ∨ ¬b and c2 ≡ c ∨ d. If (a, b) is a solution to
c1, and (c, d) is a solution to c2, then we have that (a, b, c, d) is a solution to
the joint network. In practice this means the two sub-problems can be solved
independently.

Most MLN systems apply these principles to reduce the search space. To
speed up inference in large relational problems, lazy grounding takes the idea
further and grounds as late as possible. The idea is to take advantage of the
fact that most of their groundings are known to be trivial or false beforehand.
The other approach, lifted inference, groups indistinguishable atoms together
and treats them as a single unit, thus reducing the size of the network.

2.3 Learning

Learning is used to automatically create or refine weights and to create clauses
in an MLN. Weights can be learned generatively or discriminatively; clauses
are learned using Inductive Logic Programming (ILP) [9]. The learning process
makes repeated use of the inference phase, using one of the methods described
below. However, it is common of many applications to use only the inference
phase with an already configured knowledge base (KB) and a number of facts in
relational tables, as is the case of the applications we use in our experiments in
Sect. 4. Learning is not considered any further in the paper after this subsection.

In generative weight learning, the idea is to maximize the likelihood (a func-
tion of the parameters of our statistical model) of our training evidence following
the closed-world assumption [12]. i.e.: all ground atoms not in the database are



Processing MLNs with GPUs: Accelerating Grounding 127

false. However, computing the likelihood requires all true groundings of each
clause, a difficult task even for a single clause [34]. MLNs use pseudo-log likeli-
hood instead [6], which consists of a logarithmic approximation of the likelihood.
Combined with a good optimizer like L-BFGS [7], pseudo-log likelihood can cre-
ate weights for domains with millions of groundings.

Discriminative weight learning is used to predict query atoms given that
we know the value of other atoms. This is achieved by maximizing the condi-
tional log-likelihood (CLL: a constrained version of the log-likelihood), instead of
the pseudo-log likelihood [37]. Maximizing CLL can be performed by optimizer
algorithms like Voted Perceptron, Diagonal Newton, Scaled Conjugate Gradient,
among others [11].

Clauses can be learned using ILP algorithms. The most important differ-
ence is the use of an evaluation function based on pseudo-likelihood, rather than
accuracy or coverage. These modified methods include top-down structure learn-
ing [18] (TDSL) and bottom-up structure learning [24] (BUSL). On real-world
application against famous ILP systems like CLAUDIEN [10], FOIL [29] and
Aleph [39], both TDLS and BUSL find better MLN clauses.

2.4 Tuffy

Tuffy [26] is an MLN system that employs a bottom-up approach to grounding
that allows for a more efficient procedure, in contrast to the top-down approach
used by other systems. It also performs an efficient local search using an RDBMS.
Inference is performed using the MaxWalkSat algorithm mentioned in Sect. 2.1.
Tuffy can also perform parameter learning, but it does not implement structure
learning (creating new clauses). In order to speedup execution, it partitions the
MRF formed by the grounded clauses so as to perform random walks in parallel
for each partition.

2.5 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by Prolog) starts with the goal that
is reduced to subgoals, or simpler problems, until a trivial problem is reached. It
is tuple-oriented: each tuple is processed through the goal and subgoals using all
relevant facts. Because evaluating each goal can give rise to very different com-
putations, the top-down approach is not easily adapted to GPUs bulk parallelism
— more on this below and in Sect. 2.6.

The bottom-up approach first applies the rules to the given facts, thereby
deriving new facts, and repeats this process with the new facts until no more facts
are derived. The query is considered only at the end, to select the facts matching
the query. Based on relational operations (as described shortly), this approach
is suitable for GPUs because such operations are set-oriented and relatively
simple overall. Also, rules can be evaluated in any order. This approach can be
improved using the magic sets transformation [5] or the subsumptive tabling
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Fig. 1. Evaluation of a Datalog rule based on relational algebra operations.

transformation [40], through which the set of facts that can be inferred tends to
contain only facts that would be inferred during a top-down evaluation.

Bottom-up evaluation of Datalog rules can be implemented with the rela-
tional algebra operators selection, join and projection, as outlined in Fig. 1. Selec-
tions are made when constants appear in the body of a rule. Next, a join is made
between two or more subgoals in the body of a rule using the variables as refer-
ence. The result of a join can be seen as a temporary subgoal (or table) that has
to be joined in turn to the rest of the subgoals in the body. Finally, a projection
is made over the variables in the head of the rule.

We use fixed-point evaluation to compute recursive rules [41]. The basic idea
is to iterate through the rules in order to derive new facts, and using these new
facts to derive even more new facts until no new facts are derived.

2.6 GPU Architecture and Programming

GPUs are high-performance many-core processors capable of very high computa-
tion and data throughput [2]. They are used in a wide variety of applications [3]:
games, data mining, bioinformatics, chemistry, finance, imaging, weather fore-
cast, etc. Applications are usually accelerated by at least one order of magnitude,
but accelerations of 10 times or more are common.

GPUs are akin to single-instruction-multiple-data (SIMD) machines: they
consist of many processing elements that run the same program but on distinct
data items. This program, referred to as the kernel, can be quite complex includ-
ing control statements such as if and while statements. A kernel is executed by
groups of threads called warps [1]. These warps execute one common instruction
at a time, so all threads of a warp must have the same execution path in order to
obtain maximum efficiency. If some threads diverge, the warp serially executes
each branch path, disabling threads not on that path, until all paths complete
and the threads converge to the same execution path. Hence, if a kernel has to
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compare strings, processing elements that compare longer strings will take longer
and other processing elements that compare shorter strings will have to wait.

GPU memory is organized hierarchically. Each (GPU) thread has its own
per-thread local memory. Threads are grouped into blocks, each block having a
memory shared by all threads in the block. Finally, thread blocks are grouped
into a single grid to execute a kernel — different grids can be used to run different
kernels. All grids share the global memory.

3 Our GPU-Based Markov Logic Platform

Our platform TuGPU was designed to accelerate the grounding step, as this
is often the most time consuming. Its main components are: the Tuffy Markov
logic system [26], the YAP Prolog system [35] and GPU-Datalog [22]. The latter
evaluates Datalog programs with a bottom-up approach using GPU kernels that
implement the relational algebra operations selection, join and projection. For
GPU-Datalog to be able to run Markov logic networks, its original version was
extended with: management of stratified negation; improved processing of built-
in comparison predicates; processing of disjunctions, in addition to conjunctions
(to simplify specifying SQL queries as Datalog queries and to improve their
processing); and an interface to communicate directly with PostgreSQL.

Figure 2 shows the interaction between the main modules of our platform in
running a Markov logic network. Tuffy is called first, receiving three input files:
(i) the evidence (facts) file; (ii) the MLN file; and the queries. Tuffy starts by
creating a temporary database in PostgreSQL to store the evidence data and
partial results (left side of Fig. 2). It then parses the program and query files in
order to determine predicates and to create a (relational) table for each predicate
found. Tables are then loaded with the evidence data.

The original Tuffy would then start the grounding phase. In TuGPU, this phase
is performed by GPU-Datalog (center of Fig. 2), but, as Tuffy uses conjunctions to

Fig. 2. TuGPU-Datalog modules running a Markov logic network. The left part corre-
sponds to the active atoms grounding, while the right corresponds to the active clauses
grounding.
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specify a program, we first translate it to Datalog disjunctions. Then the Datalog
program is sent to YAP, using a Java-Prolog interface, to compile it into a numer-
ical representation (NR) where each unique string is assigned a unique integer id.
YAP then sends the program’s NR to GPU-Datalog to process the grounding. By
using an NR, our GPU kernels show relatively short and constant processing time
because all tuples in a table, being managed as sets of integers, can be processed
in the same amount of time. Tuffy also uses an NR for evidence loaded in the data-
base; this simplified extending it with GPU processing. Weights are not used in
this phase, since the search for the most probable world will be performed by the
host after the grounding is done.

To speed-up the grounding, Tuffy and TuGPU use the Knowledge-Based
Model Construction [26] (KBMC) algorithm to determine those atoms and
clauses that are relevant to the query. Then, GPU-Datalog reads the evidence
from the database and performs the first step (of two) of the grounding process:
computing the closure of the active atoms (i.e., those atoms whose truth value
might change from true to false or vice versa, during search). The second step
determines the active clauses, clauses that can be violated (i.e., their truth value
becomes false) by flipping zero or more active atoms. For this step, TuGPU
translates the program rules from the SQL that Tuffy generates into Datalog,
and then YAP translates it into the NR used by GPU-Datalog.

When GPU-Datalog finishes each grounding step, it writes the found active
atoms or clauses to the database. At the end of both grounding steps, Tuffy
searches for the most likely world of the MLN. The search begins by using the
ground active atoms and clauses to construct the MRF and then partition it into
components. Each component has a subset of the active atoms and clauses, so
that if an atom is flipped, it affects only those clauses found in the component.

The partitioned MRF is processed in parallel by the CPU with one thread
per core and one component per thread, using the MaxWalkSAT algorithm men-
tioned in Sect. 2.1. The algorithm stops after a certain number of iterations or
after an error threshold is reached. Finally, the results are displayed by TuGPU.

4 Experimental Evaluation

This section describes our experimental evaluation of the performance of TuGPU
compared to that of the systems Alchemy [11], Tuffy [26] and RockIt [27].

4.1 Applications and Hardware-Software Platform

We used the following applications available with the Tuffy package. Table 1
shows some of their characteristics. For two of them (ER and RC), more tuples
were randomly generated to test the systems with bigger data (right column).

– Entity Resolution (ER): a simple, recursive MLN to determine if a person has
cancer based on who his/her friends are and their smoking habits (this is an
example from [31]).
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Table 1. Applications characteristics.

Application Inference rules Evidence relations Tuples in relations

Original Random

ER 3 3 8 (310,000)

RC 15 4 82,684 (441,074)

IE 1024 18 255,532 (na)

– Relational Classification (RC): classifies papers into 10 categories based
on authorship and on the categories of other papers it references (Cora
dataset [23]).

– Information Extraction (IE): given a set of Citeseer citations, divided in
tokens, rules with constants are used to extract structured records.

The original number of tuples of ER is only 8. We created another data set
with a larger number of tuples, 310, 000, with randomly generated data: creating
a fixed number of people, assigning a small random number of friends to each
person, and labelling a fixed number of people as smokers.

For RC we also created a larger, randomly generated data set with 441, 074
tuples. We used a fixed number of papers and authors, and the same categories
found in the original data: each author has a small random number of written
papers, each paper is referred to by a small random number of other papers, and
a small fixed number of papers are already labeled as belonging to a particular
category.

We ran our experiments in the following hardware-software platform. Host:
an AMD Opteron 6344, 12 cores CPU, with 64 GB DRAM. GPU: a Tesla K40c,
2880 CUDA Cores, with 12 GB GDDR5 memory and CUDA Capability 3.5.
Software: CentOS 7, PostgreSQL 9.5 and CUDA Toolkit 7.0.

4.2 Results

Figure 3 shows the performance of the systems using the original datasets avail-
able in the Tuffy package and on our extended versions of these datasets. The
left side shows our system to be the fastest in 2 out of the 3 original datasets,
but only by a few seconds relative to standard Tuffy. Alchemy was the fastest
in ER because the dataset is small and does not incur overhead setting up a
database. We were unable to execute IE in RockIt, hence the empty space in the
graph. Figure 3 (right) shows the performance of the systems with the extended
datasets. For ER, our system was 15 times faster than RockIt and 77 times faster
than Alchemy. Tuffy did not finish the grounding after more than 3 h. RockIt
was 2.5 times faster than our system for RC. Both Tuffy and Alchemy did not
finish after more than 5 h.

We performed a detailed analysis to determine why our system performed
so well in ER and so poorly in RC. For ER, our random data, combined with
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Fig. 3. Performance of the systems with original (left) and random (right) datasets.
Note that the graphs are in log. scale.

its recursive clauses, generates many more recursive steps, 24 vs 2 in the original
data. Each recursive step creates new tuples that need to be evaluated again. In
our system, approximately 1,000,000 new tuples were generated in each iteration,
most of them to be later discarded by our duplicate elimination kernel. Since
our system was designed around these recursive applications, grounding was
finished rather quickly while other systems struggled with costly joins that do
not capitalize on parallel processing.

In RC, the number of recursive steps was 2 for both normal and random
datasets. We hence analyzed the execution times of each part of our system.
Using our random data, both atom and clause grounding take about 2 min to
complete, loading data and other tasks take 30 s, but the search phase takes an
astounding 43 min. In contrast, the times for ER are about 8 s for both ground-
ings, 21 s for data loading and other tasks, and 16 s for the search.

Also in the search phase, ER, despite generating many more intermedi-
ate tuples during grounding, uses only 252,249 active clauses, while RC uses
5,586,900. Furthermore, when partitioning the resulting MRF, we get a single
component with approximately 4,000,000 active clauses. Since each component
is assigned to a thread (and one thread to each CPU-core), smaller components
finish quickly and we are left with a very large component being processed by
a single core, thus dominating the execution time. In contrast, RockIt creates a
large optimization problem but its parallel resolution has a much better balanced
workload.

Overall these results are promising since they mean that the benefit of per-
forming the grounding phase on the GPU outweighs the overhead associated
with the database and GPU I/O, even for rather small datasets.

5 Related Work

The wide adoption of Markov logic for various types of applications has fostered
the development of various systems and research on improvements. Alchemy was
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the first Markov logic system implementation [11]. It is one of the most com-
plete systems, including various algorithms for inference following a top-down
approach, various techniques for learning weights and structure and more. The
original Alchemy always performs inference by first grounding the program and
then using approximated methods either based in MCMC (Markov Chain Monte
Carlo), such as MC-SAT and Gibbs sampling, or variants of belief propagation.
Alchemy supports both total probability and most likely explanation queries, and
also provides a large number of learning algorithms. However, Alchemy does not
cope well with large real-world applications.

Tuffy was developed by Feng Niu et al. [26]. It relies on PostgreSQL relational
database management system (RDBMS) to perform inference. Tuffy follows a
bottom-up approach to solve the grounding step. This allows the grounding to
be expressed as SQL queries which, combined with query optimization by the
RDBMS, allows Tuffy to complete the grounding faster than Alchemy.

Several other systems are available. theBeast, developed by Riedel [32], uses
Cutting Planes Inference (CPI) optimization, which instantiates and solves small
parts of a complex MLN network. This takes advantage of the observation that
inference can be seen as either a MAX-SAT problem or as an integer linear pro-
gramming problem (i.e. a mathematical optimization problem where the vari-
ables are restricted to integers). While theBeast is faster than Alchemy for some
problems, it lacks many of Alchemy’s features such as structure learning and
MPE (Most Probable Explanation) inference [21].

RockIt is a recent system by Noessner et al. [27]. It treats the inference prob-
lem as an integer linear programming problem and includes a new technique
called cutting plane aggregation (CPA) which, coupled with shared-memory
multi-core parallelism during most of the inference, allows RockIt to outper-
form all other systems.

Beedkar et al. implemented fully parallel inference for MLNs [4]. Their system
parallelizes grounding by considering each clause as a set of joins and partition-
ing them according to a single join graph. The search step of inference is also
parallelized using importance sampling together with MCMC [20]. Since the
MLN is partitioned during grounding, no further partitioning is required before
searching. This approach is more efficient than Tuffy’s since the partition is per-
formed over a smaller, data independent graph. Experimental evaluation shows
that this is faster and produces similar results when compared with Tuffy.

Other works speedup inference and learning with MLNs. Shavlik and
Natarajan [36] propose ways of speeding up inference by using a preprocessing
algorithm that can substantially reduce the effective size of MLNs by rapidly
counting how often the evidence satisfies each formula, regardless of the truth val-
ues of the query atoms. Mihalkova and Mooney [24] and Davis and Domingos [8]
have proposed bottom-up methods that can improve structure learning time and
accuracy over existing top-down approaches. Mihalkova and Richardson [25] pro-
poses to cluster query atoms and then perform full inference for only one repre-
sentative from each cluster.

Our system is the first one to run Markov logic networks using GPUs.
Since Datalog and MLNs share an equivalent syntax, a modified version of our



134 C.A. Mart́ınez-Angeles et al.

GPU-Datalog engine was used. Like Tuffy, our system uses a bottom-up app-
roach based on relational operators to process one of the most time consuming
parts of the inference step, but in a GPU.

Similar to our work on GPU-Datalog (described in Sect. 3), Wu et al. created
Red Fox [44], a system that parallelizes relational algebra and other operations
in the GPU, in order to solve programs based on a variant of Datalog called
LogiQL. Comparison with GPU-Datalog using the famous TCP-H queries can
be found in [22]. Other similar systems that execute SQL queries in parallel using
the GPU include [14,45].

6 Conclusions

We have presented a system that accelerates the grounding step in MLNs by
combining Tuffy with our GPU-Datalog engine. Its performance is on par or
better than other well-known MLN systems. Our results show that the benefit
of performing the grounding phase on the GPU outweighs the overhead of using
a database and of GPU I/O, even for rather small datasets. Our system can
be greatly improved by also performing the search step of the inference phase
in the GPU. This would require the parallelization of a SAT solver. There are
several available in the literature and we expect to benefit from extensive work
in parallelization of SAT and ILP solvers.

Our GPU-Datalog system could benefit from data partitioning algorithms.
This would allow tables bigger than the amount of GPU memory available to be
processed.

Since GPU-Datalog has been successfully used to improve ILP [22], we believe
that clause learning in MLNs could also be improved by our system. We also plan
to research the parallelization of generative and discriminative weight learning.
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