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We have obtained spectral broadening by pumping a nonmicrostructured highly nonlinear fiber with a continuous
wave signal from a Raman fiber laser. The experiment was simulated using a generalized Schrödinger equation
containing the actual Raman response of the fiber as calculated from the experimental Raman gain. A different
input-noise model, that reproduces well the power spectral density of the laser, was used and compared with
others previously proposed. © 2013 Optical Society of America

OCIS codes: 060.4370, 060.3510, 190.5650.

1. INTRODUCTION
The phenomenon of supercontinuum generation (SCG) con-
sists of an extremely wide spectral broadening of a light signal
during its propagation on a nonlinear medium. The research
on SCG in optical fibers has started in the early 1970s [1] but
only in the late 1990s, with the advent of photonic crystal
fibers (PCFs) and the possibility of designing dispersion
and obtaining high nonlinearities according to the available
laser pumps, has it reappeared with all its strength. Despite
the intense research that followed these new SC experiments
using PCFs [2], it still attracts much attention from fundamen-
tal and applied viewpoints [3–5]. Moreover, the ultrawideband
spectrum generated by the SC has been successfully utilized
in several applications, such as optical frequency metrology
[6], generation of ultrashort optical pulses [7], photonic time
stretch analog-to-digital conversion [8], spectroscopy [9], and
optical coherence tomography [10].

The SCG has been obtained from ultrashort pulses in the
femtosecond regime, from long pulses that are typically in the
picosecond regime or even from continuous wave (CW) signals.
In the femtosecond regime, the pulses are usually launched in
the anomalous region of dispersion and the SC is mainly the
consequence of fission of higher-order solitons followed by
soliton self-frequency shift, and amplification of dispersive
waves [11,12]. In the CW regime and anomalous group velocity
dispersion (GVD), the first stages of spectral broadening are
achieved by modulational instability (MI) that is equivalent
to a noise-induced four-wave mixing (FWM). The MI is respon-
sible for the breakup of the CW into solitons, and from that
stage on the mechanisms are identical to the ones in femtose-
cond pumping [13–15]. In both the anomalous and normal GVD,

the CW signals may develop a Stokes spectral band caused by
stimulated Raman scattering (SRS) seeded from noise [16].

Only a few kinds of pulsed lasers are able to generate
several watts of average output powers. On the other hand,
modern CW lasers such as cascaded Raman fiber lasers can
generate signals with several watts and can be easily fabri-
cated. The CW lasers do not benefit from the high peak-
to-average power ratio of pulsed lasers; therefore, longer
interaction lengths are required to produce SC, even when
highly nonlinear fibers (HNLFs) are used [17]. In the ultra-
short pulsed case, a few meters is usually sufficient and the
produced SC is much wider and much more coherent than
in the CW pumping schemes. However, for similar spectral
widths, CW SC have a higher average power and exhibit a
higher power spectral density than pulsed SC [15].

Here, we have used a cascaded Raman fiber laser to pump
in the normal GVD region of a nonmicrostructured HNLF.
To further study the observed spectral broadening and antici-
pate better experimental configurations, we have also done a
careful numerical simulation. Even though the challenges of
simulating the dispersive and nonlinear propagation of pulses
in optical fibers are reasonably standard using a generalized
nonlinear Schrödinger equation (GNLSE), the propagation of
CW signals is not yet well studied. The GNLSE is also suited
for CW propagation; however the CW signal has to be tempo-
rally truncated in order to fit in the numerical window and a
proper averaging has to be made if we want to simulate the
integration times of the optical spectrum analyzers. Moreover,
since the nonlinear effects that lead to the SCG in the CW re-
gime are essentially noise seeded, an adequate noise input
model is also indispensable. Several attempts to do so have
been previously considered, namely, the addition of one
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photon per mode [14], the consideration of random spectral
phase [15], or random phase noise [13,18,19]. Other models,
that are computationally more demanding, simulate the actual
laser system in order to obtain the temporal output profile as
the simulation of a cascaded ASE source [5] or an ytterbium
fiber laser [20]. The main contributions of our work are the
numerical simulations that use a new noise input model
with both random spectral amplitude and phase following the
approach presented in [21]. Moreover, the Raman gain of the
fiber was measured and the respective Raman response func-
tion was used in the numerical simulations.

This paper is organized in four sections. In Section 2, we
present the experimental setup and results. In Section 3,
we present the propagation equation and numerical methods
used, and in Section 4 we present the simulation results cor-
responding to the experimental results but also for higher
pump powers. Finally, we conclude in Section 5.

2. EXPERIMENTAL RESULTS
The experimental setup used to generated SC is schematically
shown in Fig. 1. In this experimental setup, a continuous
signal from a Raman fiber laser (IPG, model RLR-10-1480)
emitting at 1480 nm, with a depolarized single mode output and
a maximum optical power of 10 W, is launched into 800 m of
HNLF whose zero-dispersion wavelength (ZDW) is at 1531 nm,
with a dispersion slope of 0.01818 ps km−1 nm−2, nonlinear
coefficient γ � 10.5 W−1 km−1, as measured using the techni-
que referred to in [22], and an attenuation of αdB � 3.15 dB∕km
at 1495 nm. The spectrum of the Raman fiber laser for 1 W is
shown in Fig. 2. The zero-dispersion wavelength, the dispersion
slope and the attenuation of the fiber were measured with an
Optical Network Analyzer, 86038-90B01 from Agilent.

The output spectra was measured by an Optical Spectrum
Analyser (OSA), Advantest Q8384 from Agilent, after being at-
tenuated by 10 dB. The results for different input power levels
are shown in Fig. 3. Due to power limitations of the OSA and

available attenuators, the maximum injected optical power
was 2 W. All the spectra have a hump centered around
1580 nm that is easily recognized as the Stokes band of the
SRS since it is frequency shifted from the pump by 13 THz.
In fact, the onset of this Stokes spectral band was already re-
ferred as the dominant effect on SCG pumped with CW signals
in the normal dispersion [23,24]. The Stokes band for the input
power of 2 W has a long wavelength tail and, since it lies in the
anomalous GVD, that may indicate the generation of solitonic
kind of pulses that then red-shift by intrapulse Raman scatter-
ing. The spectral level in between the pumps and the Stokes
band is relatively higher and it may be explained by FWM ef-
fects since it lies in the ZDW region of the fiber where phase
matching is obtained more easily.

In order to use the actual Raman response of the fiber, the
Raman gain was measured. Figure 4 shows the Raman gain
coefficient over the mode effective area as obtained from
Raman decibel gain measurements with pump on and pump
off, G, through the relation [25]

G�Ω� � 10 log10
Pon�f �
Poff�f � �

4.343gRP0Leff

kAeff
; (1)

where Pon�f � is the power at frequency f � f pump � Ω ob-
tained with the pump signal on and Poff�f � with the pump

OSALaser HNLFIsolator VOA

Fig. 1. Experimental setup.

Fig. 2. Power spectrum density of the Raman fiber laser (black
dashed line) and its numerical reproduction using the Van-noise
(gray line).

Fig. 3. Spectral output after propagation in 800 m of the HNLF for
several input powers.

Fig. 4. Raman gain coefficient over effective area of the fiber versus
frequency shift.
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signal off. The input power pump is P0 and k is a parameter
that accounts for the polarization state of the pump; it is 1 for
linearly polarized pump and 2 for depolarized pump. Leff is the
effective length given by Leff � �1 − exp�−αL��∕α, where L is
the fiber length.

3. NUMERICAL MODEL
A. Propagation Equation
In order to simulate the propagation of the depolarized CW
signal along the fiber, we have used two coupled GNLSEs
as follows [25–27]
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which is the propagation equation for the signal envelope Ax

of the optical field. A similar equation stands for component
Ay. The amplitudes Ax and Ay represent the polarization com-
ponents of the optical field in units of square root of power; z
and t are the propagation distance and a retarded time that
propagates at the group velocity which is assumed equal
for both polarizations; βi (i � 2; 3) are the dispersion para-
meters given by ∂iβ∕∂ωi where β is the propagation constant
at the central frequency ω0 and α is the loss coefficient. The
nonlinear response is of two different kinds, the Kerr response
that is an instantaneous response and the Raman response
that is noninstantaneous. The nonlinear parameter γ is given
by γ � ω0n2∕cAeff where n2 is the nonlinear refractive index, c
is the vacuum light velocity, and Aeff is the optical mode ef-
fective area. The nonlinear parameter embraces both Kerr and
Raman responses and f R is the ratio of Raman nonlinear para-
meter γR and γ, i.e., f R � γR∕γ. The functions ha�t� and hb�t�
are nonzero only for t > 0 and normalized such that their total
integral over t is unitary. The imaginary part of their Fourier
transforms may be directly obtained from the parallel and
perpendicular Raman gain [27,28]

g∥
Aeff

� 2γR Im�f a ~ha�Ω� � f b ~hb�Ω��;
g⊥
Aeff

� γRf b Im� ~hb�Ω��:

The parameters f a and f b obey the relation f a � f b � 1. Note
that for large pulses the convolution is approximately of the
same form as the Kerr term such that, if the light is linearly
polarized, we obtain a term of the form γjAxj2Ax.

Since we have only experimental data for the total Raman
gain, we surpass this difficulty by assuming that the perpen-
dicular Raman gain is negligible, i.e., f b � 0 and f a � 1, in
which case the above equation reduces to
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and ha�t� and f R can be evaluated from the experimental Raman
gain data that we present in Fig. 4. In fact, the imaginary part of
the Fourier transform of ha�t� may be obtained as follows:

gR�Ω�
Aeff

� 2γR Im� ~ha�Ω��; (4)

where the real part of ~ha�Ω� was obtained using a Hilbert trans-
form and ha�t� by an inverse Fourier transform (see Fig. 5). An
unitary full integral for ha�t� was guaranteed and the γR and
consequently f R were evaluated. The parameters of the fiber at
λ � 1480 nm are compiled in Table 1.

B. Input-Noise Model
We have done a preliminary study using noise as dictated
by the one photon per mode model [14] and the standard
phase-diffusion model [13,18] that retrieves a Lorentzian spec-
trum. However, those models do not reproduce the power
spectral density of the actual laser or the output power spec-
tral density, as may be observed in Fig. 8. Thus, and through-
out the rest of the work, we used random spectral amplitude
and phase following the approach presented in [21], which
may replicate any power spectrum density irrespective of
its theoretical or experimental nature. Moreover, we compare
the results with the ones for random inputs with similar char-
acteristics, that is, also exhibiting amplitude and phase fluc-
tuations and having a given power spectral density, but
originating from an adjustment of the phase-diffusion model
[19]. In this paper, we will call these two latter types of input-
noise model by Van-noise and F-noise, respectively.

The model based on [21] was already used by one of the
authors in another context [29] and is here sketched. Let
us suppose that our CW signal emits linear depolarized light
possessing a power spectral density given by G�ω� and that
may be decomposed into two equal amplitude polarizations.
This signal may be modeled as a collection of a large number
of independent radiators, each emitting at certain frequency,
with a certain phase and amplitude. By taking the optical field
of the radiator j emitting at ωn to be

Aj exp�−iωnt� iϕj�;

the total optical field at frequency ωn is

An�t� �
X
j

Aj exp�−iωnt� iϕj� � Zn exp�−iωnt�;

with

Zn � an � ibn �
X
j

Aj�cos ϕj � i sin ϕj�:

Assuming that the phase is uniformly distributed in the
interval �0; 2π� and that the number of radiators emitting
at ωn is large, an and bn are independent Gaussian ran-
dom variables with zero mean and variance given by
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σ2n � ā2n � b̄2n � G�ωn�Δω∕2. The total field is given by the
sum of the optical field for every frequency, that is

A�t� �
XN∕2

n�−N∕2
Zn exp�−i�ω0t� nΔωt�� � ~Z�t� exp�−iω0t�

where ~Z�t� and Zn are Fourier transforms of each other,
such as

~Z�t� �
XN∕2

n�−N∕2
Zn exp�−inΔωt�:

Hence, we have started with the power spectral density of our
Raman fiber laser as represented in Fig. 2 and generated two
sets of random numbers with a Gaussian distribution with
zero average and unitary variance. Then, we transform them
to an and bn according to ā2n � b̄2n � G�ωn�Δω∕2. Finally, we

Fig. 5. Normalized Raman (a) spectral and (b) temporal responses.

Fig. 6. Example of power profiles for an average power of 1 W: (a) Van-noise, (b) F-noise with Lorentzian linewidth equal to the estimated
linewidth of the Raman laser PSD, and (c) F-noise with linewidth 10 times larger.

Fig. 7. Phase profiles of the signals whose power profiles are shown in Fig. 6.

Table 1. Fiber Parameters for λ � 1480 nm

β2 (ps2 km−1) β3 (ps3 km−1) γ (W−1 km−1) f R α (Npkm−1) L (m)

1.09 0.0229 10.5 0.293 0.725 800
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obtained the optical amplitude in time, ~Z, applying a Fourier
transform to Zn. The amplitude ~Z�t� is proportional to the am-
plitudes Ax and Ay in Eq. (3). We have used different random
noise for each of the field polarizations. In the same Fig. 2, the
curve labeled as numerical was obtained by averaging 10 in-
put random signals created with this noise-input model.
Graphs in Figs. 6(a) and 7(a) show the intensity and phase
of one run of this noise model.

As mentioned above, the F-noise originates from random
inputs obtained from the phase diffusion model. According

to this model, the random signal is a constant amplitude signal
with a phase that is the integral of random frequency fluctua-
tions. The random frequency is assumed to be a zero mean
Gaussian white noise, with a variance that depends on the
laser linewidth and the bandwidth associated with the finite
numerical time and frequency windows considered [18]. As
a result, the random signal has a Lorentzian power spectrum
shape, with the same linewidth as the CW laser. Then, this
Lorentzian power spectrum can be reshaped into any desired
form, allowing the exact reproduction of the power spectral
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Fig. 8. Input and output spectra for 2 W and two input noise models: (a) PDM (phase diffusion model) and (b) OPPM (one photon per mode).
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Fig. 9. Comparison of experimental and numerical results using both Van-noise and F-noise for (a) 0.9 W, (b) 1.4 W, and (c) 2.0 W. F-noise was
used with two choices for the width of the backing Lorentzian.
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density of any source [19]. Note that, by exact reproduction,
we mean that every random input signal has exactly the same
power spectral density that is equal to the original that we in-
tend to reproduce. It should be pointed out that the reshaping
process of the Lorentzian power spectrum also implies a
change in the temporal characteristics of the random signal,
with this signal no longer possessing constant amplitude but,
instead, exhibiting fast fluctuations in both amplitude and
phase. Moreover, as Figs. 6(b), 6(c) and 7(b), 7(c) show,
the amplitude of these rapid oscillations strongly depends
on the similarity between the linewidths of the intermediate
Lorentzian spectrum and of the final power spectrum. This
suggests that a careful choice of the Lorentzian linewidth is
required in order to correctly model a given power spectrum.

The numerical simulations were done on a temporal win-
dow of 1.3 ns with 218 discrete points. The power spectrum
densities were estimated using the periodogram smoothed
over 16 adjacent discrete frequencies and averaged over 10
different simulations with different random noise in order
to emulate the OSA integration times.

4. COMPARISON OF EXPERIMENTAL AND
NUMERICAL RESULTS
The numerical results are compared to the experimental
results in Figs. 8 and 9. Figure 8 compares the experimental

output spectra for input power of 2 W with the results of si-
mulations using one photon per mode and the standard phase
diffusion model. Both simulated spectra exhibit the Stokes
band but their profiles differ significatively from the experi-
mental profile. Moreover, the result obtained with one photon
per mode shows a power level that is 35 dBm lower than the
experimental one. The agreement is substantially increased if
the F-noise and Van-noise are used. Generally, the transfer of
power from the pump at 1480 nm to the Stokes band is larger
in the numerical results. For the input power of 0.9 W, all the
numerical results conform with the experimental Stokes
band, but the curve correspondent to the F-noise that uses
a backing Lorentzian spectrum with the same width as esti-
mated on the experimental spectrum is closer to the experi-
mental power level. On the other hand, for larger input powers
1.4 and 2 W, this same input-noise model gives the output
spectra that most disagree with the experimental one. The
F-noise using a Lorentzian 10 times larger than the laser spec-
trum and the Van-noise give identical results and the agree-
ment is especially good for 2 W. Another feature of the
output spectra that is present in the numerical results and ab-
sent from the experimental results is a depression around
1380 nm. The depression in the numerical results may be un-
derstood as inverse Raman scattering, that is, the absorption
of radiation that has frequencies in the anti-Stokes band. Our
explanation for the absence of this feature in the experimental

Fig. 10. Example of input and output power profiles for the Van-noise and (a) 0.9 W and (b) 2 W. The line correspondent to the input is somehow
hidden behind the output line.

Fig. 11. Spectral evolution and final spectrum as simulated for a Van-noise input power of 6 W and 800 m of the HNLF.
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output spectrum is the occurrence of parametric amplification
of this anti-Stokes band in a process similar to the one de-
scribed in [30] and that may be phase matched in the actual
fiber. Note that the numerical simulations use dispersion
coefficients up to third order consistent with dispersion data
that was experimentally obtained in the wavelength range
1495–1640 nm. In fact, the experimental dispersion in this
wavelength range is well fitted to a line, but the dispersion
curve is possibly significantly different from this line outside
this wavelength region. It may be the case that the actual
linear phase mismatch between the anti-Stokes band and
the pump is similar to the nonlinear mismatch contribution,
such that parametric amplification balances inverse Raman
scattering and the anti-Stokes band stays at the same level
as its surrounding. The fact that the difference in power
density at this band on numerical and experimental results
is power dependent is in favor of our argument.

In Section 2, we indicated that the larger Stokes band for
larger input powers should be due to the generation of soli-
tons. In order to support that hypothesis, we have observed
the temporal output profiles for 0.9 and 2 W. Example of those
profiles are shown in Fig. 10. In fact, for 2 W, the intense peaks
are much more frequent than in the 0.9 W case.

We have further increased the pump power in the simula-
tions and achieved reasonable output power covering the
C � L telecommunication bands using input power of 6–7 W.
The spectral evolution of the signal for an input power of 6 W
is shown in Fig. 11(a) and the output spectra in Fig. 11(b). For
input powers larger than 7 W (up to 10 W), the simulations
showed that the spectral regions benefiting from that would
be outside the telecommunication wavelength region.

5. CONCLUSIONS
We presented experimental data showing spectral broadening
as result of propagation of a CW signal on a HNLF in the nor-
mal dispersion regime. The experiment was simulated using
coupled GNLSEs using dispersion coefficients, nonlinear
parameter, and the actual Raman response of the fiber that
were experimentally determined. Also, the CW signal in the
time domain was estimated using various input-noise models.
Two of those models reproduce the actual power spectral
density of the laser and provided better agreement with the
experimental results. Among those two, the one proposed
here for SCG simulations has been shown to be less arbitrary
since it does not depend on the characteristics of any backing
Lorentzian spectrum. The output spectra obtained with this
input-noise were reasonably close to the experimental results.
The model was also used to predict further enhancement of
the spectral broadening for other experimental conditions.
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