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HighlightsA novel approach, combining a mixed integer linear programming (MILP) model with a 

two-step Monte Carlo simulation (MCS), to specifically address technical and market uncertainties during 

new product development, in the pharmaceutical industry 

 Integration of strategic (process design and capacity extensions) and tactical (quantities to produce 

and store) decisions, simultaneously considering: a) the resources limitations associated to the 

need of processing, in the same plant, products under development and products in 

commercialization; and b) lots traceability. 

 This new approach has proven to be effective in capturing the effects of uncertainty in process 

design and scale-up decisions, as well as in capacity and production planning decisions, during 

product-launch planning. 

 Results clearly show the inherent risks associated to decisions taken under deterministic scenarios, 

and the gains associated to a large-range analysis of the uncertainty parameters, such as the access 

to valuable information early enough, for a sound long-term decision making process. 
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Abstract 

This study addresses the product-launch planning problem in the chemical-pharmaceutical industry under 

technical and market uncertainties, and considering resource limitations associated to the need of processing 

in the same plant products under development and products in commercialization. A novel approach is 

developed by combining a mixed integer linear programming (MILP) model and a Monte Carlo simulation 

(MCS) procedure, to deal with the integrated process design and production planning decisions during the 

New Product Development (NPD) phase. The Monte Carlo simulation framework was designed as a two-

step sampling procedure based on Bernoulli and Normal distributions. Results show the unquestionable 

influence of the uncertainty parameters on the decision variables and objective function, thus highlighting 

the inherent risks associated to the deterministic models. Process designs and scale-ups that maximize 

expected profit were determined, providing a valuable knowledge frame to support the long-term decision-

making process, and enabling earlier and better decisions during NPD. 

Keywords: Process design; Capacity planning; Scale-ups; Mixed Integer Linear Programing; Monte 

Carlo simulation; Uncertainty.

1. Introduction 

1.1. Motivation 

The pharmaceutical industry operates in a very dynamic, highly regulated and competitive business context, 

being one of the most important manufacturing sectors in Europe (EFPIA, 2016). The specificities of this 

industry are well known in the Process System Engineering (PSE) community. The heavy regulatory 

burden, high investment in R&D with very low success rates, and long periods for new product launch, 

clearly differentiate this industry from other sectors and impose significant managing challenges (Laínez et 
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al., 2012). Furthermore, the liberalization of the global pharmaceutical market and the pressures of the 

regulatory agencies for a price reduction in medical drugs has paved the way to generic competition 

(Federsel, 2006). Considering the fact that the costs of imitation are extremely low when compared to the 

costs of innovation in pharmaceuticals, generic competition is becoming increasingly fierce, particularly 

regarding economic issues (Grabowski & Vernon, 2000). In that sense, this industry is now highly 

dependent on patent effective life, being forced to deliver medical drugs faster and more efficiently. As 

stated by Shah (2004)  and more recently by (Samuel Moniz et al., 2015b),  it is clear that time-to-market 

is the most critical issue in this industry, and that any delay associated with the product launch process 

entails a significant loss in future profits. This demanding business context has encouraged companies to 

invest in production capacity and to make process design decisions as early as possible, even before 

knowing if the products will ever reach the market (Kaminsky & Yuen, 2014). Those decisions are thus 

highly risky, involving several sources of uncertainty that must be considered during the decision-making 

process (Samuel Moniz et al., 2015a). 

In addition to the economic dimension of these decisions, sustainability concerns are also one main 

motivation of this work. In recent years a paradigm shift has been observed, with sustainability aspects 

being considered simultaneously with economic goals (Bakshi & Fiksel, 2003; Barbosa-Póvoa, 2012) 

Efficient resource utilization is becoming a global challenge, clearly reflected in the recent SPIRE 

(Sustainable Process Industry through Resource and Energy Efficiency) initiative, where the main goals 

towards improved efficiency and competitiveness are fully aligned with the European Horizon 2020 agenda 

(EC, 2013). The fine chemical and pharmaceutical industry plays an important role in this regard due to 

their high dependence on resources such as: water, raw materials and energy (Halim & Srinivasan, 2008, 

2011; Wernet et al., 2010). Thus, implementing efficient production planning decisions will definitely 

contribute to better resource utilization and waste minimization. More than ever, the need to achieve higher 

efficiency and cost savings in resource utilization, combined with the urgency in reducing the time-to-

market of under development pharmaceutical products, clearly justifies further research in more advanced 

and reliable methods to solve real world planning optimization problems under uncertainty. 

Accordingly, the work presented in this paper addresses the product-launch planning problem, considering 

uncertainty on the demand and on the pass/fail outcomes of clinical trials. This work integrates process 

design and planning decisions, considering the resource limitations in processing, in the same plant, 

products under development and products already in commercialization. In practice, this approach provides 

contributions to enhance decision-making processes, with four overall goals: (i) maximize the profit of 

companies; (ii) minimize investments; (iii) minimize future changes in the production process; and (iv) 

improve processes efficiency, particularly in what concerns resource utilization and waste reduction.  

Therefore, improving the balance between available resources and product demand, while achieving 

interesting and sustainable results, is one of the main goals of the decision-making framework proposed 

here. The majority of currently available approaches are supported by deterministic models based on the 

maximization of expected values, without considering the highly stochastic nature of the problems (Li & 

Ierapetritou, 2008; Verderame et al., 2010). In this work, we have developed a MILP model for optimal 

product-launch planning, combined with a two-step MCS framework, to tackle the types of uncertainty 

referred above (demand and clinical trials pass/fail). 

1.2. Pharmaceutical Product Launch 

1.2.1. New Product Development (NPD) 

The development of new drugs is an expensive and time-consuming process that comprises several 

consecutive steps, such as: discovery, pre-clinical tests, clinical trials, regulatory approval and market 

launch (Chen et al., 2012; Colvin & Maravelias, 2008). Figure 1 depicts the pharmaceutical product 

lifecycle, since discovery to manufacturing and distribution. According to Laínez et al. (2012), the time 

from discovery to market launch can take up to 15 years, and the average cost of a new drug is about US$ 

1.3 to 2 billion, with about 50% representing clinical trial costs. 

Clinical trials involve a series of very rigorous tests conducted on human beings, to assess the safety, 

efficacy and dosage levels of the new compound. These trials comprise three successive phases (I, II and 

III). In phase I, the new molecular entity is tested in 20/100 healthy volunteers, for safety assessment. In 
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phase II, 100/500 volunteer patients are tested, to ensure the efficacy of the compound. Phase III usually 

involves thousands of volunteer patients, with the main purpose of comparing the performance of the new 

treatment with other existing treatments, and assessing its long-term effects (Colvin & Maravelias, 2008; 

Levis & Papageorgiou, 2004). The clinical trials process may take approximately 5 to 6 years (Colvin & 

Maravelias, 2008) and only after its successful completion and the FDA approval, the new compound is 

able to be commercially launched. In that sense, decisions such as “how much to produce?”, “when to 

produce?” and “with what resources?”, during the new product development process, are critical, and will 

have a significant impact on the company’s sustainability. As failing a trial dosage can seriously 

compromise the time-to-market of the new drug, all the necessary resources need to be available as soon as 

they are needed (Levis & Papageorgiou, 2004). These decisions are, therefore, taken under significant levels 

of uncertainty, particularly regarding product demand. The high variability of product demand during 

clinical trials results mainly from the uncertainty of the pass/fail outcomes of clinical trials and is partially 

due to patient drop out during the progress of treatments (Chen et al., 2012). On the other hand, if the 

compound fails at any clinical trial phase, the whole investment made until then is considered lost. This 

makes the NPD (New Product Development) stage one of the most critical in the whole product life cycle.  

 
Figure 1. Pharmaceutical product lifecycle. 

 

1.2.2. Process design 

Along with the product development, also the production process for the new drug needs to be developed, 

in order to get the final approval by the regulatory agencies. Moreover, the company itself must also 

guarantee that it will be able to routinely manufacture reproducible batches of the new drug (Colvin & 

Maravelias, 2008). Traditionally, the pharmaceutical industry operates in batch and multipurpose 

production systems, simultaneously processing campaign and short-term modes (Samuel Moniz, Barbosa-

Póvoa, et al., 2014) . In these plants, products already in commercialization and products under 

development compete for the same resources. In that sense, providing the right amount of resources, at the 

right moment, to each trial, represents a key management challenge, with the development of the production 

process playing a very critical role (Samuel Moniz et al., 2015a). The company starts by providing small 

amounts of the new product to the early stages of the clinical trials. Then it up-scales the process as needed 

to fulfill the last stages of product development and, finally, it has to guarantee the satisfaction of 

commercial demand, in terms of quantity and quality (Stonebraker, 2002). Process design and capacity 

decisions are therefore of paramount importance, and late-stage process changes will inevitably 

compromise the market launch of the new drug (Federsel, 2003).  
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Since changing the process after this being approved is very costly and complex, any poor decision taken 

during the early stages will have a huge impact in the commercialization phase. According to Federsel 

(2003), the process should be frozen no later than clinical trial phase II, in order to guarantee a drug 

production of good quality for long-term toxicology and stability testing. Therefore, in practice, these 

decisions are made with two conflicting objectives: (i) they should be sound and based on a considerable 

amount of information; and (ii) they should be made early enough to prevent any delays in the completion 

of the trials. According to Stonebraker (2002), the capital investments for the production facility usually 

occur around five years before the market launch of the new drug. As late decisions could significantly 

jeopardize the future incomes of the company, process design and capacity decisions, such as the 

assignment of processes to units, scale-up, and the acquisition of production units, have to be made under 

a significant uncertainty context. 

2. Background 

New product development management in the pharmaceutical industry has been one of the major concerns 

of the process system engineering community in recent years. In this area, the great majority of published 

works focus on product portfolio selection, on capacity planning, and on supply chain management during 

clinical trials (Laínez et al., 2012).  

Typically, planning decisions are formulated as deterministic optimization problems in which all the 

parameters are assumed to be known. However, the importance of incorporating uncertainty into planning 

and scheduling models is increasingly recognized by the academic community (see some interesting, recent 

review articles such as Li and Ierapetritou (2008); Sahinidis (2004); Verderame et al. (2010) ). Verderame 

et al. (2010) present a comprehensive overview of the main contributions in planning and scheduling 

optimization under uncertainty, across multiple industrial sectors The most commonly used approach for 

planning under uncertainty is two-stage Stochastic Programming (SP) (Steimel & Engell, 2015). Planning 

decisions are typically taken in two stages, where strategic decisions (“here and now”) are made in the first 

stage under significant uncertainty, and operational decisions (“wait and see”) are made in a second stage 

after the resolution of the uncertainty. Usually, uncertainties are modelled as a set of discrete scenarios, as 

a way to account for all possible future outcomes, and each scenario is solved as a deterministic problem. 

Rotstein et al. (1999) was one of the first papers addressing capacity planning under uncertainty in the 

outcomes of clinical trials. They developed a two-stage SP approach, with the first stage dealing with 

decisions such as product selection, initial capacity investment, and initial allocation of manufacturing 

resources to products. In a second stage, decisions are made after the completion of the clinical trials, and 

they include: additional capacity investments, re-allocation of manufacturing resources to products, and 

production plans. Papageorgiou et al. (2001) developed a MILP model to simultaneously address the 

selection of a product development and introduction strategy, and a long-term capacity planning and 

investment strategy, at multiple sites. However, this work does not account for the uncertainty associated 

to product demand or the outcomes of clinical trials. At the same time, Maravelias and Grossmann (2001) 

addressed the problem of simultaneously planning the new product development and the design of batch 

manufacturing facilities. The authors proposed a multi-period MILP model that maximizes the expected 

net present value of multiple projects (products under development). A two-stage stochastic optimization 

approach is adopted to account for the uncertainty in the outcome of the trials.  

Gupta and Maranas (2000) also propose a two-stage SP approach, to address the multisite midterm supply-

chain planning problem under demand uncertainty. The production decisions are made “here-and-now”, 

and the supply chain (inventory and distribution) decisions are postponed as “wait-and-see”. Later, the same 

authors (Rogers et al., 2002) presented a real-options strategy to determine the optimal product selection 

decisions in the pharmaceutical R&D portfolio management.  

Gatica et al. (2003b) presented a multistage programming formulation for capacity planning with 

uncertainty associated to the outcomes of clinical trials. A scenario analysis was performed, and these 

uncertainty issues were modelled via a tree of scenarios. However, in this work only the outcomes of the 

last phase of clinical trials were considered, and this may obviously lead to suboptimal solutions. The same 

authors later presented (Gatica et al., 2003a) a scenario aggregation–disaggregation approach, with 

scenarios being grouped into predetermined clusters, based on a mapping procedure between products and 
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the outcomes of clinical trials. Cheng et al. (2003) addressed the problem of designing and planning under 

market and technological uncertainty. The decision process explicitly incorporates both the upper-level 

investment decisions and the lower-level production decisions, as a two-stage optimization problem, with 

a multi-objective Markov chain. Later, Levis and Papageorgiou (2004) also proposed a two-stage, multi-

scenario MILP model, to determine the product portfolio and to perform the multi-site capacity planning, 

considering uncertainty in the outcomes of clinical trials. In the same year (Sundaramoorthy & Karimi, 

2004) presented a multi-period, continuous-time MILP model to address the supply chain management 

problem in a pharmaceutical plant considering new product introductions (active ingredients or 

intermediates) and outsourcing. The model determines the production and inventory levels, and the level 

of outsourcing for existing intermediates to maximize gross profit. However, this work does not account 

for uncertainty, and it is assumed that the scale-up procedures are completed before the new product enters 

the facility for commercial production. A scenario-based multi-stage Stochastic Programming model was 

developed by Colvin and Maravelias (2008) for planning the clinical trials in the pharmaceutical R&D 

pipeline. The model determines which trials should be performed in each planning period, taking into 

account the uncertainty in the outcomes of the clinical trials. The authors use a reduced set of scenarios to 

limit the size of the problem. Later, they extend their work (Colvin & Maravelias, 2009) to simultaneously 

address the scheduling of clinical trials and resource planning. More recently, the same authors (Colvin & 

Maravelias, 2011) developed a multi-stage SP framework for R&D pipeline management, accounting for 

interdependencies between projects and tasks, and incorporating risk management considerations (both 

value-at-risk and conditional value-at-risk novel formulations). The main goal of this approach is to 

determine the schedule of tasks and make the resource planning decisions that maximize the Expected Net 

Present Value. 

Lakhdar et al. (2006) presented another two-stage SP, by developing a MILP model based on Chance 

Constrained Programming (CCP), for medium-term planning of biopharmaceutical manufacturing with 

uncertainty on the fermentation titers. Later, Lakhdar and Papageorgiou (2008) presented a two-stage, 

multi-scenario MILP model for optimizing production plans in a biopharmaceutical manufacturing facility, 

addressing the same technical uncertainty. And more recently, Sundaramoorthy et al. (2012), developed a 

framework for capacity planning, ensuring the availability of enough resources for the foreseen product 

demand (a multi-scenario, multi-period MILP formulation, that takes into account uncertainty in the 

outcomes of clinical trials). 

Although two stage stochastic programming approaches are still the most widely used, with some 

interesting results having been achieved in recent works, these procedures have important drawbacks that 

limit their full application. The need to generate a large number of scenarios significantly increases the 

model size, leading to formulations that are computationally intractable. Moreover, decisions such as how 

many scenarios to generate and which scenarios to generate are neither simple nor obvious, and the analysis 

of each scenario can be a very complex and time consuming task. The inevitable increase in the number of 

scenarios, with the number of products and outcomes of the clinical trials, makes in fact this methodology 

less attractive to tackle many real problems. 

Nevertheless, an interesting body of literature dedicated to simulation-optimization based approaches has 

emerged in the past years, to tackle some of the problems arising in new product development management. 

Subramanian et al. (2001) developed an approach (the “SIM-OPT” architecture) to address the R&D 

pipeline management problem. The approach combines mathematical programming and discrete event 

system simulation, to tackle uncertainty and control the underlying risk. The concept of time lines is 

introduced to accommodate various stochastic realizations present in the R&D pipeline. Later, the same 

authors (Subramanian et al., 2003) extend their previous work to include methods for improvement of the 

stochastic optimization problem solution. (Jung et al., 2004) adopted part of the “SIM-OPT” architecture 

previously developed (Subramanian et al., 2001) to determine the safety stock levels under demand 

uncertainty in a chemical process industry supply chain. They have later extended their work to determine 

the safety stock levels in a multi-stage supply chain (Jung et al., 2008). Blau et al. (2004) also addressed 

the product portfolio selection in the pharmaceutical industry, considering project uncertainties and 

dependencies. The developed approach combines a discrete event simulation with a genetic algorithm to 

select the optimal sequence of projects that maximizes the expected economic returns. (Choi et al., 2004) 
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addressed the stochastic Resource-Constrained Project Scheduling Problem (RCPSP) using a discrete-time 

Markov chain for modeling uncertainties in task duration, cost and task results. A dynamic programing 

formulation, in a heuristically confined state space, was developed to solve the problem. (Rajapakse et al., 

2005) developed a decision-making tool based on discrete event simulation to predict process and business 

outcomes of the biopharmaceutical drug development process. Wan et al. (2006) developed a simulation 

based optimization approach to address multi-stage capacity expansion problems for risk management in 

the pharmaceutical product pipeline. (Varma et al., 2008) also developed a computational framework (SIM-

OPT), based on a combination of discrete event simulation and mixed integer programming, to address the 

joint optimization of scheduling and resource allocation decisions in the context of pharmaceutical R&D 

pipelines. More recently, Perez-Escobedo et al. (2012) developed a simulation-optimization approach 

combining a multi-objective Genetic Algorithm optimization framework coupled with a discrete event 

simulator to address the portfolio management and scheduling of new drugs in the pharmaceutical industry. 

In the same year, Chen et al. (2012) addressed the clinical trial supply chain management problem, with a 

simulation-optimization framework that combines patient demand simulation, stochastic demand 

forecasting, a mathematical programming to optimize the production and distribution cost, and discrete 

event simulation to capture uncertainties. 

Notwithstanding the important contributions of the above papers, most of the simulation-optimization 

approaches have been developed to address the R&D pipeline management and resource allocation 

(including portfolio selection and task scheduling decisions) and not the process design and production 

planning decisions at facility level (as addressed in this work). Moreover, the effect of resource sharing due 

to processing in the same plant products under development and products in commercialization, as well as 

the long-term capacity investment decisions (including scale-up analysis), are seldom considered in these 

works. 

It seems clear that there is an evident scarcity of research in sound alternatives to the two-stage SP for 

simultaneously addressing process design and planning decisions, under market and technical uncertainties. 

An alternative seems to be MCS (as proposed in this work), used to determine the impact of the uncertainty 

parameters, through the estimation of their probability distributions. Bassett et al. (1997) developed a 

framework for including uncertainty parameters into a general aggregate production planning procedure, 

or resource constrained scheduling problems, using MCS. The framework does not determine a specific 

schedule, but instead it determines robust operating policies that support the decision-making process. Farid 

et al. (2005) also used MCS to model technical and market uncertainties of biopharmaceutical batch 

manufacturing processes, based on a hierarchical framework. More recently, Eberle et al. (2014) proposed 

a framework for measuring and improving the production lead time of pharmaceutical processes, with MCS 

being applied to predict future total lead time based on probabilistic distributions. At the same time, 

Kaminsky and Yuen (2014) developed a model to address the problem of capacity investments during 

clinical trials, using a Bernoulli process with unknown rate. Through this model, the company re-evaluates 

its capacity investment strategy, as information about the potential success of the product is continually 

updated via the results of the clinical trials. 

In the current work, an extended version of the authors previously developed MCS framework (Marques et 

al., 2016) will be explored and enhanced, by incorporating some specific features of the pharmaceutical 

industry, such as lot traceability, scale-up and process design decisions, and clinical trials waste 

management. The proposed framework allows a deep investigation of a large number of possible values for 

the uncertainty parameters (instead of just scenarios), and provides a comprehensive analysis and 

assessment of the risks associated with these parameters.  

3. Problem Statement 

In order to increase economies, pharmaceutical production plants typically operate in batch and multi-

purpose production systems, simultaneously processing, in the same plant, commercial and pilot scale 

(under development) products. In this production mode, a great variety of products can be produced by 

sharing all available resources (including processing units, raw materials, intermediaries, and utilities) with 

the same or different sequences of operations (Floudas and Lin (2004), Barbosa-Póvoa (2007)). Even if 
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continuous manufacturing is currently a developing and promising area in the pharmaceutical industry, 

batch operating modes still prevail in this industrial sector (see Lee et al. (2015)). 

We will therefore assume that, to adequately meet the demand requirements, plant resources are shared 

between these two types of products, with capacity expansions expected to accommodate this simultaneous 

production. Nevertheless, capacity expansions for the products in commercialization are, in general, highly 

undesirable. Not only because of the high costs involved in changing a production process that has already 

gained regulatory approval, but also because of the time consuming procedure of revalidating the process, 

whenever a modification is made. Therefore, the model developed in this work will only allow capacity 

increases associated to the products under development.  

The product development process considered here encompasses the three clinical trials phases, and ends 

with the regulatory approval (of both product and production process) and the product launch. 

In a typical pharmaceutical company, the development phase comprises a portfolio of products that are in 

different stages of development (different clinical trial phases), at any given time. Although the proposed 

model could be easily adapted for this situation, for the sake of clearness we will assume that a known set 

of products reaches phase I of the clinical trials at the same time, and that the optimal production plan is 

determined considering the probabilities of success of each product, at each phase of the clinical trials.  

To accommodate all phases of the clinical trials, a planning horizon with several years is divided into equal 

time intervals (𝑡 ∈ 𝐇). Due to the long time horizon imposed by clinical trials, demand uncertainty is 

considered for both types of products. For the products under development, uncertainty arises from two 

main sources: (i) outcomes of the clinical trials (pass/fail outcomes); and (ii) demand variability mainly due 

to patient drop out during the trials progress. 

Moreover, lot traceability is also modelled in this work, due to its importance for the pharmaceutical 

industry. Nevertheless, a distinction should be made between lots and task-batches. According to S. Moniz 

et al. (2013), the term “lot” refers to the total amount (quantity) of stable intermediary or final product that 

is produced following the known recipe (that includes the set of tasks, processing units, and materials). On 

the other hand, “task-batches” are limited by the capacity of the processing units and correspond to the 

amount of material produced by each task (tasks are elements of the production process of a lot). Thus, in 

order to ensure lot traceability, lots are associated to all materials, including raw materials, intermediaries 

and final products. In this work, lots are defined by the starting raw materials, with the availability of these 

materials being limited by predetermined lot-sizes. The model will select some of these lot-sizes in order 

to achieve the best trade-off between those sizes and the operational costs associated to the capacities of 

the processing units needed to process them.  

In terms of storage policies, it is assumed that in each period, storage is only allowed for the final products 

in order to accommodate the demand variability. For the products under development, the excess of final 

product at the end of each clinical trial phase must be considered as wastage and discarded, since it cannot 

be reused. Thus, a critical balance between the amounts required for the trial and the additional costs 

associated with the leftovers at the end of each clinical trial, should be achieved by the model. 

Regarding the production yields, a distinction between the two types of products is also made. For those 

under development, lower levels of production yields are considered due to their still premature 

manufacturing process when compared with the products already in commercialization. 

The main goal of this planning process is to determine the “optimal” production plan, the process design, 

and production scale-ups for a set of products (𝑝 ∈ 𝑃), ensuring that all demand requirements are fulfilled. 

Because failures in the deliveries to the trials seriously compromise the time-to-market and the payback of 

the investments, we assume that all the demand requirements will be fulfilled for the under development 

products. Therefore, the problem addressed in this work is formally defined as follows. 

Given:  

(i) a fixed time horizon, discretized into several time periods of equal duration (𝑡 ∈ 𝐇); 

(ii) a set of under development products entering clinical trials (p ∈ 𝐏U);  

(iii) a set of products already in commercialization (𝑝 ∈ 𝐏C); 

(iv) the recipes of each final product (𝑝 ∈ 𝐏); 

(v) the lot sizes available for the raw materials of each product (𝑚 ∈ 𝐖𝑝);  

(vi) the set of processing units initially installed in the plant (𝑒 ∈ 𝐄); 

(vii) the maximum and minimum capacities of each processing unit; 

(viii) the task suitability for every processing unit and the respective processing times; 
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(ix) the probabilistic distributions of the product demand; 

(x) the probabilities of success of the under development products in each clinical trial phase; 

all the operational and investment costs associated to each task and processing unit, as well as 

the sales prices of each product; 

the key decisions for the product launch production planning problem are:  

(i) best set of processing unit types for each process; 

(ii) size and timings of scale-ups; 

(iii) amount (quantity) to produce in each time period; 

(iv) how much to store in each time period; 

capacity extension requirements for the under development products; 

in order to maximize the Net Present Value (NPV) of the company operations related to these projects. 

4. Proposed Method 

4.1. A two-step MCS framework 

The conceptual framework developed in this work integrates a MILP model with a two-step MCS. The 

MCS component randomly samples a large number of instances of product demand and outcomes of the 

clinical trials, until a stopping criterion is met. For each of these instances, the MILP model is solved and 

an optimal solution is obtained. The uncertainty parameters are randomly sampled from their given 

probabilistic distributions. Since normal distributions have been often used to capture the essential 

characteristics of product demand uncertainty (Wellons and Reklaitis (1989), Petkov and Maranas (1997), 

Gupta and Maranas (2003)), the normality assumption is also considered in this work. On the other hand, 

to model the uncertainty associated with the outcomes of the clinical trials, the probability of success of 

each product, at the end of the trial phases, is given by Bernoulli distributions, since there are only two 

possible results of the clinical tests: “success” or “failure”.  

For the products already in commercialization, only the demand is randomly sampled, but for those under 

development both uncertainty parameters (product demand and clinical trial outcomes) are randomly 

generated, in a two-step procedure performed for each clinical trial phase (see Figure 2). The random 

sampling for the product demand (step 1) is performed for each time period, while the sampling for the 

outcomes of the clinical trials (step 2) is performed only at the end of each clinical trial phase, as illustrated 

in the detailed diagram of Figure 3 (note that the procedure starts with the definition of the number of 

iterations to be performed). 

In step 2, if the outcome of the clinical trial test is “pass”, step 1 is performed again with the random 

generation of a value for the product demand for the next clinical trial phase, and so on. However, if the 

outcome is “fail”, the two-step procedure stops (step 1 of the next trial phase will not be performed) and 

the MILP model will be run considering that the demand for that product is zero for the following periods 

(this meaning that the development of this product will be abandoned). This procedure is executed for all 

products in each MCS iteration, and the MILP model is run considering the product demands obtained by 

this procedure. 

At the end of the MCS procedure, we get the probability density function for the objective function, and 

the results for the probabilistic occurrence of the decision variables can be derived. These results are then 

analysed to support decision-making concerning the process design configuration, as well as the capacity 

and planning decisions during product development.    
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Figure 2. Schematic representation of the two-step MCS framework. 

 

 
Figure 3. The two-step MCS procedure. 

 

5. MILP Model 

The optimal plan will be determined considering that resources are shared among the production of products 

under development and the production of products already in commercialization, over a planning horizon 

of several years. Thus, detailed time and task-sequencing constraints will not be considered in this model. 

All material requirements, as well as all storage levels and production yields, will be precisely defined 

through the model parameters and decision variables.  

The process design configuration and planning decisions are represented by the following decision 

variables: 

 the process/unit assignment binary variables 𝑌𝑝𝑙𝑒𝑡 , that are equal to 1 if product p of lot l is assigned 

to processing unit e in period t; 

 the task batch-size decisions are associated to continuous variables 𝐵𝑘𝑙𝑡 , denoting the amount to 

be produced by each task k and lot l at period t; 

 the number of instances of each task k of lot l are defined through the integer variables 𝑁𝑘𝑙𝑡  for 

each period t; 

 the lot-size decisions are modelled by integer variables 𝐿𝑚𝑙𝑡, that define the number of lots of each 

lot-size l from a set of pre-determined lot sizes, for the starting raw material 𝑚 ∈ 𝐖𝑝 at each period 

t; 

 the excess resource continuous variables 𝑅𝑚𝑙𝑡 , that define the total amount available of material 

m of lot l at each period t; 
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 the final product waste continuous variables 𝑊𝑚𝑙|𝑡=𝑡𝑖

𝐹, that denote the leftovers of the under 

development final products m (m  PU) at the end of each clinical trial i (the final product that was 

not used during the clinical trial i and must be destroyed since it cannot be reused); 

 deliveries are given by the continuous variables 𝐷𝑚𝑙𝑡 , denoting the total amount of material m 

(final product) of lot l delivered at period t; 

 the unused capacity continuous variables 𝐹𝑒, that define the amount of capacity not used by product 

p (products in commercialization) in processing unit e, and that will be available for the production 

of under development products; 

 the capacity extension integer variables 𝐴𝑒𝑡, that define the number of additional processing units 

e to be added to the plant at period t. 

The complete formulation encompasses constraints (1) to (15) and the objective function (16), as presented 

in the next section. 

5.1. Mathematical formulation 

NOTATION 

Indices 

e Processing unit 

i Clinical trial phase 

k Processing task 

l Lot 

m Material (may be a raw material, an intermediary or a final product) 

p Final product 

t Period 

Sets 

E Processing units 

Ep Processing units associated with product p 

Em Processing units associated with raw material 𝑚 ∈ 𝐖 

H Planning horizon 

Hi Time interval of the clinical trial phase i: Hi = {ti
initial, …, ti

Final}  

I Clinical trial phases 

K Processing tasks 

Km Processing tasks associated with material m 

𝐊𝑒
𝑪

 Processing tasks of products in commercialization associated with processing unit e 

𝐊𝑒
𝑼

 Processing tasks of products under development associated with processing unit e 

L Lots 

Lm Lots associated with raw material 𝑚 ∈ 𝐖  

M Materials including raw materials, intermediaries and final products 

P Final products 

PC Final products in commercialization 

PU Final products under development 

W Raw materials 

Wp Raw materials of final product p  

Parameters 

𝑘𝑚 
Production rate (positive value for production, and negative value for consumption) of each task k 

and material m 
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𝜏 Length of each period  

𝜏𝑘̅𝑒
𝑣𝑎𝑟 Time required per unit of processed material 

𝜏𝑐ℎ𝑔  Changeover time 

𝜏̂𝑒 Installation and commissioning time of each processing unit e added to the plant 

𝛽𝑘𝑒
𝑚𝑎𝑥/ 

𝛽𝑘𝑒
𝑚𝑖𝑛 

Maximum and minimum capacity for task k in processing unit e 

𝜇𝑚
𝑚𝑎𝑥  Maximum availability of material m 

𝜇𝑚
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  Initial  availability of material m 

𝜎𝑚𝑙  Lot size of lot l associated to raw material 𝑚 ∈ 𝐖  

𝜔𝑚𝑡  Product demand for material m at period t 

𝜃𝑖
𝐼 /𝜃𝑖

𝐹  Initial and final times for clinical trial phase i 

𝛾𝑚𝑡 Maximum number of lots for raw material  𝑚 ∈ 𝐖  at period t 

𝛿𝑒
𝑖𝑛𝑖𝑡 Number of processing units e initially available 

𝜋𝑚 Sales price for materials m  P  

𝛼𝑘
𝑜𝑝𝑒𝑟.

 Operational cost of each processing task k 

𝛼𝑚
𝑠𝑡𝑜𝑟. Storage cost for each material m 

𝛼𝑚
𝑤𝑎𝑠𝑡𝑒 Cost of disposing each unit of material m 

𝛼𝑒
𝑐ℎ𝑔

 Changeover costs associated to each processing unit e 

𝛼𝑚𝑙
𝑙𝑜𝑡 𝑠𝑖𝑧𝑒  Cost associated with the lot size l for raw material 𝑚 ∈ 𝐖 

𝛼𝑒
𝑖𝑛𝑣𝑒𝑠𝑡. Investment costs for each new additional processing unit e  

Continuous variables 

𝐵𝑘𝑙𝑡  Batch size of task k of lot l at period t, expressed in kg  

𝐷𝑚𝑙𝑡  Amount delivered of each material m of lot l at period t, expressed in kg 

𝑅𝑚𝑙𝑡  Excess resource for each material m of lot l at each period t, expressed in kg 

𝑊𝑚𝑙|𝑡=𝑡𝑖
𝐹  

Excess amount of final product under development (m  PU)  of lot l  considered waste at the end 

of each clinical trial i (𝑡 = 𝑡𝑖
𝐹), expressed in kg 

𝐹𝑒 Capacity unused for each processing unit e, expressed in hours 

Binary variables 

𝑌𝑝𝑙𝑒𝑡 =1 if product p is assigned to processing unit e and lot l, at period t 

Integer variables 

𝑁𝑘𝑙𝑡  Number of instances of task k of lot l at period t  

𝐴𝑒𝑡  Number of additional processing units e to add to the plant at period t 

𝐿𝑚𝑙𝑡 Number of lots l of raw material 𝑚 ∈ 𝐖  at period t 

𝑍𝑝𝑒𝑙𝑡  Process design variable for each product p of lot l assigned to processing unit e at period t 

 

5.1.1. Constraints 

 

𝜎𝑚𝑙𝐿𝑚𝑙𝑡  = − ∑ 𝑘𝑚𝐵𝑘𝑙𝑡  

𝑘∈𝐊𝑚

     ∀𝑝 ∈ 𝐏, 𝑚 ∈ 𝐖𝑝, 𝑙 ∈ 𝐋𝑚, 𝑡 ∈ 𝐇 

 

(1) 

∑ 𝑌𝑝𝑙𝑒𝑡

𝑒∈𝐄𝑚

≤ 𝐿𝑚𝑙𝑡  ≤  𝛾𝑚𝑡 ∑ 𝑌𝑝𝑙𝑒𝑡

𝑒∈𝐄𝑚

       ∀𝑝 ∈ 𝐏, 𝑚 ∈ 𝐖𝑝, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐇 (2) 
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𝑌𝑝𝑙𝑒𝑡 + 𝑌𝑝𝑙′𝑒𝑡′ ≤ 1    ∀𝑝 ∈ 𝐏, 𝑒 ∈ 𝐄𝑝, 𝑙, 𝑙′ ∈ 𝐋𝑚 ∶ 𝑙′ > 𝑙, 𝑡 ∈ 𝐇, 𝑡′ = {0 … 𝑡} 

 

(3) 

 

𝑅𝑚𝑙𝑡 = (𝜇𝑚
𝑖𝑛𝑖𝑡𝑖𝑎𝑙|𝑡=0 ,   𝑅𝑚,𝑡−1|𝑡>0) + (𝜎𝑚𝑙𝐿𝑚𝑙𝑡)|𝑚 ∈ 𝐖 + ∑ 𝑘𝑚𝐵𝑘𝑙𝑡

𝑘∈𝐊𝑚

− 𝐷𝑚𝑙𝑡|𝑚 ∈ 𝐏

− 𝑊𝑚𝑙𝑡|𝑚 ∈ 𝐏𝐔,𝑡=𝜃𝑖
𝐹    ∀𝑚 ∈ 𝐌 , 𝑙 ∈ 𝐋, 𝑖 ∈ 𝐈, 𝑡 ∈ 𝐇 

(4) 

 

0 ≤ ∑ 𝑅𝑚𝑙𝑡

𝑙∈𝐋

≤ 𝜇𝑚
𝑚𝑎𝑥       ∀𝑚 ∈ 𝐌, 𝑡 ∈ 𝐇 

 

(5) 

 

𝑅𝑚𝑙|𝑡=𝜃𝑖
𝐹 = 0      ∀𝑚 ∈ 𝐏𝐔, 𝑙 ∈ 𝐋, 𝑖 ∈ 𝐈, 𝑡 ∈ 𝐇 

 

(6) 

 

∑ 𝐷𝑚𝑙𝑡

𝑙∈𝐋

= 𝜔𝑚𝑡       ∀𝑚 ∈ 𝐏, 𝑡 ∈ 𝐇 

 

(7) 

 

𝐷𝑚𝑙𝑡 = 0      ∀𝑚 ∈ 𝐌\𝐏, 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐇 

 

(8) 

𝛽𝑘𝑒
𝑚𝑖𝑛𝑁𝑘𝑙𝑡 ≤ 𝐵𝑘𝑙𝑡 ≤ 𝛽𝑘𝑒

𝑚𝑎𝑥𝑁𝑘𝑙𝑡       ∀𝑒 ∈ 𝐄, 𝑘 ∈ 𝐊𝑒 , 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐇 
 

(9) 

𝑌𝑝𝑙𝑒𝑡 ≤ 𝐵𝑘𝑙𝑡 ≤ 𝑏𝑖𝑔𝑀𝑌𝑝𝑙𝑒𝑡      ∀𝑝 ∈ 𝐏, 𝑒 ∈ 𝐄, 𝑘 ∈ 𝐊𝑒 , 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐇  

(10) 

∑ ∑ 𝐵𝑘𝑙𝑡

𝑘∈𝐊𝒆
𝑪

𝜏𝑘̅𝑒
𝑣𝑎𝑟

𝑙∈𝐋

+ ∑ ∑ 𝑌𝑝𝑙𝑒𝑡

𝑝∈𝐏𝐶

𝜏𝑐ℎ𝑔

𝑙∈𝐋

− 𝜏𝑐ℎ𝑔 + 𝐹𝑒 ≤ 𝛿𝑒
𝑖𝑛𝑖𝑡  𝜏      ∀ 𝑒 ∈ 𝐄, 𝑡 ∈ 𝐇   

(11) 

  

∑ ∑ 𝐵𝑘𝑙𝑡

𝑘∈𝐊𝒆
𝑼

𝜏𝑘̅𝑒
𝑣𝑎𝑟

𝑙∈𝐋

+ ∑ ∑ 𝑌𝑝𝑙𝑒𝑡

𝑝∈𝐏𝑈

𝜏𝑐ℎ𝑔

𝑙∈𝐋

− 𝜏𝑐ℎ𝑔 ≤  𝐹𝑒 + ∑ 𝐴𝑒𝑡′𝜏 

𝑡−1

𝑡′=0

+ 𝐴𝑒𝑡(𝜏 − 𝜏̂𝑒)      ∀ 𝑒

∈ 𝐄, 𝑡 ∈ 𝐇 

(12) 

 

𝑍𝑝𝑙𝑒𝑡 ≥  𝑌𝑝𝑙𝑒𝑡 −  𝑌𝑝𝑙𝑒,𝑡−1     ∀𝑒 ∈ 𝐄, 𝑝 ∈ 𝐏𝑒 , 𝑙 ∈ 𝐋, 𝑡 ∈ 𝐇 

 

(13) 

∑ 𝑍𝑝𝑙𝑒𝑡

𝑡∈𝐇

≤ 1      ∀𝑒 ∈ 𝐄, 𝑝 ∈ 𝐏𝑒 , 𝑙 ∈ 𝐋, 𝑡 ∈  𝐇 (14) 

𝑅𝑚𝑙𝑡 ∈ ℝ+         ∀𝑚 ∈ 𝐌, 𝑡 ∈ 𝐇 

𝐵𝑘𝑙𝑡 ∈ ℝ+         ∀𝑘 ∈ 𝐊, 𝑡 ∈ 𝐇 

𝑊𝑚𝑙𝑡 ∈ ℝ+         ∀𝑚 ∈ 𝐏𝐔, 𝑡 ∈ 𝐇 

𝐷𝑚𝑙𝑡 ∈ ℝ+         ∀𝑚 ∈ 𝐏, 𝑡 ∈ 𝐇 

𝐹𝑒 ∈ ℝ+         ∀𝑝 ∈ 𝐏𝐂, 𝑒 ∈ 𝐄 

𝑁𝑘𝑙𝑡 ∈ ℤ+         ∀ 𝑘 ∈ 𝐊, 𝑡 ∈ 𝐇 

(15) 



 13 
𝐿𝑚𝑙𝑡 ∈ ℤ+         ∀ 𝑚 ∈ 𝐖, 𝑙 ∈ 𝐋𝑤 , 𝑡 ∈ 𝐇 

𝑌𝑝𝑙𝑒𝑡 ∈ {0, 1}         ∀𝑝 ∈ 𝐏, 𝑒 ∈ 𝐄, 𝑡 ∈ 𝐇 

𝐴𝑒𝑡 ∈ ℤ+          ∀𝑒 ∈ 𝐄, 𝑡 ∈ 𝐇 

𝑍𝑝𝑙𝑒𝑡 ∈ ℤ+          ∀ 𝑝 ∈ 𝐏, 𝑒 ∈ 𝐄, 𝑡 ∈ 𝐇 

 

Constraints (1) to (3) are used to model the lot-size and scale-up decisions based on the starting raw material 

of each final product p. Constraint (1) guarantees that the total amount available of raw material  𝑚 ∈ 𝐖 

of lot l at each time period is equal to the total amount consumed by the respective tasks 𝑘 ∈ 𝐾𝑚 of lot l. 

The parameters 𝜎𝑚𝑙  on the left hand side of this constraint represent the lot-sizes of lot l for each raw 

material 𝑚 ∈ 𝐖, and the 𝑘𝑚 parameters on the right hand side take a negative value corresponding to the 

consumption rate of each task k and raw material m. Constraints (2) bound the number of lots of each lot-

size l (𝐿𝑚𝑙𝑡) to a given maximum value (𝛾𝑚𝑡) for each starting raw material m associated with final product 

p (𝑚 ∈ 𝐖𝑝) and period t. These constraints also guarantee that the number of lots will be zero if no product 

p of lot l is assigned to processing unit e, at period t (i.e. 𝑌𝑝𝑙𝑒𝑡 = 0). Finally, constraints (3) model the scale-

up decisions, by ensuring that the size of the lots never decreases during the planning horizon.  

The excess resource balances are defined by constraints (4) in which the continuous variables 𝑅𝑚𝑙𝑡  denote 

the material availability over time, for each material m of lot l. The parameters 𝜇𝑚
𝑖𝑛𝑖𝑡𝑖𝑎𝑙   represent the initial 

material availability for each material m (being 0 for final products and intermediaries). The second term 

of constraints (4) is activated only for raw materials, and it defines the starting raw material quantity, that 

is limited by the given lot-sizes (𝜎𝑚𝑙). The total amount produced or consumed by each task is defined by 

the third term of these constraints in which the parameters 𝑘𝑚 denote the proportion of material that is 

consumed (negative values) or produced (positive values) during the execution of the task. 

This modelling approach has been introduced by Pantelides (1994). The continuous variables 𝐷𝑚𝑙𝑡  define 

the amount of material delivered in each period, being 0 for all materials except final products (m  P). 

The last term will be activated only for products under development, and it corresponds to the leftovers of 

the final product, at the end of each clinical trial phase i (to be considered as wastage).  

Constraints (5) define the excess resource capacity for each material and time interval, bounded by the 

given maximum materials availability 𝜇𝑚
𝑚𝑎𝑥. Furthermore, since the excess amount of final products under 

development at the end of each clinical trial phase must be discarded and cannot be used in the following 

periods, expression (6) is introduced to ensure that the material availability of these products is 0 at the end 

of each clinical trial phase.  

Constraints (7) define the production requirements to meet the given demand (𝜔𝑚𝑡), and expression (8) 

guarantees that only final products can be delivered.  

Constraints (9) ensure that the total amount of material processed (𝐵𝑘𝑙𝑡) is bounded by the minimum and 

maximum processing unit capacities (𝛽𝑘𝑒
𝑚𝑖𝑛/ 𝛽𝑘𝑒

𝑚𝑎𝑥). The integer variable Nklt is defined as the number of 

instances (batches) of task k, for lot l, in period t.  

Constraints (10)  are very similar to constraints (2) defined earlier, but even though they are necessary, 

since constraints (2) apply only for the starting raw materials m (𝑚 ∈ 𝐖). These additional constraints (10) 

are then used to activate the decision variables 𝐵𝑘𝑙𝑡  (total amount processed) associated to all tasks k (𝑘 ∈
𝐊𝑒), and to force those variables to be 0 if no product p of lot l is assigned to processing unit e at period t 

(i.e. 𝑌𝑝𝑙𝑒𝑡 = 0). The  𝑏𝑖𝑔𝑀 represents a very large number (in relative terms), and 𝑌𝑝𝑙𝑒𝑡 are the binary 

variables for process activation. 

Constraints (11) and (12) define the production capacity, expressed in the total time availability for 

processing unit e and period t. Given that only capacity extensions for products under development are 

allowable in this formulation, a distinction must be done regarding the two types of products. Thus, 

constraints (11) denote the production capacity for products in commercialization, and constraints (12) for 

products under development. The first summation in (11) represents the total time required for the execution 

of tasks k, in which the coefficient 𝜏𝑘̅𝑒
𝑣𝑎𝑟 is known and denotes the time required per unit of processed 

material. The second summation defines the changeover times associated to equipment and lot changing. 

Parameter 𝜏𝑐ℎ𝑔 represents the changeover time. A third term (𝜏𝑐ℎ𝑔) is added to constraints (11) in order to 

ensure that the number of changeovers is equal to the number of products minus one. This is needed to 
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prevent an overestimation of the changeover times across adjacent periods in which the last product of the 

previous period is equal to the first product of the following period (Grossmann, 2007). The last term (𝐹𝑒) 

expresses the capacity of each processing unit e unused by the products in commercialization. This free 

capacity will be used as available capacity for the products under development in constraints (12). The right 

hand side of these constraints is the total available capacity of each processing unit e, in each period. The 

parameters 𝛿𝑒
𝑖𝑛𝑖𝑡 and 𝜏 are given, and denote respectively the number of processing units e initially available 

at the plant and the length of each period t. In constraints (12), the left hand side is equal to constraints (11), 

except for the decision variables 𝐹𝑒, that, in this case, are in the right hand side, as they reflect the available 

capacity for the production of the under development products. However, because this available capacity 

is very limited, it is likely that some adjustments to the process design will be needed, and some capacity 

extensions performed. Accordingly, integer variables 𝐴𝑒𝑡 are introduced in constraints (12), to determine 

the additional amount of capacity (expressed in additional time) required for the production of each product 

p (p  PU) in processing unit e. Thus, the second term in the right hand side of these constraints refers to 

the total capacity added in previous periods (t = 0,…,t-1). This term guarantees that, if an increase in 

capacity occurs, the new processing units added to the plant will be available during the following periods 

until the end of the planning horizon. Finally, the last term of these constraints denote the capacity 

extensions to be performed in period t, also reflecting the time required for the installation and 

commissioning of the added units before they are ready to start operating (𝜏̂𝑒). 

Constraints (13) and (14) are process design constraints needed to ensure that, after a processing unit has 

been selected for a given process, it cannot leave that process in a given period and be later assigned again 

to the same process (i.e., in a period ahead). Finally, expressions (15) are used to define the domain of the 

variables. 

Objective Function 

As referred above, and in order to reflect in the model the main concerns of the company, we have 

considered as objective function (eq. (16)) the maximization of the Net Present Value (NPV) of the 

operations related to these projects. This measure depends on the income from sales over the planning 

horizon (INCO) minus the operational costs (OC), storage costs (SC), disposal costs for wasted final 

products (WC), changeover costs (COC), scale-up costs (LC), and investment costs (IC) (costs associated 

with capacity extension): 

max 𝑁𝑃𝑉 = 𝐼𝑁𝐶𝑂 − 𝑂𝐶 − 𝑆𝐶 − 𝑊𝐶 − 𝐶𝑂𝐶 − 𝐿𝐶 − 𝐼𝐶 (16) 

Considering the discount factor (𝑑𝑡) given by expression (17), where 𝑟 is the interest rate and t the period 

(Bagajewicz, 2008), each term of the objective function (16) can be described individually as presented 

below. 

 𝑑𝑡 =
1

(1+𝑟)𝑡      ∀ 𝑡 ∈ 𝐇 (17) 

The income over the planning horizon results from the final product sales, and is given by expression (16)a, 

where 𝜋𝑚 denotes the given sale prices for each material m. 

         𝐼𝑁𝐶𝑂 =  ∑ 𝑑𝑡 ∑ ∑ ∑(𝜋𝑚𝐷𝑚𝑙𝑡)

𝑡∈𝐇𝑚∈𝐏𝑙∈𝐋𝑡∈𝐇

 (16)a 

The operational costs are associated with each task k, and are given by expression (16)b, where 𝛼𝑘
𝑜𝑝𝑒𝑟.

is the 

operational cost of task k. 

𝑂𝐶 =  ∑ 𝑑𝑡 ∑ ∑ ∑(𝛼𝑘
𝑜𝑝𝑒𝑟.

𝑁𝑘𝑙𝑡)

𝑡∈𝐇𝑘∈𝐊𝑒𝑙∈𝐋𝑡∈𝐇

 (16)b 
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Storage costs are also considered in this model, and they are given by eq. (16)c, where 𝛼𝑚

𝑠𝑡𝑜𝑟. represents the 

holding costs for each material m. 

𝑆𝐶 =  ∑ 𝑑𝑡 ∑ ∑ ∑(𝛼𝑚
𝑠𝑡𝑜𝑟.𝑅𝑚𝑙𝑡)

𝑡∈𝐇𝑚∈𝐌𝑙∈𝐋𝑡∈𝐇

 (16)c 

The costs associated to the disposal of unused final products under development (waste) are given by 

expression (16)d. 

𝑊𝐶 =  ∑ 𝑑𝑡 ∑ ∑ ∑(𝛼𝑚
𝑤𝑎𝑠𝑡𝑒𝑊𝑚𝑙𝑡)

𝑡∈𝐇𝑚∈𝐏𝐔𝑙∈𝐋𝑡∈𝐇

 (16)d 

The changeover costs are given by eq. (16)e, where the given parameters 𝛼𝑒
𝑐ℎ𝑔

 denote the changeover costs 

associated to each processing unit e. 

          𝐶𝑂𝐶 =  ∑ 𝑑𝑡 ∑ ∑ ∑ ∑(𝛼𝑒
𝑐ℎ𝑔

𝑌𝑝𝑙𝑒𝑡)

𝑡∈𝐇𝑝∈𝐏𝑒∈𝐄𝑙∈𝐋𝑡∈𝐇

 (16)e 

The costs associated to the scale-ups are given by eq. (16)f, where 𝛼𝑚𝑙
𝑙𝑜𝑡 𝑠𝑖𝑧𝑒denotes the cost associated to 

the selection of the lot size l for the starting raw material m. 

   𝐿𝐶 =  ∑ 𝑑𝑡 ∑ ∑ ∑(𝛼𝑚𝑙
𝑙𝑜𝑡 𝑠𝑖𝑧𝑒𝐿𝑚𝑙𝑡)

𝑡∈𝐇𝑙∈𝐋𝑤𝑚∈𝐖𝑡∈𝐇

 (16)f 

Finally, if a capacity expansion occurs (𝐴𝑒𝑡 > 0), an investment cost must be considered for each new 

processing unit that is added to the plant.  These costs are given by eq. (16)g, where the parameters 𝛼𝑒
𝑖𝑛𝑣𝑒𝑠𝑡. 

are the investment costs associated to each new processing unit e added to the plant. 

𝐼𝐶 =  ∑ 𝑑𝑡 ∑ ∑(𝛼𝑒
𝑖𝑛𝑣𝑒𝑠𝑡.𝐴𝑒𝑡)

𝑡∈𝐇𝑒∈𝐄𝑡∈𝐇

 (16)g  

6. Mathematical Results and Discussion 

6.1. Case description 

To validate the proposed framework and demonstrate its applicability, a case was designed based on a real 

problem of the chemical-pharmaceutical industry. In this case, the product portfolio is composed by 3 new 

products (PA, PB, and PC) entering the product development phase, and by 2 products (PD and PE) already 

in commercialization. A planning horizon of 5 years is considered, discretized into 10 periods of 6 months 

each (4032 hours for a plant, operating 24 hours a day and 7 days a week). The demand forecast profiles 

for the entire planning horizon and for each product are presented in Figure 4. To accommodate the three 

phases for the clinical trials, the planning horizon is divided, with 1.5 years to conduct each of the clinical 

trials phases I and II, and with 2 years for clinical trial phase III (see Figure 4). 
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Figure 4. Demand profile for products under development (PA, PB and PC) and products already in commercialization  (PD 

and PE) (Sundaramoorthy et al., 2012) 

All products follow a similar production recipe in which the task sequence, unit suitability, reaction yields, 

and processing times are clearly identified (see Figure 5). All processes are composed by 3 aggregate tasks 

that can be processed in 3 possible unit types ({R1, R2, R3}, {F1, F2, F3}, and {D1, D2, D3}) with different 

capacities, and different operational and investment costs (see Figure 6). These tasks have a variable 

duration (expressed in hour/kg) that is proportional to the batch size. Moreover, each product can only be 

produced in pre-determined lot-sizes, with four different lot-sizes defined for each product. 

 
Figure 5. Product recipes and probabilities of success for the products under development and for the products already 

in commercialization. 
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Figure 6. Processing unit types and their maximum and minimum capacities. 

To reflect the uncertainty of product demand, normal distributions are used with values, per period, for the 

mean and standard deviations, derived from the profiles presented in Figure 4. We have considered a 

standard deviation of 30% for the products under development, and 10% for the products in 

commercialization, since less demand variability is expected in this case. On the other hand, to capture the 

uncertainty associated to the clinical trials (pass/fail outcomes), Bernoulli distributions are used, 

considering the success probabilities depicted in Figure 5, and based on the available information from the 

literature (Fisher et al., 2015). 

6.2. Computational results 

The MILP model was implemented using IBM ILOG CPLEX Optimization studio, version 12.5.1, running 

on an Intel Xeon at 3.33 GHz machine with 24 GB of RAM. As stopping criterion, we considered a time 

limit of 3600 seconds, and an integrality gap of 5%. For the simulation component (MCS), an iterative 

model was also implemented in ILOG/CPLEX, and 1000 iterations were performed by randomly generating 

the uncertainty parameters from given probability distributions (normal and Bernoulli distributions). For 

each iteration, a solution was found and the frequency of occurrence for each decision variable was 

determined and analysed. The MCS for the 1000 iterations took a total of 36 hours to be completed, with 

an average run time, for each iteration, of 129.35 seconds. The integrality gap ranges from a minimum of 

1.43% to a maximum of 5.0% (according to the stopping criterion referred above). The main computational 

statistics are described in Table 1. 

Table 1. Computational statistics 

binary 

variables 

integer 

variables 

continuous 

variables 
constraints 

B&B 

nodes* 

optimality gap 

(%)* 

CPU time 

(seconds)* 

1,800 3,890 3,554 29,160 10,356.29 3.8 129.35 
* Average values for the 1000 iterations. 
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6.2.1. NPV analysis 

The results obtained are presented in Figure 7, with the NPV histogram and the associated probability 

distribution. The resulting histogram presents a slightly skewed right pattern, due to the fact that the NPV 

highest values occur in the instances in which all products under development successfully pass all clinical 

trial phases, this fact having a very low frequency of occurrence, as it is highly unlikely to happen.  

 

 
Figure 7. NPV histogram and associated probability distribution. 

 

The maximum NPV value obtained was 1.79 x 107 relative monetary units (rmu); the minimum value was 

1.28 x 107 rmu and the average NPV was 1.50 x 107 rmu. The variation between the average and the 

minimum values is about 14%, which may be more or less penalizing for the company, depending on the 

particular context, the main established goals, and the risk aversion of the decision makers. 

On the other hand, the optimal profit for the deterministic reference case, which is based on the forecast 

values illustrated in Figure 4 was 1.69 x 107 rmu. According to Figure 7, the frequency of occurrence of 

this value is just 3 in 1000 iterations, and the probability of the profit to be below this value is about 98% 

(see Figure 7), this meaning that the deterministic case is very unlikely to occur. These results clearly show 

that the decision-making process for a 5 years capacity planning entails a considerable risk if we only 

consider a deterministic analysis.  

6.2.2. Scale-up analysis 

The determination of the lot-sizes to be produced and of the scale-ups to be performed are very important 

decisions in the chemical-pharmaceutical industry. From a strict cost point of view, the production of larger, 

fewer lots is more desirable, as demonstrated in (Samuel Moniz, Barbosa-Povoa, et al., 2014). Here, the 

results show that the most frequently selected lot-sizes and scale-ups over the entire planning horizon are 

in accordance with the previous statement, since there is a clear preference for single lots, particularly for 

the under development products. Exceptions occur when the demand is very high. Since no backlogs are 

allowed, when demand is high the model is forced to select several lots of a certain size in order to 

completely meet the product demand.  

The histograms in Figure 9 and in Figure 10 are for the products under development, and for the products 

in commercialization, respectively. These histograms only present the lot-sizes that are more frequently 

selected by the model in each period. For example, for product PA, at period t=0, all the lot-sizes selected 

by the model are depicted in Figure 8. However, only the most frequently selected (1L3_200) lot-size was 

picked for the histogram in Figure 9a). This procedure was performed for all products and periods. 
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Figure 8.  Selected lot-sizes for product PA, at period t=0. 

 

When analysing the histograms of both types of products, we can notice that in the first case (products 

under development), there is a considerable decrease in the frequency values in each clinical trial phase, 

this being a direct consequence of the pass/fail probabilities associated to the products. For the products in 

commercialization, this decrease does not occur due to their much more stable demand. 

According to Figure 9, the most frequently selected lot-sizes for the products under development are: lot 3 

and lot 4, for product PA; lot 1 and lot 4, for product PB; and finally, lot 1, lot 2, lot 3 and lot 4, for product 

PC. These values correspond to one scale-up for product PA and product PB, and three scale-ups for product 

PC, over the planning horizon. In all the three products, we can observe that the scale-ups are closely related 

to the clinical trial phases, even if this is more evident in the case of product PC, because of the higher 

values of the product demand. In that sense, for product PA, it seems reasonable to consider lot 3 for clinical 

trial phase I, and lot 4 for the other two clinical trial phases. For product PB, it is clear that the most suitable 

lot for phase I is lot 1, and lot 4 for the last two clinical trials phases. Finally, for product PC, it seems 

reasonable to consider lot 1 for clinical trial phase I, lot 2 and 3 for clinical trial phase II, and lot 4 for 

clinical trial phase III. On the other hand, for products in commercialization (PD, and PE), the larger lot 

(lot 4) is the most frequently selected, due to the larger and more stable values for the product demand. This 

is particularly evident for product PE that presents a higher product demand for almost the entire planning 

horizon. 

It is worth to notice that the product demand and the total amount processed (depicted in Figure 9 and in 

Figure 10) correspond to the starting raw materials associated to each final product, and derived from the 

forecasted values presented in Figure 4 (considering the associated production yields).  

 

 
(a) 

 

 
(b) 
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(c) 

Figure 9. Lot-size and scale-up decisions for products under development: (a) product PA, (b) product PB, and (c) 

product PC. 

 

 
(a) 

 

 
(b) 

Figure 10. Lot-size and scale-up decisions for products already in commercialization: (a) product PD, and (b) 

product PE. 

Finally, the most likely process design configurations for each product and clinical trial / planning period 

were determined. In the next section, the trade-offs between process design configuration and scale-ups are 

analysed. 

6.2.3. Process design and scale-up analysis 

These results also allow us to identify the sets of processing units associated with the lot-sizes that have 

been selected with higher probabilities. They are presented as histograms in Figure 11 (a1, b1, c1), and in 

Figure 12 (d1, e1), for the products under development and in commercialization, respectively. In this case, 

the histograms were obtained by considering the three or four most frequently selected process 

configurations. 

We can also see that, when simultaneously considering process design and lot-size configuration, the most 

selected process designs seem to lead to more scale-ups (2 or 3) than in the previous analysis (with just 

scale-ups ). This seems to show that the model tends to favor the process design stability over scale-ups 

and lot size increases. This is an interesting result, satisfying some of the main goals of the problem, such 

as the enhancement of process stability, the minimization of process changes, and the preservation of its 

life cycle.  

However, based on these results, it is not possible to guarantee that the most selected process configurations 

in each period / clinical trial phase, are obtained in the same iteration of the simulation framework. Thus, 

in order to minimize possible misinterpretations of the results, a robustness measure for each process design 

configuration was developed. This measure is computed for the three or four process designs more 

frequently selected in each period, and reflects the percentage in which each process is repeated in more 

than two periods in the same iteration. These results are illustrated in Figure 11 (a2, b2, c2) for products 

under development, and in Figure 12 (d2, e2) for products in commercialization.  
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(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

 
(c1) 

 
(c2) 

Figure 11. Process design selection and solution robustness for the products under development.  

A combined analysis of the two results (frequency histograms and robustness charts) can be used to support 

the decision-making process in a more reliable way. Thus, from this analysis, it seems plausible to consider 

that the process design configuration {R1, F1, D1} is the most suitable for product PA, with one scale-up 

at the end of the clinical trials phase I, from lot 2 (100 kg) to lot 4 (400 kg). Similarly, for product PB, the 

process design configuration {R1, F1, D1} seems to be the most adequate decision for clinical trials phases 

I and II, and {R2, F2, D1} for the last clinical trial phase. Also in this case, one scale-up occurs, but at the 

end of clinical trials phase II, from lot 1 (200 kg) to lot 4 (1600 kg). Finally, for product PC, it seems 

reasonable to consider that the most suitable process design configuration is {R1, F1, D1} for clinical trials 

phases I and II, and {R3, F2, D2} for clinical trials phase III. Again, one scale-up is expected at the end of 

clinical trials phase II, from lot 1 (400 kg) to lot 4 (3200 kg).  

A similar analysis is made for both products in commercialization (PD and PE). For product PD, the best 

process design configuration seems to be {R1, F1, D1}, associated with lot-size 1 (500 kg) for the first two 

periods (corresponding to the first year), and {R3, F3, D3}, associated with lot-size 4 (3000 kg) for the rest 

of the planning horizon. For product PE, the most frequently selected and robust process design 

configuration is {R2, F1, D1} for the entire planning horizon, with one scale-up at the end of time period 

3 (corresponding to the first 2 years), from lot 2 (1000 kg) to lot 4 (3500 kg).  

Additionally, from the analysis of the robustness charts, we can see that in most of the cases, a change in 

the lot size is accompanied by a change in the process design configuration for higher capacity processing 

units. This means that lower capacity units tend to be chosen in the lower product demand periods / early 

stages of development, and the higher capacity units are more frequently selected in the higher product 

demand periods / last stages of development. Moreover, the higher capacity processing units seem to be 
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more frequently chosen for the products already in commercialization. In that sense, the model seems to 

achieve a good trade-off between the capacity of processing units, and both product demand and process 

stability. Moreover, it is clear from the results obtained for the under development products, that process 

design configurations and scale-ups are strongly connected to the success of the clinical trials, this showing 

the relevance of this analysis, that provides reliable information to boost sooner decisions with minimal 

risk. 

 
(d1) 

 
(d2) 

 
(e1) 

 
(e2) 

Figure 12. Process design selection and solution robustness for the products in commercialization. 

When comparing these results to the deterministic case, for the products under development (see table 2), 

we can see that in the earlier stages of development, the process design configurations are very similar (with 

the exception of product PB). This can be explained by the fact that one of the initial assumptions in this 

work was that all the three products enter clinical trial phase I at the same time, and also by the low levels 

of product demand and high capacity availability at this phase. However, moving forward through the time 

horizon, to the clinical trial phases II and III, the differences become significant in terms of capacity 

utilization. It is clear that, in the deterministic case, the decisions tend to benefit higher investments in 

capacity utilization. For example, in phase III, in almost all cases, the model selects two or more processing 

units of the same type in the same period. This reveals the conservative nature of the model that, in order 

not to fail any delivery, tends to oversize both the capacity utilization and the resource allocation. 

Additionally, according to the previous NPV analysis, the “deterministic case” is very unlikely to occur, 

this meaning that this high investment in capacity utilization is most likely not to be needed.  
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Table 2. Deterministic process design results for the under development products  

 Product PA  Product PB  Product PC 

 t Process  t Process  t Process 

P
h

a
se

 I
 0 D1L2_F1L2_R1L2  0 D1L4_F2L4_R1L4_R2L4  0 D1L1_F1L1_R1L1 

1 D1L2_F1L2_R1L2  1 D1L4_F3L4_R1L4  1 D1L1_F1L1_R1L1 

2 D1L2_F1L2_R1L2  2 -  2 D1L1_F1L1_R1L1 

P
h

a
se

 I
I 3 D1L4_F1L4_R1L4  3 D2L4_F2L4_R1L4  3 D1L1_F1L1_R1L1_R2L1 

4 D1L4_F1L4_R1L4  4 D2L4_F2L4_R1L4  4 D2L1_F1L1_R1L1_R2L1 

5 D1L4_F1L4_R1L4_R2L4  5 D2L4_F1L4_F2L4_R1L4  5 D2L1_F2L1_R1L1_R2L1 

P
h

a
se

 I
II

 

6 D1L4_F1L4_R1L4_R2L4_R3L4  6 D1L4_F1L4_F2L4_R1L4_R2L4  6 D2L1_F2L1_R1L1_R2L1 

7 D1L4_F1L4_R1L4_R2L4_R3L4  7 D1L4_F1L4_F2L4_R1L4_R2L4  7 D2L2_F2L2_R1L2_R3L2 

8 D1L4_F1L4_R1L4_R2L4_R3L4  8 D1L4_F1L4_F2L4_R1L4  8 D2L2_F2L2_R1L2_R2L2 

9 D1L4_F1L4_R1L4_R2L4  9 D1L4_F1L4_R1L4  9 D2L2_F2L2_R2L2 

 

In this context, the approach proposed in this work can provide valuable and robust information to support 

the medium and long-term decision-making process, in what concerns production planning and process 

design configurations, for new drug development. Even if this approach does not give a unique specific 

solution to the addressed planning problem, it provides robust guidelines for effective decision making, 

based on several possible solutions, and considering a highly stochastic environment. It also supports the 

evaluation of the available solutions, considering the process design configurations and their maintenance 

throughout the entire life-cycle of the possible new commercial drugs. 

6.2.4. Capacity extensions and inventory analysis 

In the case under analysis, the initial capacity appears to fit the production requirements, since capacity 

extensions over the entire planning horizon are negligible. In fact, the most significant capacity extensions 

occur for the reactors, particularly for unit R1. Figure 13 shows the histogram (a) and the average capacity 

extensions in kilograms (b) for the equipment type “reactor”. The most substantial capacity extension 

occurs in the first period, with a probability of occurrence of just 5.5% in the 1000 iterations, this 

representing an average capacity increase, in the same period, of just 28.5 kg. 

 
(a) 

 
(b) 

Figure 13. Capacity extension for reactors: (a) frequency of occurrence of a capacity extension, and (b) capacity 

extension expressed in average of additional capacity in kg, over the 1000 iterations. 

On the other hand, when analysing the inventory levels shown in Figure 14, we can see these values are not 

significant (except for the initial periods when more capacity is available), when compared to the average 

product demand values presented in Figure 4.  The model not only minimizes the amount stored, but also 

maintains it relatively stable over the entire planning horizon, for all the products (despite the increase in 

product demand over time). Note that for the products under development (PA, PB, and PC), the inventory 

drops to 0.0 kg at periods t=2, t=5, and t=9. This is due to the fact that the leftovers at the end of each 
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clinical trial cannot be reused and therefore they are treated as waste and considered discarded. The average 

of the wastage levels, for each product under development, is shown in Figure 15. 

 
Figure 14. Average levels of inventory over the entire planning 

horizon, for each product. 

 
Figure 15. Wastage levels for the products under 

development, at the end of each clinical trial phase. 

 

These results show that the model is handling well the trade-off between capacity investments and inventory 

requirements. Moreover, since the model minimizes both types of costs, in order to keep a relatively stable 

inventory level over the planning horizon, the additional capacity needs are fulfilled by the smallest and 

cheapest equipment (R1). In this way additional flexibility is added to the plant. Finally, the average values 

of wastage shown in Figure 15 are really not significant, in particular for periods 5 and 9, with values around 

1% and less than 0.5% of the average amount delivered respectively, revealing an efficient resource 

utilization (this aspect deserving to be further explored in future work). Furthermore, according to Figure 

15, the values of wastage are decreasing over the planning horizon, even if the amounts delivered are 

increasing (contrary to the inventory levels that remain relatively stable), this denoting a good wastage 

management by the model.  

7. Conclusion 

This work presents an innovative approach, combining a MILP model and a two-step MCS framework, to 

address the product-launch planning problem, considering uncertainty on the demand and on the pass/fail 

clinical trial tests. The MCS component explores the effects of both types of uncertainty, based on normal 

and Bernoulli distributions, embedded in a two-step sampling procedure. The product-launch planning 

problem is tackled by integrating both process design and planning decisions, and considering the resource 

limitations due to resource sharing among products under development and products already in 

commercialization. A case study inspired on a real situation from the chemical-pharmaceutical industry 

was used to demonstrate the applicability of the proposed approach. This approach has proven to be able to 

efficiently assess the effects of uncertainty in process design and scale-up decisions, as well as in capacity 

and production planning decisions, during new product development. 

The obtained results clearly show the significant influence of the uncertainty parameters on the NPV, on 

the process design configurations, and on the scale-ups, thus strengthening the idea that deterministic 

models undoubtedly lead to poor decision-making. Particularly in new drug development, the decisions on 

process design and on scale-ups are strongly dependent on the uncertainty of pass/fail outcomes of the 

clinical trials. Since these decisions need to be taken before knowing if the new drugs will succeed in all 

the clinical trial phases, they are extremely critical in economic terms. 

The computational results also show that the proposed method is a robust tool to support this decision-

making process, by clearly identifying process configurations and scale-ups that maximize profit, in a 

highly uncertain context. Moreover, the analysis performed in this study can be useful in the long-term 

assessment of the process design configurations and their lifetime management. It also provides valuable 

strategic information for developing solutions that not only maximize the NPV, but also reduce the 

likelihood of the company to undertake process design changes in the future. 
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We believe that one of the main benefits of this model is the provision of valuable and robust information 

in early stages of product development, thus supporting an on-time and better decision-making process. 

Late decisions will therefore be avoided particularly regarding unnecessary or undersized investments, or 

possible future changes in the process design configuration. Additionally, this comprehensive analysis of 

the uncertainty parameters will allow a better coordination between the different decision levels within the 

company, with a clear gain in what concerns decision flexibility. 

Nevertheless, one main limitation of this approach (that is, at the same time, an interesting research 

challenge) is the inability to establish correlations between different process designs, and consequently to 

determine the unique here-and-now solution. As a follow-up of this work, new methodologies are already 

being developed in order to explore these correlations and to enhance the proposed decision-making 

framework. Moreover, the application of the framework in more complex instances will clearly allow us to 

improve the model, and provide a better understanding and exploitation of the proposed methodology. 

Furthermore, a better systematization of the decision-making process, by including other relevant 

uncertainty parameters, such as production yields and processing times, should also be addressed. The 

presented MCS framework proves to be very flexible, allowing the inclusion of additional steps to the 

sample procedure to account for other uncertainty parameters. Some work has already been done by the 

authors regarding this matter, particularly with the inclusion of uncertainty in processing times. However, 

additional uncertainty parameters inevitably increase the computational time, and several alternative 

solution approaches should be explored in order to minimize this weakness. Finally, further extensions of 

the model should be considered, to fully explore relevant sustainability aspects, such as waste management 

and efficient resource utilization, as these issues are rather critical in the pharmaceutical industry. 
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 Table 2. Deterministic process design results for the under development products   

  Product PA  Product PB  Product PC 

  t Process   t Process   t Process 

 

P
h

a
se

 I
 

0 D1L2_F1L2_R1L2  0 D1L4_F2L4_R1L4_R2L4  0 D1L1_F1L1_R1L1 

 1 D1L2_F1L2_R1L2  1 D1L4_F3L4_R1L4  1 D1L1_F1L1_R1L1 

 2 D1L2_F1L2_R1L2   2 -   2 D1L1_F1L1_R1L1 

 

P
h

a
se

 I
I 

3 D1L4_F1L4_R1L4  3 D2L4_F2L4_R1L4  3 D1L1_F1L1_R1L1_R2L1 

 
4 D1L4_F1L4_R1L4  4 D2L4_F2L4_R1L4  4 D2L1_F1L1_R1L1_R2L1 

 
5 D1L4_F1L4_R1L4_R2L4   5 D2L4_F1L4_F2L4_R1L4   5 D2L1_F2L1_R1L1_R2L1 

 

P
h

a
se

 I
II

 

6 D1L4_F1L4_R1L4_R2L4_R3L4  6 D1L4_F1L4_F2L4_R1L4_R2L4  6 D2L1_F2L1_R1L1_R2L1 

 
7 D1L4_F1L4_R1L4_R2L4_R3L4  7 D1L4_F1L4_F2L4_R1L4_R2L4  7 D2L2_F2L2_R1L2_R3L2 

 
8 D1L4_F1L4_R1L4_R2L4_R3L4  8 D1L4_F1L4_F2L4_R1L4  8 D2L2_F2L2_R1L2_R2L2 

 9 D1L4_F1L4_R1L4_R2L4   9 D1L4_F1L4_R1L4   9 D2L2_F2L2_R2L2 

          

 

 

 


