
Overview

Classification systems in dynamic
environments: an overview
Felipe Azevedo Pinage,1* Eulanda Miranda dos Santos1

and João Manuel Portela da Gama2

Data mining and machine learning algorithms can be employed to perform a
variety of tasks. However, since most of these problems may depend on environ-
ments that change over time, performing classification tasks in dynamic environ-
ments has been a challenge in data mining research domain in the last decades.
Currently, in the literature, the most common strategies used to detect changes
are based on accuracy monitoring, which relies on previous knowledge of the
data in order to identify whether or not correct classifications are provided. How-
ever, such a feedback can be infeasible in practical problems. In this work, we
present a comprehensive overview of current machine learning/data mining
approaches proposed to deal with dynamic environments problems. The objec-
tive is to highlight the main drawbacks and open issues, as well as future direc-
tions and problems worthy of investigation. In addition, we provide the
definitions of the main terms used to represent this problem in the literature,
such as concept drift and novelty detection. © 2016 John Wiley & Sons, Ltd
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INTRODUCTION

The design of classification systems robust to deal
with dynamic environments has attracted consid-

erable attention in machine learning and data min-
ing. In real-world applications, some changes occur
in the environments along with time. This problem,
named as concept drift, has a direct impact on the
performance of classification systems, since the classi-
fication systems tend to decrease their effectiveness,
i.e., high recognition rates may not be achieved.

Some real-world problems may present
dynamic environments and the application of adapt-
ive classification systems is very important. For
example, in filtering anti-spam, the features that
characterize a spam can evolve over time. Besides,
important features used to classify spam may be irrel-

evant in the future.1 Thus, the anti-spam filter needs
a mechanism to detect changes in order to adapt
itself to new patterns of spam. In the literature, we
can find detection methods to different applications,
such as e-mail filtering,2 fraud detection,3 intrusion
detection in computer networks,4 and topic ranking
in twitter.5

There are many studies in the literature that
propose new methods to design classification systems
that are able to detect changes and adapt its knowl-
edge without compromise the system accuracy. How-
ever, several methods have focused on either
detecting changes based on monitoring the success
rate of the system or retraining classifiers without
explicitly detecting changes. In the first case, it is nec-
essary to reduce the performance of the system sud-
denly in order to detect changes, which certainly
implies damage to the system. In addition, these
approaches rely on the assumption that there is an
oracle able to indicate whether or not the classifica-
tion system predicts the correct label for the
unknown samples. The main disadvantage of the sec-
ond group of approaches is the computational cost
involved, since the system updates constantly, even if
changes do not occur.
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Moreover, in the literature related to classifica-
tion systems in dynamic environment, many different
terms are used coming from different fields of research
for the same problem, or the same terms for different
problems. In this way, such a diversity of terms may
increase the difficulty of understanding each term cor-
rectly. For instance, terms such as Novelty Detection,
Concept Drift, and One-Class Classification.

This work presents an overview on classifica-
tion systems applied to dynamic environments. The
objective is to explain the main concepts and terms
widely used in the literature. In addition, the most
commonly encountered strategies are summarized
and discussed in order to highlight the main draw-
backs detected on current solutions. Finally, we pres-
ent some issues worthy of investigation.

This overview is organized as follows: Second
section presents the most common terms used in
research dealing with dynamic environment pro-
blems. The main events that occur in data streams
are described in third section. Then, in the fourth sec-
tion, the most popular and recently proposed learn-
ing methods used to solve these problems are
discussed. Last section concludes this overview by
pointing out possible open issues.

UNDERSTANDING THE PROBLEMS

Several different concepts may be related to changing
environmental problems. In this section, the main
concepts are presented aiming on describing their
definitions and the relation among each other.

Novelty Detection
One of the main critical challenges in the literature
when using classification systems in changing envir-
onments is called novelty detection. According to
Miljkovic,6 novelty refers to abnormal patterns
embedded in a large amount of normal data, or when
the data do not fit the expected behavior. Tradition-
ally, novelty detection is related to statistical
approaches for outlier detection, which can be based
on monitoring the unconditional probability distribu-
tion.1,7 According to Kuncheva,1 in case of unlabeled
data, one simple statistical scheme to detect novelties
works on comparing the probability estimate p(x) to
a fixed threshold θ, i.e., when p(x) > θ, x is classified
based on knowledge obtained during the training
step. Otherwise, x may be assumed as a novel object.

In recent work,8 the authors advocate that
often in novelty detection problems only few labels
or even none are available. In this way, it is possible
to use semi-supervised or unsupervised classification

systems. In the context of novelty detection using
supervised learning, there available only the knowl-
edge about normal patterns. Thus, the novelties are
assumed to be those data not clustered with the nor-
mal data, but which are spread in low-density
regions.9,10 Moreover, according to Faria et al.,11

novelty detection aims to detect emergent patterns
and then incorporate them into the normal model.
Finally, it is important to distinguish novelty detec-
tion from outlier detection, given that the first is
related to data distribution and system accuracy
decreasing.7

Concept Drift
In the machine learning community, the term concept
is employed to define the overall distribution of the
data used to perform classification, regression, or
unsupervised problems in a certain point of time.12

Usually, it is expected an existence of a stable under-
lying data generating mechanism, i.e., the concept
does not evolve over time. However, as mentioned in
the introduction, it has been shown that the learning
context (target environment) changes over time in
many real-world problems. In this case, researchers
have referred to this problem as concept drift.

Therefore, concept drift occurs when data dis-
tributions change over time unexpectedly and in
unpredictable ways. Widmer13 defines concept drift
as follows: ‘In many real-world domains, the context
in which some concepts of interest depend may
change, resulting in more or less abrupt and radical
changes in the definition of the target concept. The
change in the target concept is known as concept
drift.’

The change of underlying unknown probability
distribution, which represents the concept drift, can
be defined such as Pj(x, ω) 6¼ Pk(x, ω), where x repre-
sents a data instance, ω represents the class, and the
change occurs from time tj to time tk, where tj < tk.
According to Hee Ang et al.,14 this means that, in a
changing environment, an optimal prediction func-
tion for Pj(x, ω) is no longer optimal for Pk(x, ω).
Moreover, concept drifts are the changes that may
compromise the classification accuracy.

Hence, a very important challenge arises when
it is observed that the learning concepts start to drift.
According to Bose et al.,15 concept drift solutions
should focus on two main directions: how to detect
drifts (changes) and how to adapt the predictive
model to drifts. These are no trivial tasks because
there are different types of changes and the classifica-
tion system should be robust to ones and sensitive to
others. Many algorithms have been developed to
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handle concept drift and some of them will be
described in the section Current Solutions for Con-
cept Drifts.

In addition, the concept drift is the consequence
of context change, which is directly related to the fea-
tures and can be either hidden (called hidden con-
texts) or explicit. Harries and Sammut16 define
context as follows: ‘Context is any attribute whose
values tend to be stable over contiguous intervals of
time when a hidden attribute occurs.’

One-Class Classification
Here, only one class is well sampled (normal data),
while samples from other classes (abnormal data)
are not available. In One-Class Classification, we
know only the probability density p(x|ωT), where
x represents a data instance and ωT is the normal
class. According to Le et al.,17 real-world applications
are easier and cheaper collecting normal data, while
the abnormal data are expensive and are not always
available. The problem focus on making a description
of a normal set of objects, as well as on detecting
objects that do not belong to the learned description.

MAIN EVENTS IN DATA STREAMS

As in data streams arrive a massive quantity of exam-
ples, it is very common that the occurrence of events
become a challenge in the classification tasks. Adae
and Berthold18 say that an event can be any irregu-
larity in the data behavior, i.e., the current observa-
tions are not related to previous concepts. These
events may be divided in two categories: (1) anoma-
lies and (2) drifts.

Anomalies
According to Chandola et al.,19 anomalies refers to
patterns in data that do not conform to expect behav-
ior but they are not incorporated to the normal model
after their detection, because they do not represent a
new concept. In literature, the most common types of
anomalies mentioned are: noise and rare event.

• Noise: Meaningless data that cannot be inter-
preted correctly and should not be taken into
account on classification tasks, but can be used
to improve system robustness for the underlying
distribution.20 A difficult problem in handling
concept drift is distinguishing between true con-
cept drift and noise. An ideal learner should
combine robustness to noise and sensitivity to
concept drift as much as possible.21

• Rare event: This is classified as an outlier.
Assuming that these events are rare, they can be
dealt with as abnormal data but discarded by
the system. However, a concise group of exam-
ples classified as outliers should be considered
as a novelty, since those events are no longer
rare.22

Drifts
Here, there are the types of concept drifts. Changes
may compromise the classification accuracy due to
the appearance of new concepts (gradual, incremen-
tal, and abrupt) or reappearance of previous concepts
(recurring concepts).

• Gradual: Here, a concept C1 is gradually
replaced by a new concept C2.

23,24 Therefore, the
new concept takes over almost imperceptibly,
leading to a period of uncertainty between two
stable states. Since the change occurs between
two consecutive time points t1 and t2, i.e., there is
a subspace of the whole instance space whose
concepts are different from the remaining data,
because both concepts coexist in such a period of
mixed distributions. These changes are usually
detected through strategies based on time win-
dows that scan (sweep) the training data.

• Incremental: When the concept evolves slowly
over time. Some researchers use the terms incre-
mental and gradual as the same type of change.
However, according to Brzezinski25 and Bose
et al.,15 a change is assumed to be incremental
when variables slowly change their values over
time, but there are no examples of two distribu-
tions mixed. The old concept disappears slowly
until be completely replaced by the new
concept.

• Abrupt: Also called sudden concept drift, it
occurs when the source distribution at time t,
denoted St, is suddenly replaced by a different
distribution in St + 1. In other words, a concept
C1 is substituted by concept C2, and C1 disap-
pears exactly at the moment of this replace-
ment.2 Several methods designed to cope with
abrupt changes use falling confidence of classifi-
cation to detect a change occurrence.

• Recurring concepts: Concepts that disappear
but may reappear in the future, i.e., temporary
changes, which are reverted after some time.
This happens especially due to the fact that sev-
eral hidden contexts may reappear at irregular
time intervals.25 Recurring concepts can occur

Overview wires.wiley.com/dmkd

158 © 2016 John Wiley & Sons, Ltd Volume 6, September/October 2016



in both gradual and abrupt ways. Gomes
et al.26 assume that when a concept reappears,
normally the context previously associated with
it also reappears.

In the occurrence of any type of changes, there are
many strategies to treat them. These solutions are
discussed in the next section.

CURRENT SOLUTIONS FOR
CONCEPT DRIFTS

This section presents the most relevant and recent
studies whose focus is on handling concept drift.
These studies are divided into three categories: drift
detectors, ensemble classifiers, and unsupervised
methods. The drift detectors are described first. After-
wards, ensemble-based methods are discussed.
Finally, the unsupervised methods are described.

Drift Detectors
Drift detectors is a category of methods, which
employ statistical tests to monitor whether or not the
class distribution is stable over time and to reset the
decision model when a concept drift is detected. All
drift detectors discussed in this section are based on
single classifiers. Consequently, the decision model
must be updated after drift detection. In addition,
these algorithms usually detect drifts based on online
classification error rate.

Strategies based on classification error are moti-
vated by probably approximately correct (PAC)
learning model,27 which assumes that, if the distribu-
tion of the examples is stationary, the error rate of
the learning algorithm will decrease as the number of
examples increases. Thus, an increase of this error
rate suggests a change in class distribution and a
probably outdated current model.

The Drift Detection Method (DDM), proposed
by Gama et al.,28 defines two thresholds: warning
level and drift level. The first level is reached if condi-
tion (1) is attained, while the drift level is achieved
when condition (2) is satisfied. The values p and
s represent the error rate of the learning algorithm
and its standard deviation, respectively. The registers
pmin and smin are defined during the training phase,
and are updated if after each incoming example i, the
current register pi + si is lower than pmin + smin.

pi + si ≥ pmin + 2*smin ð1Þ
pi + si ≥ pmin + 3*smin ð2Þ

For instance, given that the error rate of the actual
model reaches the warning level at example kn, while
the drift level is reached at example kp, in DDM, it is
assumed that the concept changes at kp and a new
context is declared between kn and kp. In the adapta-
tion process, the new decision model should be gen-
erated using only the new context, i.e., the same
classifier is retrained using examples stored between
kn and kp.

The main drawback to this strategy is that
DDM is critically affected by the velocity of the
changes. Consequently, if a very slow gradual change
takes place, the system will not be able to detect it. In
order to overcome this drawback, Baena et al.29 pro-
posed the Early Drift Detection Method (EDDM).
EDDM relies on the assumption that the distance
between two consecutive errors will increase by
improving the predictions of the decision model.

Similar to DDM, two thresholds are defined
when using EDDM, also called warning level and drift
level. EDDM calculates the distance (p0) between two
consecutive errors and their standard deviation (s0),
and stores the maximum values of (p0) and (s0) to reg-
ister the point where the distance between two errors
is maximum (p0 max + 2 * s0 max). The warning level
is reached when the result of the formula (3) is lower
than α (set to 0,95), and the drift level is reached when
the same formula (3) is lower than β (set to 0,9).

p0i + 2*s
0
ið Þ= p0max + 2*s

0
maxð Þ ð3Þ

On the one hand, the thresholds must be used to
monitor the decrease on the distance between two
errors. On the other, the adaptation process is basi-
cally the same as used in DDM, i.e., the decision
model is updated using only the new context, ranging
from warning and drift levels.

EDDM starts the search for concept drifts after
calculating 30 classification errors, due to the fact
that the authors intended to estimate the distance dis-
tribution between two consecutive errors in order to
compare it with further distributions. The results
attained by EDDM were better than the results pro-
vided by DDM in some databases. In addition,
EDDM was able to early detect gradual changes even
when the changes were very slow. Even though,
EDDM was not robust enough to noisy dataset.

Another important drift detector is the
Detection Method Using Statistical Testing (STEPD),
proposed by Nishida and Yamauchi.30 STEPD is
based on two accuracies: the recent one and the over-
all one. The recent accuracy is calculated using a
recent set of examples, called W, while the overall
accuracy is calculated using the whole set of
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examples, except for the recent W examples. This
detector relies on two assumptions: (a) if the accu-
racy of a classifier for recent W examples is equal to
the overall accuracy, then the target concept is sta-
tionary and (b) a significant decrease on recent accu-
racy suggests concept drift.

STEPD compares the measure T, defined in
Eq. (4), to the percentile of standard normal distribu-
tion in order to obtain the observed level (P) of sig-
nificance. Moreover, it defines two levels of
significance as thresholds (here, also called warning
and drift levels). The algorithm starts by storing
examples when P is lower than the warning level and
retrain the classifier when P is lower than the drift
level using examples stored from the warning to the
drift level.

T r0,rr,n0,nrð Þ=
r0
n0
− rr

nr

��� ���−0:5 1
no
+ 1

nr

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1− p̂Þ 1

no
+ 1

nr

� ��r ð4Þ

where, r0 is the number of correct classifications
considering overall examples n0, except the recent
W examples, rr is the number of correct classifications
among W examples nr, and p̂ = r0 + rrð Þ= n0 + nrð Þ.

According to Nishida and Yamauchi,30 in com-
parison to EDDM and DDM, STEPD presented the
highest performances for abrupt changes and noises.
However, EDDM detected gradual changes better
than STEPD, while DDM successfully detected
abrupt changes, but produced the slowest detection
speed.

It is important to observe that all drift detectors
described in this section receive the incoming data in
a stream and are based on single classifiers, which
are replaced after a detection of concept drift. Gener-
ally, handling concept drift using single classifiers is
not very effective especially due to the following two
reasons. First, after training a classifier, its knowledge
will not adapt to changes unless the classifier is
retrained. Second, if the classifier is retrained after
each time period, it will forget the previously learned
concepts, which may lead to catastrophic
forgetting,31 especially when the environment pre-
sents recurring changes.

Classifier ensembles have been investigated in
the literature as a strategy for avoiding the single
classifier problems when coping with changing envi-
ronment problems. In some works,32–36 the authors
conclude that ensemble classifiers present superior
performances than single classifier. These methods
update their knowledge base by adding, removing, or
updating classifiers, as discussed in the next section.

Ensemble Classifiers
The majority of the algorithms based on ensemble clas-
sifiers are passive approaches. The idea of passive
approaches is to update the system constantly using
new input data without detecting changes, i.e., the
detection mechanism is implicit in the method. These
methods build ensembles by adding new members as
new datasets are provided. The new classifiers replace
ensemble members according to different strategies.
One possibility is to remove the oldest member, as was
done in Streaming Ensemble Algorithm (SEA).37

Another option is removing the poorest performing
member, as in Dynamic Weighted Majority (DWM).38

DWM works as follows: (1) if the global pre-
diction is incorrect, then DWM adds a new member;
(2) the weight is decreased of members whose predic-
tion is incorrect; (3) DWM removes members with a
weight less than the threshold θ.

Sidhu et al39 proposed an online ensemble
approach called Early Dynamic Weighted Majority
(ERDWM). The weighted strategy is undertaken
using three options: (1) decrease the weight of mem-
bers whose prediction is incorrect; (2) increase the
weight of members whose local prediction is correct
but global prediction is incorrect; and (3) no weight
update when both local and global predictions are
correct.

ERDWM focus on the highest performing clas-
sifier members in order to reduce the chances of
incorrect global prediction, which is the main prob-
lem detected in DWM. In addition, ERDWM reduces
the need of creating new classifier members and con-
sequently, it decreases time and memory resources
requirements. Even though, Sidhu et al.39 conclude
that ERDWM does not outperform EDDM in terms
of memory and execution time. On the other hand,
ERDWM is better in retaining previous knowledge
to support predictions.

A more recent work using passive approach is
presented by Brzezinski and Stefanowski.23 They
propose a method called Accuracy Updated Ensem-
ble (AUE2), which presents a mechanism to achieve
good predictions in occurrence of different types of
drift at relatively low computational costs. In AUE2,
a new ensemble classifier member is created after
each incoming data chunk. Thus, the new member
replaces the poorest performing member. The
remaining ensemble members are updated according
to their accuracy. The weighting formula (5) is used
to combine information about classifiers accuracy
and current class distribution.

ωij =
1

MSEr +MSEij + ϵ
ð5Þ
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where MSEij denotes the estimate of the prediction
error of each classifier on each data chunk, while
MSEr represents the mean square error of a ran-
domly predicting classifier. MSEr is used as a refer-
ence point to the current class distribution. Finally,
ϵ indicates a small positive value added to avoid divi-
sion by zero. Equation (5) is used to update the
weight of the remaining classifier members.

In addition, Brzezinski and Stefanowski23

assume that the most recent incoming data chunk Bi

is the best representation of the current and near-
future data distribution. Consequently, a classifier C0,
trained on Bi, is assumed to be the best possible
(or perfect) classifier. The weight of C0 is assigned as
follows

ωC0 =
1

MSEr + ϵ
ð6Þ

According to the authors, AUE2 achieves higher clas-
sification accuracy than its predecessors (Accuracy
Weighted Ensemble—AWE and SEA) in the presence
of slow gradual drifts. Besides, ensemble members
can be retrained, which makes AUE2 less dependent
on chunk size and it allows using smaller chunks
without compromise its accuracy. Finally, to solve
the problem of memory usage, AUE2 sets a memory
usage limit (threshold) that, when exceeded,
decreases the amount of classifier members.

The works summarized so far have focused on
dealing with concept drift by either explicitly detecting
drifts using single classifiers or implicitly detecting
drifts using ensemble of classifiers. However, as men-
tioned before, approaches based on single classifiers
may be prone to catastrophic forgetting. In terms of
passive approaches, their main drawback is the high
computational cost involved, whatever the learning
method used, ensemble or single classifiers, since the
system updates constantly even if changes do not
occur. An alternative to these previous methods is to
use classifier ensembles to detect drifts explicitly.

Following this idea, Minku and Yao12 pro-
posed the Diversity for Dealing with Drift (DDD).
This method processes each example at a time and
maintains ensembles with different diversity levels in
order to deal with concept drift. Basically, DDD gen-
erates a pool of classifiers using online bagging,40 as
follows: whenever a training example is available, it
is presented N (defined by Poisson distribution) times
for each base learner, and the classification is per-
formed by unweighted majority vote, as in offline
bagging. Then, the classifier members are separated
into two subsets of classifiers: (1) low diversity and
(2) high diversity classifiers.

It is important to note that there is no generally
accepted formal definition of diversity yet. The
researchers still investigate how diversity must be
measured and the real meaning of this measure.
Johansson et al.41 suggest that diversity is almost an
axiom based on the assumption that the classifier
members must be diverse to assure that the ensemble
is most likely to present good generalization. Since
there is no consensus about which proposed diversity
measure is the best one, DDD measures diversity
using Q statistic,42 recommend by Kuncheva and
Whitaker,43 due to its simplicity and easy interpreta-
tion. Minku and Yao12 consider that high/low diver-
sity refers to low/high average Q statistic.

The aim of dividing ensemble members into
high/low diversity ensembles is the assumption that
high and low diversities are related to ensemble accu-
racy. According to the authors, the accuracy of the
ensembles may be similar (not the same) or very dif-
ferent as a consequence of severity and speed of each
type of drift being and respectively. For instance,
Minku and Yao12 observed that high diversity
ensembles achieve better accuracy rates when dealing
with low severity and high speed drifts.

DDD operates in two modes: before and after
drift detection. In the first mode, the low diversity
ensemble and the high diversity ensemble are gener-
ated using incoming examples. Then, the after drift
detection mode is triggered when there is no conver-
gence about the concept, i.e., DDD monitors the low
diversity ensemble using a drift detector, namely
EDDM. In this last mode, the low/high diversity
ensembles generated in the first mode are assigned as
old low/high diversity ensembles and the first mode is
reactivated in order to create new low/high diversity
ensembles.

In general, DDD focus on learning the new con-
cept using information learned from the old concept,
i.e., by training the old high diversity ensemble on
the new concept, leading to reduce its diversity.
Minku and Yao12 present experiments using artificial
and real-world data. The attained results show that
DDD usually achieves similar or even better accuracy
than EDDM.

Another category of DDMs relies on unsuper-
vised approaches. As described in the next section,
clustering strategies and similarity measures are the
main concerns of these methods.

Unsupervised Methods
Being different from the two categories mentioned
before, the development of this category of methods
intends to handle concept drift in a distribution of

WIREs Data Mining and Knowledge Discovery Classification systems in dynamic environments

Volume 6, September/October 2016 © 2016 John Wiley & Sons, Ltd 161



unlabelled data. In such context, there are many data
stream problems using clustering solutions.

The method proposed by Fanizzi et al.44 focus
on two problems: concept drift (known concepts
changing) and novelty detection (changes to
unknown concepts). An isolated cluster in the search
space represents this last problem. In their method,
for each cluster, the maximum distance between its
instances and its medoid is computed to establish a
decision boundary for each cluster. The union of the
boundaries of all clusters is called global decision
boundary. The new unknown incoming examples
that fall outside this global decision boundary are
assumed as no ‘normal’ data and need a further anal-
ysis. In this way, these examples are stored in a
short-term memory for new clusters grouping, which
might indicate concept drift or novelty detection.

Another work based on unsupervised drift
detection is found in Otey and Parthasarathy.45 In
this work, the authors calculate the dissimilarity
between two data windows (X and Y) considering
three components: distance, rotation, and variance.
For the distance component, its dissimilarity Ddist is
computed by means of Euclidean distance between
the centroids of each dataset (μX and μY), according
to the following expression

Ddist X,YÞ = jμX−μY j
� ð7Þ

For the rotation component, its dissimilarity Drot is
defined as the sum of the angles between the compo-
nents (Eq. (8)). Since the columns of X and Y are the
principal components of the datasets X and Y,
respectively. It follows that the diagonal of the
matrix XTY is the cosine of the angles between the
corresponding principal components:

Drot X,YÞ = trace cos−1 abs XTY
� �� �� �� ð8Þ

For the variance component, its dissimilarity Dvar is
defined by the symmetric relative entropy (SRE)
between the distributions of the random variables
VX and VY , as shown in Eq. (9):

Dvar X,YÞ= SRE VX,VY

� �� ð9Þ

Finally, Otey and Parthasarathy40 define the resultant
dissimilarity Dfinal according to equation bellow:

Dfinal X,YÞ=Ddist*Drot*Dvar
� ð10Þ

It is worth noting that, even though the method pro-
posed by Otey and Parthasarathy45 is applicable to

detect drifts, learning process is not involved. In addi-
tion, this method deals with incoming data in
chunks. The authors, however, suggest an alternative
incremental form of anomaly and change detection.
This incremental method may calculate
Dfinal X,X[ xf gÞ�

, where x denotes the first sample
following the window. In this way, it is possible to
verify how much Dfinal may increase when the data
point x is included. This measure may indicate a con-
cept drift.

A Comparative Analysis of the Current
Methods
All methods described in this section are summarized
in Table 1. This table highlights how these methods
are divided according to number of classifiers, incre-
mental or nonincremental learning, and active or
passive approaches. In addition, Table 1 also pre-
sents for which type of changes each method per-
forms better, as well as whether or not the method
needs labeled data to work with. Finally, for the
active methods, the measure used for drift detection
is mentioned too.

DDM, EDDM, and STEPD represent the same
configuration of approaches. The main difference
between these three drift detectors is the statistical
test employed. These methods are based on single
classifier, which is replaced after drift detection.
Moreover, incoming data arrive in a stream, updat-
ing the current decision model incrementally (online
learning). When warning level is reached, the sam-
ples update a kind of alternative decision model.
However, alternative model only replaces the cur-
rent decision model when drift level is reached.
Since DDM, EDDM, and STEPD pass by the same
sample just once, these methods are assumed to be
online.46

We also consider DDM, EDDM, and STEPD as
active methods, since the drift detection is explicit in
their strategies. However, due to the fact that these
methods are online, every incoming sample is added
to the decision models (current or alternative),
i.e., the system does not update only after drift detec-
tion. Actually, the system is updated as the incoming
samples arrive.

These methods are robust to abrupt and grad-
ual drifts. However, EDDM performs better when
gradual drifts are very slow because it is based on
distance between error occurrences. We have con-
ducted simple experiments using these drift detectors
over two classical artificial datasets: (1) SINE1,
whose data show abrupt drifts and (2) CIRCLE, a
gradual drift dataset. The following measures were
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evaluated: prequential error; detection delay (number
of examples after drift occurrence and before detec-
tion); and number of true detection (TD) and false
detection (FD). The results are presented in Table 2.

As can be observed in Table 2, DDM attained
the lowest prequential error in both datasets, even
when the detection delay was higher. The reason for
this behavior is that DDM employs a statistical test,
which selects better examples for the next concept.
On the other hand, methods based on using a set of
recent examples, such as STEPD, are less sensitive to
gradual drifts.

The methods based on ensemble classifiers are
better in maintaining previous knowledge than meth-
ods based on single classifier. These methods also use
incremental learning divided into online learning,
when the incoming data arrive as stream (DWM,
ERDWM, and DDD), and one-pass learning, when
incoming data arrive as batch (SEA and AUE2).
Except for DDD, all the methods based on ensemble
classifiers mentioned in this chapter use passive stra-
tegies to handle concept drifts. These methods are

robust on reacting to new concepts. In addition, due
to ensemble of classifiers, they are also robust on
reacting to recurrent concepts. However, in period of
stable concepts, they update the system
unnecessarily.

In despite of the fact that DDD uses active
strategy, this method needs another method to detect
changes. However, as mentioned above, since the
authors used EDDM only at the change detection
phase, DDD is considered an incremental learning
method, as shown in Table 1. Besides, DDD allows
choosing a drift detector, which passes by each sam-
ple only once.

The remaining methods are based on unlabeled
data. In Fanizzi et al.,44 even though incoming data
arrive on stream, first this method waits to form a
cluster. Then, it integrates the created cluster to the
model. Since it presents explicit drift detection, this
method is assumed as an active strategy. The method
proposed by Otey and Parthasarathy45 is totally
based on data distribution. Therefore, it does not use
classifier (and learning). In addition, this method

TABLE 1 | Compilation of Related Work Reported in Literature Grouped According to the Approach of Generic Solutions for Dynamic
Environments Problems

Method Classifiers Learning Data Strategy Detection Based on Well Performed to

DDM28 Single Online Labeled Active Error monitoring Abrupt/Gradual drift and noise

EDDM29 Single Online Labeled Active Error monitoring Abrupt/Gradual (slow) drift

STEPD30 Single Online Labeled Active Error monitoring Abrupt/Gradual drift and noise

SEA37 Ensemble Batch Labeled Passive — Abrupt drift and noise

DWM38 Ensemble Online Labeled Passive — Noise

ERDWM39 Ensemble Online Labeled Passive — Recurring concepts and noise

AUE223 Ensemble Batch Labeled Passive — Abrupt/Gradual drift, recurring
concept, and noise

DDD12 Ensemble Incremental Labeled Active It depends on detection
method used

Abrupt/Gradual (slow) drift and
noise

Fanizzi et al.44 Single Batch Unlabeled Active Dissimilarity —

Otey &
Parthasarathy45

— — Unlabeled Active Dissimilarity Abrupt drift and outlier

DDM, Drift Detection Method; EDDM, Early Drift Detection Method; STEPD, Detection Method Using Statistical Testing; SEA, Streaming Ensemble Algo-
rithm; DWM, Dynamic Weighted Majority; ERDWM, Early Dynamic Weighted Majority; AUE2, Accuracy Updated Ensemble; DDD, Diversity for Dealing
with Drift.

TABLE 2 | Evaluation of the Most Common Drift Detectors

SINE1 CIRCLE

Preq. Error Delay TD FD Preq. Error Delay TD FD

DDM 0.0537 11 9 0 0.0487 32 3 0

EDDM 0.0540 14 9 0 0.0581 20 3 0

STEPD 0.0709 34 9 12 0.0932 0 0 0

DDM, Drift Detection Method; EDDM, Early Drift Detection Method; STEPD, Detection Method Using Statistical Testing; TD, true detection; FD, false
detection.
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presents active strategy for data stream. It is better
on detecting abrupt drifts because changes may occur
from one window to another one. The incremental
form of change detection suggested by the authors
may handle gradual drifts.

Challenges and Open Issues
Passive strategies are practically infeasible in real
applications, due to the following reasons. First, to
be able to react to all changes, a system based on
passive strategy must be updated in short time inter-
vals, leading to high computational cost. Second, if
the system is updated in large time intervals, some
changes may not be noticed by the system.

These drawbacks allow us to believe that the
best moment for system update is after change detec-
tion. In this way, the system will not spend an unnec-
essary computational cost, and all relevant changes
will be noticed. Therefore, active strategies may be
considered better than passive strategies, because
they are based on explicit detection of changes.

In addition, as confirmed in this survey,
ensemble of classifiers achieves better performance
on handling many types of drifts, when compared
to single classifiers. However, most of the ensemble-
based techniques available in the literature are pas-
sive strategies. The exception is DDD. Nevertheless,
as mentioned before, this method needs a drift
detector.

In terms of active methods, the approaches dis-
cussed here work based on error monitoring or dis-
similarity between incoming data. The error
monitoring-based methods need an operator feed-
back to indicate when the error rate increases, i.e., it
is necessary to know the true labels of the data. On
the other hand, in several changing environment pro-
blems, such as spam filtering, the true labels are not
always available. In this context, unsupervised meth-
ods take advantage, since drifts are detected on unla-
beled data. Thus, error rate monitoring is not
necessary.

Another important point is that, during the
adaptation process, all systems described in this
section follow a standard process: active strategies
based on single classifiers replace the classifiers after
drift detection using the most recent data to update
their models, while ensemble-based, for both active
and passive strategies, create new ensemble members

using the most current data. What makes the differ-
ence in the adaptation process of ensemble-based
methods is the identification of the right moment to
replace old members, such as intended by Minku and
Yao12 in DDD method.

Finally, there are specific procedures for evalu-
ating the performance of adaptive methods. Since
streaming data evolve over time, one solution is to
keep evaluating the model in different times
(or incrementally) to see how the model improves.47

Besides learning performance evaluation, there are
some criteria for change detection evaluation listed
by Gama et al.47: probabilities of true change detec-
tion and false alarms and delay of detection. This
change detection evaluation should be computed on
synthetic data where drifts are known.

These interesting observations help us to high-
light that in practical problems data may arrive in a
stream, with no fully labels available, the classifica-
tion system needs to quick react to different types of
drifts and previous concepts may reappear. Hence, to
be able to deal with these issues, an ideal concept
DDM would present the configuration shown in
Table 3. The use of ensemble classifiers may provide
better classification performances and maintain previ-
ous knowledge. In terms of online learning, the
objective is to increase sensibility to drifts and the
nonreutilization of the data. Since unlabeled data is a
consequence of practical problems, a solution may be
based on unsupervised or semi-supervised
approaches. An active strategy is important to avoid
high computational costs and unnecessary system
updates. Finally, a method not based on error moni-
toring would avoid error increasing and would be
well suited to unlabeled data.

Therefore, there are many open problems on
employing classification systems to deal with concept
drift. Based on this review, it is possible to observe
the main problems detected on current solutions, the
most successful directions for future contributions, as
well as hypothesis for future work.

CONCLUSIONS

This work intended to review several solutions com-
monly applied to handle concept drifts in order to
point out the main drawbacks and advantages of the
current solutions. In addition, we focused on

TABLE 3 | Configuration for an Ideal Concept Drift Detection Method

Classifiers Learning Data Strategy Detection Not Based on

Ensemble Online Unlabeled Active Error monitoring
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clarifying the meaning of several terms usually used
in the literature devoted to classification problems in
dynamic environments, such as novelty detection,
concept drift, and one-class classification.

Moreover, we emphasize that each change must
be dealt with according to its characteristics: noises
must be ignored; rare events must be considered as
outliers; gradual, incremental, and abrupt changes
must be detected to allow the system to be updated;

and recurrent changes should not be forgotten. Thus,
a highly accurate and reliable drift detector is
expected to be robust to noises and rare events, and
sensitive to the other changes.

Finally, this review intended to indicate some
issues not addressed in the literature and future direc-
tions worthy of investigation, such as handling differ-
ent types of drifts using no accuracy monitoring and
no unnecessary updates.
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