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Abstract—Real-time monitoring applications deployed in Low-
power and Lossy Networks may generate flows sensitive to delay,
where the information is useful for the destination only if it is
received within a strict delay boundary. Data packets that will
likely miss the application deadline could be discarded during
their routing through the network or even be not transmitted at
all, thus contributing for a better usage of the network resources.

This paper presents RA-EEDEM, a set of modifications made
to RPL that improve the End-to-End Delay (EED) estimation
accuracy. The RA-EEDEM modifications include changes to the
RPL metrics and to its Objective Function (OF). The results show
that RA-EEDEM improves the accuracy of EED estimation while
minimizing its impact on the average EED and Packet Reception
Ratio (PRR).
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I. INTRODUCTION

Real-time monitoring applications can be deployed in Low-
power and Lossy Networks (LLNs). These applications are
expected to generate real-time data flows that may require
different levels of service from the network. In the case of
delay sensitive flows the transported data is assumed to be
useful for the destination only if it is received within a strict
delay boundary, and useless otherwise. Let us assume a LLN
where application A running on node 1 sends a data packet
to its peer in node 2, and that this data packet must reach the
application in node 2 within a maximum delay of 150 ms. If
node 1 estimates a delay of 300 ms on the path to node 2 it may
avoid the transmission of this packet. Since the nodes used in
a LLN have low processing resources and energy constraints,
the discard of this useless packet contributes in fact for the
enhancement of the overall network performance and for the
efficient use of the deployed resources. Thus, it is important
to obtain the most accurate application-to-application delay
estimation in order to correctly identify the data packets that
will likely miss their applications deadlines.

In a previous work [1] we proposed an End-to-End Delay
Estimation Mechanism (EEDEM) used for delay sensitive
monitoring applications in a Wireless Sensor Network (WSN).
EEDEM estimates the End-to-End Delay (EED) based on
the internal delay experienced by previously sent packets and
delay information from other nodes through the use of Routing
Protocol for Low-power and Lossy Networks (RPL). EEDEM
depends on the RPL operation; a high refresh rate of routing

messages increases the estimation accuracy but it also increases
the RPL overhead causing EED to become less predictable.

This paper presents RPL Adaptation for EEDEM (RA-
EEDEM) aimed to improve the EED estimation accuracy and
minimize the impact on the average EED and PRR. RA-
EEDEM includes changes to the RPL metrics and its OF
procedures. This work was carried out in the scope of the
SELF-PVP project [2] that aims to increase the efficiency of
a photo voltaic power plant where solar panels communicate
with each other using a WSN in a grid topology.

The structure of this paper is as follows. Section II identi-
fies the related work. Section III describes the basic operation
of RPL. Section IV describes RA-EEDEM proposal. Section
V presents the simulation environment used to validate the
current proposal. Section VI discusses the obtained results.
Section VII concludes paper.

II. RELATED WORK

The real-time estimation of EED can be performed using
active probing (using specific messages and protocols) or using
feedback information delay obtained from normal data traffic
or routing protocol messages [3]. Using probe packets to
perform EED estimation in LLNs introduces additional traffic,
contributing to higher energy consumption and higher loads
offered to the network.

An overview of EEDEM, proposed in [1], is presented
in Fig. 1. EEDEM estimates per-packet EED based on EED
experienced by previous data packets sent along the path from
the senders application layer to the destination’s application
layer. Nodes account internal delays and each node uses RPL
[4] to transmit the delay values of the other nodes on the path
from the sink to the generator node. When a generator node i
has to send a packet to a sink s, it performs an EED estimation
based on the collected information. The node internal delays
include the Internal Processing Delay (IntProcD) which is the
time elapsed while the packet is processed within the stack
of the generator node, and the Internal Link Delay (IntLinkD)
which is the time elapsed in MAC layer queuing and packet
transmission to the next intermediate node. The RPL feedback
consists of two different metrics: the Processing Delay Metric
(ProcDelayM), which represents the cumulative processing
delays up to the sink, and the Path Delay Metric (PathDelayM)
which represents the cumulative link delays up to the sink.
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Thus, the generator node i estimates the EED towards the sink
s for the next packet n, with information given by a preferred
parent p using:

EstimatedEEDn
is = EEPathDn−1

ips + EEProcDn−1
ips (1)

where:

EEPathDn−1
ips = IntLinkDn−1

ip + PathDelayMps (2)

EEProcDn−1
ips = IntProcDn−1

ip + ProcDelayMps (3)

The RPL metrics above are additive and set to enable
routing decisions related to the lowest delay. These metrics are
also used to transport the delay information in reverse direction
of the data flow in order to enable real-time EED estimation.
Such mode of operation makes this EED estimation mecha-
nism highly dependent on the routing protocol operation. The
combination of these metrics with the standard RPL operation
introduces undesired overhead, which was not studied in [1].
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Fig. 1. EED estimation mechanism overview

Other research efforts evaluate RPL performance and pro-
pose modifications to improve its operation under specific
scenarios. In [5] authors present a performance study focused
on RPL improvements and its use in real-life scenarios. In
[6] is presented an experimental evaluation of RPL in terms
of delivery ratio, control packet overhead, dynamics and ro-
bustness, using large scale testbeds. In [7] are proposed two
adaptive algorithms to the control RPL Destination Advertise-
ment Option (DAO) messages in order to reduce congestion
and packet drops in Urban LLNs.

III. RPL OPERATION

RPL [4] is a routing protocol defined by IETF Routing
Over Low-power and Lossy networks (ROLL) working group.
RPL is defined for LLNs where devices have processing power,
memory and energy constraints. Multiple instances of RPL
may run in a single network; in each instance, the nodes
are organized into a tree named Destination-Oriented Directed
Acyclic Graph (DODAG), or simply DAG. Each DAG has a
root where all paths terminate. The DAG formation is done
according to an OF that defines how the used routing metrics
are translated into a rank. The values in rank represent the
nodes position up to the DAG root and in relation to the
remaining nodes.

A. RPL Control Messages

The DAG Information Solicitation (DIS), DAG Information
Object (DIO), and Destination Advertisement Object (DAO)
messages are used to create and maintain the routing informa-
tion in each node. Other messages are also defined but these
are considered out of the scope of the current proposal. Fig. 2
shows the RPL control messages dynamics.
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Fig. 2. RPL control messages and data flow dynamics

In order to form a DAG, the DAG root multicasts DIO
messages, carrying information of the RPL instance and DAG
configuration parameters. This enables the joining of nodes to
the DAG, the selection of a parent and participation in the
DAG. Instead of waiting to receive the next DIO message,
nodes wanting to join an already formed DAG can multicast
a DIS message, requesting information (DIOs) from the other
RPL nodes. After receiving a DIO from a candidate parent, the
node calculates the cost of the path to reach this parent and to
the DAG root, taking into account the path cost information
received in the DIO. When multiple candidate parents exist,
a preferred parent is elected based on the lowest cost to the
DAG root. After joining a DAG, the node can start sending or
forwarding data, in upwards direction, towards the DAG root.

Although RPL was designed to support multipoint-to-point
(MP2P) upwards communications between multiple devices
and the DAG root, point-to-multipoint (P2MP) and point-to-
point (P2P) communications are also supported in reverse
direction. In order to support downward routes, unicast DAO
messages can be sent from a child to a preferred parent in order
to propagate destination information (addresses and prefixes)
in upwards direction.

B. Routing Metrics and OF

All the nodes in a given DAG are configured to support
a set of metrics. The values of these metrics are transported
through the DAG Metric Container option within the DIO or
DAO messages. In [8], the ROLL working group proposes a
set of routing metrics, managed by IANA. These metrics can
be additive, maximum, minimum or multiplicative.

Within a given DAG, the OF defines how the metrics
are converted into a rank value, i.e. a value representing the
distance/cost to the DAG root. The OF also defines how a
node selects its parents. In this context, up to now, the ROLL
working group has defined two OF: OF Zero (OF0) [9] and
Minimum Rank with Hysteresis OF (MRHOF) [10]. In OF0
a node will always choose the parent with the lowest rank.
In MRHOF the decision to change parents depends not only
on the lowest rank but also on a hysteresis value. Nodes will
switch to a new parent if its rank is lower than the current one
by at least a given hysteresis value.
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IV. RA-EEDEM PROPOSAL

RA-EEDEM is based on a set of RPL modifications that
were applied and tested within ContikiRPL [11], an open-
source RPL implementation integrated in the ContikiOS [12].
ContikiRPL was used with the uIPv6 stack [13] and, at layer
2, with CSMA and ContikiMAC [14].

Since routing protocol overhead has impact in EEDEM
results, RA-EEDEM aims to balance the rate of RPL control
messages. High rates, namely those providing feedback of the
delays in downwards direction, will allow for higher estimation
accuracy. Since these control messages compete with data
messages for the available network resources, high rates of
control messages cause the undesirable effect of increasing
the average EED of data packets and degradation of their
PRR. The envisioned real-time application supporting RA-
EEDEM proposal is assumed to only generate data packets
in upwards direction towards the DAG root. Thus, the RPL
support for downward routes was disabled and DAO messages
were suppressed. Also, node mobility was not considered thus
DIS messages were neglected since they are only sent during
an initial phase, before nodes join the DAG. Our work focused
on balancing the rate of the DIO messages, taking into account
the following conditions presented by order of importance:

• Maintain the regular routing process for the data
packets - The RPL function and stability should not
be compromised.

• Assume no specific application data rate - Prior to
the deployment, the application data rate is taken as
unknown.

• Maximize the accuracy of EED estimation - Improve
EED estimation reducing the overhead of the routing
protocol.

• Minimize the impact on performance - Minimize the
impact on average EED and on PRR performance.

Since application data rate is taken as unknown, the default
configuration regarding DIO messages was not changed and
the values defined in ContikiRPL were used. DIO messages
are sent downwards and are mainly used to transport routing
metrics. Such metrics will then be used by OF in order to
select the preferred parent, from a set of candidate parents.
The metrics already defined in EEDEM (namely PathDelayM
and ProcDelayM) are dynamic metrics and assume values
with a millisecond precision which may cause fast oscillations
on parent selection. Since parent selection instability imposes
higher generation rate of DIO messages, the selection of best
parent procedure was changed. This procedure is recursive and
tests all the candidate parents within sets of two candidate
parents (p1 and p2), returning the best one in each round.
After testing multiple pairs of candidate parents this proce-
dure outputs a Preferred Parent (PP). The preferred parent is
recurrently compared with new pairs of candidate parents.

An overview of the adopted procedure to select best parent
is shown in Fig. 3. The first condition imposes this procedure
to select parents with existing ProcDelayM values in favor of
parents without ProcDelayM. This allows all nodes to quickly
obtain processing delays, and thus improve estimation and
reduce convergence time. After that, a Total Delay Metric

(p1==PP) || (p2==PP)
false

best_parent (p1, p2)

(p1→ProcDelayM == 0)
&& 

(p2→ProcDelayM > 0)

true

HystV = hysteresis(PP→TotalDelayM)

return p2 

p1→TotalDelayM = p1→ProcDelayM + p1→PathDelayM

p2→TotalDelayM = p2→ProcDelayM + p2→PathDelayM

false

(p1→ProcDelayM > 0)
&&

(p2→ProcDelayM == 0)

false

true

return p1 
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true
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<
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<

PP→TotalDelayM – HystV
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false

true false
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Fig. 3. Selection of best parent procedure

(TotalDelayM) for each tested parent is calculated. If neither
of parents is the preferred parent, this procedure returns the
parent with lowest TotalDelayM. If one of the parents is the
preferred parent, a latter comparison is performed using a
hysteresis value (HystV) returned by the hysteresis function
presented in Algorithm 1. The HystV depends on the nodes
EED Rough Estimation (EED RE), towards the DAG root. In
order to obtain this rough estimation a new metric, the Hop
Count Metric (HopM) was added to those already defined.
Thus, the EED RE is obtained using HopM multiplied by a
constant value K that is assumed to be the worst transmission
delay value per hop experienced by a sender node. The K
value is obtained using a constant value of 125 ms, which is
the default receiver wake-up interval defined in ContikiMAC
[14] and multiplied by 2 to include MAC queue delay. The
graph of the hysteresis function is presented in Fig. 4. If the
PP→TotalDelayM is less than EED RE, a negative slope line
is used. Otherwise, the minimum hysteresis (MH) is assumed
to be 50 ms. The lower the PP→TotalDelayM value is, the
higher the HystV will be, making the parent change less
probable. Since a parent change will reset the DIO message
timer, this algorithm controls the rate of DIOs in the network
and avoids parent selection instability. In order to provide

Algorithm 1: Hysteresis function
hysteresis(TotalDelayM){
K = 250;
EED RE = K× HopM;
if(TotalDelayM < EED RE){

HystV= (EED RE
2 )−MH

0−EED RE ×TotalDelayM + EED RE
2 ;

}else{HystV= 50;}
return HystV;}

more accurate metrics to the remaining nodes, with delay
information that starts from the DAG root, minor changes were
also applied to the update metric procedure, which updates
the metrics that are used in the DIOs. As a result, each node
will only advertise its metrics (ProcDelayM, PathDelayM and
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HopM) if these are already available from its preferred parent.
Whenever a node receives the metrics from a parent in a metric
container, it should assume that all metric values account the
entire path to the DAG root.

V. SIMULATION ENVIRONMENT AND SETUP

RA-EEDEM was evaluated in a grid topology, shown in
Fig. 5 which is a simplification of the scenario used by the
SELF-PVP project, within an area of 100 m2. Two types of
nodes were considered: the generator/forwarder node (a node
that generates and forwards packets) and the sink node (DAG
root).
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The Cooja simulator [15] was used. Each node was simu-
lated as a Tmote Sky [16]. IEEE 802.15.4 MAC and PHY layer
specifications were applied using a transmission range of 30 m
and the Unit Disk Graph Medium as physical channel model.
The nodes ran the Contiki OS 2.5 and were programmed
to enable both the debug of application and RPL messages.
The application layer used UDP and it generates packets of
100 Bytes in a constant bit rate implemented with a constant
Inter-packet Generation Interval (IGI). Simulations were con-
figured to stop whenever the sink received 200 packets from
each node. Simulations were repeated 10 times using random
seeds. The EED estimations obtained with RA-EEDEM were
tested against EEDEM solution [1] and an ETT-based solution
where RPL was configured to use the ETX metric. The latter
assumes that the EED is estimated using Eq. 4, where ETX
is the expected number of transmission attempts required for
successfully transmitting a packet, S is the packet size, and D
is the data rate of the link.

ETT = ETX × S

D
(4)

The simulator was configured to output the instant of time
when a packet is generated and when the packet reaches the
destination application. In order to characterize the accuracy
of the EED estimation, when a packet is generated an EED
estimation is performed, saved, and later compared with the
real EED. The absolute value of the difference between the
estimated EED (estEED) and the real EED (realEED) is

normalized to realEED, as presented in Eq. 5. The result is
given by EED Relative Estimation Error (RE Error).

RE Error(%) =
|estEED − realEED|

realEED
(5)

The RE Error of all data packets was accounted during
each simulation. When the simulation ends, the average and
the standard deviation of those errors were obtained.

VI. RESULTS AND ANALYSIS

Fig. 6 shows the average and the standard deviation of the
RE Error for the three solutions (see previous Section) using
different IGIs. The results show that the Average RE Error
tends to be higher for shorter IGIs. For IGIs larger than 2
seconds, both RA-EEDEM and EEDEM solutions present an
Average RE Error lower than that obtained with the ETT-
based solution. For an IGI equal or larger than 3 seconds, RA-
EDEM and EEDEM present estimation errors (values ranging
from 50% to 60%) lower than the estimation error from the
ETT-based solution (values ranging from 85% to 90%). RA-
EEDEM presents errors which are 35 percentage points (pp)
below the estimations obtained by the ETT-based solution, and
5pp below the values obtained by the EEDEM.

Fig. 7 shows the average number of RPL packets generated
per node and per simulation. The results show that for IGIs
of 1 second all solutions generate almost the same number
of RPL packets. For IGIs larger than 1 second, the ETT-based
solution uses a lower number of RPL packets, when compared
with the other two solutions. When comparing RA-EEDEM
against EEDEM, RA-EEDEM presents a lower number of RPL
messages in all circumstances. Combining the results from Fig.
6 and Fig. 7, we can conclude that RA-EEDEM provides a
more accurate EED estimation while reducing the overhead
of the routing protocol. Fig. 8 shows the average EED for

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20A
ve

ra
ge

 R
el

at
iv

e 
E

E
D

 E
st

im
at

io
n 

E
rr

or
(%

)

Inter-packet Generation Interval (s)

Average Relative EED Estimation Error

ETT-based Solution
EEDEM

RA-EEDEM

Fig. 6. Average EED Relative Estimation Error

all solutions. The results show that RA-EEDEM and EEDEM
present a higher EED, on average, when compared with the
ETT-based solution. This is due to the variation of metrics used
in RA-EEDEM and EEDEM which impose higher rate of DIO
messages. Considering IGI values between 1 and 3 seconds,
the RA-EEDEM solution presents a lower average EED, when
compared to EEDEM. For IGIs larger than 3 seconds, both
RA-EEDEM and EEDEM present approximately the same
results, differing from the ETT-based solution by roughly 200
ms. With these results we can conclude that the RA-EEDEM
estimation present better results in terms of average EED in
high network loads than those obtained using EEDEM. Fig. 9
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shows the PRR. For IGIs shorter than 7 seconds, the PRR
obtained by RA-EEDEM is higher than the PRR obtained
using EEDEM, and closer to the results obtained using ETT-
based solution. For IGIs higher than 9 seconds, PRR of RA-
EEDEM and EEDEM is higher than that obtained using the
ETT-based solution. Combining the results shown in Fig. 7,
Fig. 8 and Fig. 9, we can conclude that the average EED and
PRR will benefit from the reduction of the RPL overhead in
high network loads.
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VII. CONCLUSIONS

In this paper we propose RA-EEDEM which consists of
a set of modifications to RPL aimed to improve the EED
estimation accuracy. RA-EEDEM comprises a new metric and
modifications to the OF procedures.

RA-EEDEM estimation results were compared against our
previous estimation solution EEDEM and a ETT-based solu-
tion. The results show that RA-EEDEM improves the accuracy
of the EED estimation when compared to the other solutions.

When compared to previous solution, RA-EEDEM improves
EED estimation by about 5pp (8%) and, for high network
loads, presents better PRR by about 10pp (14%), and less
Average EED by about 200 ms (12%).

RA-EEDEM can provide a node with a more accurate
estimation of delay before it transmits each packet. Further,
dropping useless packets will reduce network resource usage
and improve the overall performance of the network, while
saving energy.
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