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Abstract. Recommender Systems have become increasingly popular,
propelling the emergence of several algorithms. As the number of algo-
rithms grows, the selection of the most suitable algorithm for a new task
becomes more complex. The development of new Recommender Systems
would benefit from tools to support the selection of the most suitable
algorithm. Metalearning has been used for similar purposes in other
tasks, such as classification and regression. It learns predictive models
to map characteristics of a dataset with the predictive performance ob-
tained by a set of algorithms. For such, different types of characteristics
have been proposed: statistical and/or information-theoretical, model-
based and landmarkers. Recent studies argue that landmarkers are suc-
cessful in selecting algorithms for different tasks. We propose a set of
landmarkers for a Metalearning approach to the selection of Collabo-
rative Filtering algorithms. The performance is compared with a state
of the art systematic metafeatures approach using statistical and/or
information-theoretical metafeatures. The results show that the met-
alevel accuracy performance using landmarkers is not statistically signifi-
cantly better than the metafeatures obtained with a more traditional ap-
proach. Furthermore, the baselevel results obtained with the algorithms
recommended using landmarkers are worse than the ones obtained with
the other metafeatures. In summary, our results show that, contrary to
the results obtained in other tasks, these landmarkers are not necessarily
the best metafeatures for algorithm selection in Collaborative Filtering.
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1 Introduction

Recommender Systems (RSs) recommend potentially interesting items to users in
order to deal with the information overload problem [1]. Collaborative Filtering
(CF) is the most popular of the available recommendation strategies. Despite the
large amount of research dedicated to this topic, there are still several challenges
that need to be addressed. One of them is how to choose the best CF algorithm
for a given dataset. Since training and evaluating all algorithms for the new
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dataset requires a prohibitive amount of time and resources, automatic solutions
based on prior knowledge are of the utmost importance. Metalearning (MtL) is
an approach useful for that purpose [7].

MtL is concerned with discovering patterns in data and understanding the ef-
fect on the behavior of algorithms [30]. It has been extensively used for algorithm
selection [6,27,28]. MtL casts the algorithm selection problem as a learning task.
For such, it uses a metadataset, where each meta-example corresponds to a prob-
lem. For each meta-example, the predictive features are characteristics (metafea-
tures) extracted from the corresponding problem and the target represents the
performance of algorithms when applied to the problem (metatarget) [5].

Metafeatures are regarded as the most important element in a MtL task [5].
It is essential for them to be representative of the problem at hand. The metafea-
tures used must contain information that discriminates the performance of dif-
ferent algorithms in such a way that the patterns found are useful for future
applications. However, this is not a trivial task. The research in this topic
has originated several different types of metafeatures, such as statistical and/or
information-theoretical, model-based and landmarkers, which are related to the
dataset, model and performance properties, respectively [29,30].

The algorithm selection task for CF has received considerable attention re-
cently [2,7,10,14,23]. Related work has investigated the effect of different statisti-
cal and information-theoretical metafeatures with positive performances. How-
ever, none has investigated the merits of landmarkers as metafeatures. Since
these metafeatures use simple estimates of performance to predict the actual
performance of algorithms, its efficacy in solving the algorithm selection prob-
lem is not only expected but has been demonstrated in various other tasks [3,
11, 17, 18, 20, 21, 25]. Therefore, it is important to understand if their effect is
similarly positive in selecting CF algorithms.

Hence, the main contribution of this paper is the proposal of several sub-
sampling landmarkers and their experimental validation in terms of their merits
to select CF algorithms. To do so, this paper provides an extensive collection
of baselevel datasets, algorithms and evaluation measures similarly to the ones
found in the state of the art [7]. The subsampling landmarkers are proposed and
analyzed as relative landmarkers. Such landmarkers look not only towards the
absolute performance estimations, but also to the relative performance between
landmarkers. Our motivation lies in ensuring a proper exploration of the land-
markers concept for the CF scope. All different metafeatures are compared to
the state of the art approach in statistical and information-theoretical metafea-
tures [7] in terms of metalevel accuracy and impact on the baselevel performance.
The results show that landmarkers are not statistical significantly better than
the statistical and/or information-theoretical metafeatures.

This document is organized as follows: Section 2 presents related work on CF,
MtL and algorithm selection for CF; Section 3 presents the approach used for
subsampling landmarkers and relative landmarkers and explains the experimen-
tal setup. In Section 4, several aspects of the proposed approach are evaluated
and discussed. Section 5 presents the conclusions and directions for future work.
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2 Related Work

2.1 Collaborative Filtering

RSs were proposed to complement Information Retrieval systems, providing an
alternative to solve the problem of information overload and recommend poten-
tially interesting items to users [4]. RSs are inspired by human social behavior,
where it is common to take into account the tastes, opinions and experiences
of acquaintances when making decisions [4]. Several strategies are used in such
systems, such as: 1) recommend items that similar users find relevant, 2) rec-
ommend items with similar characteristics, 3) recommend items depending on
the user’s context, 4) recommend items based on social relationships and 5)
recommend items using knowledge about the user’s behavior. From the several
strategies available, Collaborative Filtering (CF) is the most popular.

CF recommendations are based on the premise that a user will probably like
the items favored by a similar user. CF employs the feedback from each individual
user to recommend items to similar users [33]. The feedback is a numeric value,
proportional to the user’s appreciation of an item. Most feedback is based on a
rating scale, although other variants such as like/dislike actions and clickstream
are also suitable. The data structure used in CF is named rating matrix 𝑅. It is
usually described as 𝑅𝑈×𝐼 , representing a set of users U, where 𝑢 ∈ {1, ..., 𝑁}
and a set of items I, where 𝑖 ∈ {1, ...,𝑀}. Each element of this matrix (𝑅𝑢𝑖) is
the feedback provided by user 𝑢 for item 𝑖. Figure 1 presents such matrix.

Fig. 1: Rating matrix.

CF algorithms can be organized in two major groups: memory-based and
model-based [4]. Memory-based algorithms apply heuristics to a rating matrix
to compute recommendations, whereas model-based algorithms induce a model
from this matrix. Most memory-based algorithms adopt Nearest Neighbor strate-
gies, while the model-based ones are mostly based on Matrix Factorization [33].

The evaluation of RSs is usually performed by procedures that split the
dataset into training and testing subsets (using sampling strategies, such as k-
fold cross-validation [16]) and assesses the performance of the trained model on
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the testing dataset. Different evaluation metrics exist [22]: for rating accuracy,
error measures such as Mean Absolute Error (MAE) or Root Mean Squared
Error (RMSE); for classification accuracy, one uses Precision/Recall or Area
Under the Curve (AUC); for ranking accuracy, common measures are Normalized
Discounted Cumulative Gain (NDCG) and Mean Reciprocal Rank (MRR).

2.2 Metalearning

MtL addresses the algorithm selection problem similarly to a traditional learning
process (see Figure 2). First, the problems are characterized by a set of measur-
able characteristics (i.e., metafeatures) and the compared algorithms are evalu-
ated according to their performance in the learning task. This creates a meta-
dataset, where each meta-example has as predictive attributes the characteristics
extracted for the problem and the target attribute is usually the algorithm that
obtained the best performance in the specific dataset. Next, a learning algorithm
is trained using the metadataset. The trained model represents patterns in the
data that relate the metafeatures with the best performing algorithms. Hence,
it can be used to predict the best algorithm for a new problem [29].

Fig. 2: Metalearning process [5].

As in any other learning problem, the success of a MtL approach depends
on the information contained in the independent variables, i.e. the metafeatures.
The MtL literature divides metafeatures into three main groups [5, 29, 30]: sta-
tistical and/or information-theoretical, model-based and landmarkers.

Statistical and/or information-theoretical metafeatures describe the dataset
characteristics using a set of measures from statistics and information theory.
These metafeatures assume that there are patterns in the data which can be
related to the best algorithms. Examples include simple measures such as the
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number of examples and features in the dataset to more advanced measures such
as entropy and kurtosis of features and even correlation between features [5].

Model-based characteristics are properties extracted from models induced
from the dataset. They refer, for instance, to the number of leaf nodes in a deci-
sion tree [5]. The rationale is that there is a relationship between model charac-
teristics and algorithm performance which are dataset-independent. Then, it is
expected that these characteristics are able to discriminate among algorithms.

Finally, landmarkers are fast estimates of the algorithm performance on the
dataset. There are two different types of landmarkers: those obtained from the
application of fast and simple algorithms on complete datasets and those which
are achieved by using complete models for samples of datasets, also known as
subsampling landmarkers [5]. Such metafeatures rely on the assumption that by
estimating the performance of fast and simple models or by using samples of
the data, the performance estimates will correlate well with the best algorithms,
hence enabling future predictions. In fact, these metafeatures have proven suc-
cessful on the selection of algorithms for various tasks [3, 11,17,18,20,21,25].

2.3 Algorithm selection for CF

Related work in algorithm selection for CF has studied the problem using only
statistical and/or information-theoretical metafeatures. These have focused on
different aspects of the data distributions [2,10,14,23], the matrix structure [23]
and neighborhood statistics [14]. A more recent work has combined the majority
of the metafeatures used previously in a single framework [7]. This extensive set
of metafeatures (referred to here as Systematic) are used in our experimental
study in order to properly compare statistical and/or information-theoretical
metafeatures with the set of subsampling landmarkers proposed here.

In order to understand the systematic metafeatures, one must consider first
the framework used to generate them. It requires three main elements: object
𝑜, function 𝑓 and a post-function 𝑝𝑓 . The framework applies the function 𝑓 to
the object 𝑜 and, afterwards the post-function 𝑝𝑓 to the outcome of the function
𝑓 in order to derive the final metafeature. Thus, any metafeature can be repre-
sented using the following notation: {𝑜.𝑓.𝑝𝑓} [26]. For instance, the metafeature
𝑐𝑜𝑙𝑢𝑚𝑛.𝑚𝑎𝑥𝑖𝑚𝑢𝑚.𝑚𝑒𝑎𝑛 refers to the mean value of all the maximum values in
all columns in the dataset.

Consider now a rating matrix 𝑅, with rows (i.e., users) 𝑈 and columns (i.e.,
items) 𝐼. The objects to be used in the framework are 𝑅, 𝑈 and 𝐼. The func-
tions 𝑓 considered to characterize these objects are: original ratings (ratings),
count the number of elements (count), mean value (mean) and sum of values
(sum). The post-functions 𝑝𝑓 are maximum, minimum, mean, standard deviation
(sd), median, mode, entropy, Gini index, skewness and kurtosis. Additionally,
we consider 4 simple metafeatures: number of users, items, ratings and matrix
sparsity. This results in 74 metafeatures which were reduced by correlation fea-
ture selection, ending up with the following set: D.ratings.kurtosis, D.ratings.sd,
I.count.kurtosis, I.count.minimum, I.mean.entropy, I.sum.skewness, nusers, spar-
sity, U.mean.minimum, U.sum.kurtosis, U.mean.skewness and U.sum.entropy.
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3 Subsampling landmarkers for Collaborative Filtering

This section presents our proposal of subsampling landmarkers for the selection
of CF algorithms and the experimental procedure used to validate them. Our
motivation for using landmarkers is that, although they have been successfully
applied to the algorithm selection problem in other learning tasks [3, 11, 17, 18,
20,21,25], they were never adapted for selecting CF algorithms. Since there are
no fast/simple CF algorithms, which can be used as traditional landmarkers, we
have followed the alternative approach of developing subsampling landmarkers,
i.e. applying the complete CF algorithms on samples of the data.

3.1 Subsampling landmarkers

Subsampling landmarkers are based on the estimation of the performance of al-
gorithms on random samples from the original datasets. This means that for each
CF dataset, random samples are extracted. Then, CF algorithms are trained on
these samples and their performance assessed using different metrics. The out-
come is a subsampling landmarker for each pair algorithm/evaluation measure.
In order to properly validate the impact of subsampling landmarkers, we recur
to different ways to take advantage of these metafeatures, also known as relative
landmarkers [11]:

– Absolute: this is the most straightforward approach since it does not operate
any transformation on the subsampling landmarkers. It uses the estimated
performance values as the metafeature.

– Ranking: this approach is based on the ranking of the landmarkers 𝐿 =
{𝑙1, 𝑙2, ..., 𝑙𝑛}. Therefore, the metafeatures are now the rank of the land-
marker, where 1 indicates the best landmarker and 𝑛 the worst.

– Pairwise: this approach performs pairwise comparison for all pairs of land-
markers. Consider two landmarkers 𝑙𝑖 and 𝑙𝑗 . If the performance of 𝑙𝑖 is
greater, equal or worse than 𝑙𝑗 , then the final metafeature values are 1, 0 or
-1, respectively. Such comparisons are performed for all pairs of landmarkers.
Thus 𝑛× (𝑛− 1) new metafeatures are added for each evaluation measure.

– Ratio: this approach also performs pairwise comparisons. However, it does
so by using the ratios of the performances instead of assigning 1, 0 or -1
values. Given two landmarkers 𝑙𝑖 and 𝑙𝑗 , a metafeature with the value 𝑙𝑖/𝑙𝑗
is created.

As an example, let us consider two CF algorithms, A and B, and the NMAE
performance measure. Given a data sample, they are applied to it and the cor-
responding NMAE score is computed. Table 1 illustrates such values and all the
corresponding subsampling landmarkers. Notice Absolute is equal to the original
NMAE, Ranking assigns the ranking of the algorithms, Pairwise assigns 1 to the
best algorithm and -1 to the worst and Ratio presents the ratios of NMAE. It
should be noted that the process is repeated for each evaluation measure.
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Table 1: Example of relative landmarkers.
Algorithm NMAE Absolute Ranking Pairwise Ratio

A 0.73 0.73 1 1 0.839
B 0.87 0.87 2 -1 1.192

3.2 Experimental procedure

The experimental setup used in this work is divided into baselevel and metalevel,
referring, respectively, to the CF and classification stages of the process.

Baselevel The baselevel setup is concerned with the CF datasets, algorithms
and measures used to evaluate the performance of CF algorithms on those
datasets. The 38 datasets used come from different domains, namely Amazon
Reviews [24], BookCrossing [36], Flixter [35], Jester [13], MovieLens [15], Movi-
eTweetings [9], Tripadvisor [31], Yahoo! [32] and Yelp [34]. It is important to
observe that each domain can contain more than one dataset.

The experiments were carried out with MyMediaLite, a software library for
recommender systems [12]. Two CF tasks were addressed: Rating Prediction
(RP) and Item Recommendation (IR). While RP aims to predict the rating an
user would assign to a new instance, in IR the goal is to recommend a ranked
list of items in terms of user preference. Since the tasks are different, so are the
algorithms and evaluation measures. The following CF algorithms were used for
RP: Matrix Factorization (MF), Biased MF (BMF), Latent Feature Log Lin-
ear Model (LFLLM), SVD++, 3 variants of Sigmoid Asymmetric Factor Model
(SIAFM, SUAFM and SCAFM), User Item Baseline (UIB) and Global Aver-
age (GA). Regarding IR, the algorithms used are BPRMF, Weighted BPRMF
(WBPRMF), Soft Margin Ranking MF (SMRMF), WRMF and Most Popular
(MP). In IR, the algorithms are evaluated using NDCG, while in RP the algo-
rithms are evaluated using NMAE. All experiments use 10-fold cross-validation.

Metalevel The metalevel is first characterized by the construction of the metafea-
tures. This work applies the statistical and/or information-theoretical metafea-
tures (described in Section 2.2) to all 38 CF datasets to extract the metafeatures
for the Systematic approach. In order to extract the subsampling landmarkers
(see Section 3.1), random samples of 10% for each of the original 38 CF datasets
are extracted. Next, all algorithms are trained on said samples and their per-
formance assessed via suitable evaluation metrics. This allows the extraction of
what are referred as the Original relative landmarkers. Afterwards, the remain-
ing relative landmarkers (Ranking, Pairwise and Ratio) are computed based on
the values for the Original relative landmarker, as explained previously in Sec-
tion 3.1. The entire process creates 5 different sets of metafeatures.

Two baselevel measures (NMAE and NDCG) are used to create two separate
metatargets. The best algorithm, and consequently the target variable for each
dataset, depends on the evaluation measures. For each pair dataset/evaluation
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measure, the best algorithm is chosen as the target variable. Hence, we study the
algorithm selection problem for 2 different metatargets. The final metadatabases,
consisting of combinations of all different metafeatures and metatargets, are the
experimental basis for the algorithm selection problem addressed here.

Since the model selection problem is approached here as a classification task,
11 classification algorithms from the caret package [19] representing several
biases were chosen to address it: ctree, C4.5, C5.0, kNN, LDA, Naive Bayes, SVM
(linear, polynomial and radial kernels), random forest and a baseline algorithm:
Majority Vote. The Majority Vote does not take into account any metafeatures
and always predicts the class which appears more often. Since the metadatasets
have a reduced number of examples, the accuracy of the metalevel algorithms
was estimated using a leave one out strategy.

Meta-level performance is measured in two ways. First, the accuracy of the
meta-level prediction is assessed, i.e. whether the best algorithm is selected or
not. However, in MtL it is also important to understand the impact on the
baselevel performance of the meta-level prediction. It assesses how the algorithms
recommended by the metamodels actually affect the baselevel performance. It is
based on the comparison of baselevel performance between the algorithm selected
by the metamodel and the best possible algorithm. The goal is to understand
what is the actual cost of failing in the prediction of the best algorithm in terms
of baselevel performance.

Consider a dataset 𝐷 and the performance of 𝑛 algorithms on 𝐷, 𝑃𝐷 =
{𝑝1, 𝑝2, ..., 𝑝𝑛}, according to a specific evaluation measure. It is possible to create
a ranking 𝑅𝐷 = {𝑎1, 𝑎2, ..., 𝑎𝑛} in decreasing order of those performance values.
This means that 𝑎1 is the best algorithm on 𝐷, with a performance of 𝑝1. Con-
sider now that 𝑎̂ = 𝑎𝑞 is the algorithm predicted by a metamodel for dataset 𝐷,
𝑞 ∈ {1, . . . , 𝑛}. The impact at the baselevel of using the metamodel for algorithm
selection is assessed by comparing 𝑝𝑞, the performance of the selected algorithm,
with 𝑝1, the performance of the best algorithm. In this work, this comparison is
done in three ways: performance (PE), error (ER) and ranking (RK), which are
given by: 𝑃𝐸(𝑎̂, 𝐷) = 𝑝𝑞, 𝐸𝑅(𝑎̂, 𝐷) = 𝑝1 − 𝑝𝑞 and 𝑅𝐾(𝑎̂, 𝐷) = 𝑞.

The three measures are computed for all datasets and averaged. The com-
parisons average performance (AP), average error (AE) and average rankings
(AR) for a set of M datasets are defined as follows:

𝐴𝑃 (𝑎̂𝑖) =

∑︀𝑀
𝑖=1 𝑃𝐸(𝑎̂𝑖, 𝐷𝑖)

𝑀

𝐴𝐸(𝑎̂𝑖) =

∑︀𝑀
𝑖=1 𝐸𝑅(𝑎̂𝑖, 𝐷𝑖)

𝑀

𝐴𝑅(𝑎̂𝑖) =

∑︀𝑀
𝑖=1 𝑅𝐾(𝑎̂𝑖, 𝐷𝑖)

𝑀

(1)

where 𝑎̂𝑖 is the algorithm selected for dataset 𝐷𝑖.
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4 Results and Discussion

4.1 Metalevel evaluation

The metalevel accuracy performance for all strategies evaluated in this experi-
mental study can be seen in Figure 3. For readability purposes, only the perfor-
mance of the best metamodel is presented. After manual inspection, the choice
fell on SVM with polynomial kernel. Two baseline methods are included for fair
comparison. The Majority Vote baseline assesses if the MtL approach is finding
any useful patterns. The Systematic metafeatures baseline assesses if there is any
advantage in using the proposed subsampling landmarkers in the CF scenario.

NDCG metatarget NMAE metatarget
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0.9

A
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y

Strategies
Majority Vote
Original
Pairwise
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Ratio
Systematic

Fig. 3: Metalevel accuracy for all relative landmarkers and baselines.

Several observations can be made:

– Most landmarkers outperform the Majority Vote baseline. The exceptions
are the Original and Ratio relative landmarkers in the NMAE metatarget.

– Landmarkers are better than the Systematic metafeatures in the NDCG
metatarget.

– Landmarkers have slightly better performance than the Systematic metafea-
tures in the NMAE metatarget: this happens for the Ranking and Pairwise
relative landmarkers.

The observations seem to indicate that 1) the metafeatures proposed are
better than the baseline in terms of metalevel accuracy and 2) they seem to have
slightly better performances than the Systematic metafeatures. To validate this
assessment, we employ statistical significance tests using Critical Difference (CD)
diagrams [8]. CD diagrams plot the average rank for each strategy and calculate
the CD interval. Strategies connected by a CD line cannot be considered to
perform differently. On the other hand, if two strategies are not connected by a
CD line, they obtain, in fact, different performance, i.e. one strategy is ranked
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higher than the other. To apply this framework, we combine the performances
of all relative landmarkers and compare it with the baselines. The statistical
validation confirms the observations made here (see Figure 4).

1 2 3

CD

Landmarkers

Systematic

Baseline

Fig. 4: CD diagram for the comparison of metafeature strategies.

4.2 Baselevel performance analysis

Figure 5 presents the baselevel performance analysis with regards to the Average
Performance (discussed in Section 3.2). The oracle represents an ideal system
that always predicts the best algorithm, and, thus, achieves the best possible
performance. The performance of the methods were scaled such that it is rep-
resented as a percentage, where the oracle corresponds to 100%. As before, the
Majority Vote and MtL with Systematic metafeatures are used as reference base-
lines.

NDCG metatarget NMAE metatarget
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Fig. 5: Baselevel performance analysis regarding Average Performance.

The results show that the MtL approach using landmarkers:
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– outperforms the Majority Voting baseline on the NDCG metatarget, but not
on the NMAE metatarget.

– never beats the Systematic approach on either metatarget.

The results on the baselevel performance show that, although the landmark-
ers perform better in terms of metalevel accuracy, the same is not true for the
baselevel performance analysis in terms of Average Performance. This shows that
in spite of correctly predicting the best algorithm more often, the performance
of the selected algorithms in terms of the baselevel evaluation measure is worse,
on average. Thus, when the landmarkers fail to predict the correct best algo-
rithm, they usually choose an algorithm with worse performance than when the
systematic metafeatures fail to predict the best algorithm.

To validate this analysis, we performed the baselevel performance analysis,
based on the Average Error (discussed in Section 3.2). The results are presented
in Figure 6. It shows that the error obtained by the Systematic approach has a
smaller difference to the best error on both metatargets, hence confirming our
previous observation.
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Fig. 6: Baselevel performance analysis regarding Average Error.

In another analysis, we looked towards the Average Ranking (discussed in
Section 3.2). The results are presented in Figure 7. The baselines Majority Vote
and Systematic are included for comparison with the landmarkers. The following
observations regarding the landmarkers can be made:

– They rarely outperform the baseline Majority Voting: this only happens in
3 relative landmarkers in the NMAE metatarget.

– They are always worse than the Systematic metafeatures.

This analysis confirms the reason for the poor performance of landmarkers in
terms of baselevel performance: the average ranking for the predicted CF algo-
rithms is always higher than the Systematic approach. This means that the meta-
models trained with landmarkers tend to recommend on average the second best
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Fig. 7: Baselevel performance analysis regarding Average Ranking.

CF algorithm. When we consider the difference in terms of baselevel performance
presented in Figure 6, one understands how costly these misclassifications are.
These are surprising results, as they contradict the results in other tasks, where
landmarkers are typically better than statistical and/or information-theoretical
measures [3, 11,17,18,20,21,25].

4.3 Metaknowledge

Metaknowledge is the knowledge about learning processes acquired through ex-
perience with past learning episodes [30]. It explains how specific metafeatures
influence which one is the best algorithm. Such knowledge is typically embedded
in the metamodels built and sometimes it is difficult to access and/or interpret.
Furthermore, considering the vast amount of metamodels built and analyzed so
far, it is difficult to discuss all the knowledge potentially obtained with this study.
Here, we address this problem simply by analyzing metafeature importance.

We analyze all different strategies in terms of feature importance across all
metatargets studied. To do so, we build Random Forest models and take advan-
tage of its inbuilt mechanism for feature importance. We use the implementation
available in the caret package [19], which computes an importance score for each
feature. We average the importance percentages across all models which share
the same metafeatures and present the results in Figure 8. Features with average
importance below 10% were discarded.

The results show that the Systematic strategy contains the most influen-
tial metafeatures throughout. Special attention goes to the number of users and
the skewness of the distribution of the sum of ratings per item. The remaining
metafeatures focus on the kurtosis and entropy of the distribution of the sum of
ratings of users. In terms of landmarkers, the Original relative landmarker high-
lights the importance of NMAE for SCAFM and LFLLM, while in the Ranking
relative landmarker, the NDCG for MP is essential. In terms of relative land-
markers which focus on the comparison of landmarkers, the results show that
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Fig. 8: Feature importance.

the comparison of NMAE performances of LFLLM and SUAFM algorithms are
quite important among the Pairwise relative landmarkers. In the Ratio relative
landmarkers, the ratios in terms of NDCG performance between SMRMF and
both WRMF and WBPRMF and the ratio of NMAE between SIAFM and UIB
are the most important ones. Although this analysis lacks some depth in terms
of patterns found in the metamodels, it highlights two very important issues: 1)
which are the most influential metafeatures and 2) since we are using landmark-
ers, which algorithms and evaluation measures are essential for the problem.
Both are essential for future CF algorithm selection works.

5 Conclusions and Future Work

Landmarkers have been reported as a successful way to characterize problems
in Metalearning approaches to algorithm selection in several tasks. In this work,
we propose a set of subsampling landmarkers for Collaborative Filtering (CF)
methods. The landmarkers were compared with the state of the art systematic
metafeatures, based on statistical and/or information-theoretical measures, both
in terms of metalevel accuracy and baselevel performance analysis. Somewhat
surprisingly, in our experiments, their performance was not statistical signifi-
cantly better than the systematic approach, in terms of metalevel accuracy. Fur-
thermore, the impact on the baselevel performance produces worse results when
using landmarkers in terms of average performance, average error and average
rankings. Thus, the major contributions of this work are: 1) to propose subsam-
pling landmarkers for CF tasks and 2) showing that the widely accepted assump-
tion that landmarkers are better than statistical and/or information-theoretical
metafeatures may not be true in CF. Future work includes the adaptation of
other types of landmarkers for CF, using for instance different sampling strate-
gies and the extension of the experimental procedures in order to allow more
generic conclusions regarding the impact of metafeatures of different natures on
the CF algorithm selection problem.
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