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Abstract—The blue economy potential is envisioned to increase
the activity at the ocean worldwide in the coming years. To sup-
port these activities and the convergence to the Internet of Moving
Things, Unmanned Surface Vehicles (USVs) are considered viable
platforms to enable a large number of missions, including border
surveillance and environmental monitoring. Typically, USVs use
Wi-Fi for communicating with shore. However, in the literature,
there is a lack of studies characterizing the shore-to-USV Wi-
Fi link. This paper studies the influence of distance and USV
orientation on the shore-to-USV link quality at the 2.4 GHz and
5.8 GHz Industrial, Scientific, and Medical (ISM) bands. The
study is supported by experimental results, collected during sea
trials. For the 2.4 GHz band, we conclude that neither the Two-
Ray propagation model nor the Friis propagation model allow a
good fit to the experimental measurements. On the other hand,
for the 5 GHz band, the Friis propagation model fits the obtained
experimental results.

Index Terms—Experimental evaluation, Unmanned Surface
Vehicle, Wi-Fi communications, propagation models.

I. INTRODUCTION

The blue economy potential is envisioned to increase the

activity at the ocean worldwide in the coming years, including

resource exploitation on the sea floor, environmental mon-

itoring, scientific exploration, and surveillance of maritime

borders, apart from the traditional activities such as maritime

transportation and fisheries [1]. To support these activities and

the convergence to the Internet of Moving Things, Unmanned

Surface Vehicles (USVs) are considered viable platforms to

enable a large number of missions, including border surveil-

lance and environmental monitoring.

Due to the small size of this type of vehicles and their

proximity to the sea surface, there are many factors that may

affect the performance of wireless communications between a

USV and an on shore Base Station (BS). Firstly, the reflection

effect on the sea surface and the scattering phenomenon

caused by the roughness of the sea waves result in multipath

components of the transmitted signal [2]. Additionally, the

movements of the USVs, due to the sea waves, result in

changes in the angle between the transmitting and receiving

antennas [3]. Finally, the effect of the Earth curvature can

limit the radio propagation due to the obstruction of the Line-

of-Sight (LoS). All these phenomena may contribute to the

degradation of the received signal strength [3].

This paper evaluates the variation of the Wi-Fi link quality

at 2.4 GHz and 5.8 GHz between a USV at sea and a BS

located on shore. In particular, the influence of distance and

the USV orientation with respect to the BS on shore is studied.

Moreover, experimental results are compared with the two

state of the art propagation models usually considered for

over sea communications, the Two-Ray and Friis propagation

models.

The rest of the paper is organized as follows. Section II

describes the related work. Section III details the experimental

setup and the methodology used to achieve the experimental

results. The experimental results are presented and analyzed in

Section IV. Finally, Section V points out the main conclusions

and the future work.

II. RELATED WORK

Wireless links are commonly used to enable communica-

tions between USVs and shore stations. Examples are the

USV for water quality monitoring presented in [4], which

uses a 915 MHz link for telemetry and Zigbee, operating at

2.4 GHz, to exchange sensors data, the Zarco [5] and the Un-

manned Capsule (UCAP) [6] solutions, developed by INESC

TEC, which use Wi-Fi as communications technology, and

the prototypes designed in [7], wherein Wi-Fi and WiMAX

are proposed to achieve long-range links. However, in the

literature, to the best of our knowledge, there is a lack of

studies characterizing shore-to-USV wireless link, especially

for small USVs. In the following, the most relevant related

works using other types of surface vehicles are identified.

In [8], a channel characterization, including path-loss, chan-

nel correlation, Doppler effects, and sea reflections, affecting

2 GHz radio propagation over sea, for a land-to-ship channel

with spatial diversity, is presented. It was concluded that a

fading component was introduced by the reflections on the

sea surface. In [9], a radio propagation study focused on

sea environments is performed. The authors concluded that

the characterization of channels above sea depends strongly

on the environment and antenna heights. Additionally, they

concluded the correlation between the experimental results and

some theoretical models. Shore-ship LoS radio propagation at

5 GHz was studied in [10]. The authors measured the received

signal strength for a distance up to 10 km and compared the

experimental results with the Two-Ray and Friis propagation

models. They concluded that the measured results were close

to the ones obtained using the Two-Ray model. However,
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when the distance increases, the authors report the influence

of evaporating ducts that affect the prediction achieved using

the Two-Ray model. In [3], a novel radio propagation model

taking into account the effects of ship motions and the Earth

curvature is designed. By applying this propagation model,

the authors concluded that the impact of ship motions on radio

propagation becomes smaller with the increase of transmission

distance, and it is more significant at higher frequencies.

In [11], experimental propagation measurements for 5.8 GHz,

which were performed in a sea port, are presented. The study

was focused on extracting time dispersion characteristics for

radio channels, and it allowed to conclude that the 5.8 GHz

band is well suited for maritime communications. In [12], a

performance evaluation of a 5.8 GHz point-to-point link, be-

tween a fishing ship and shore BS is presented. Experimental

results showed that links up to 7 km at 1 Mbps are possible,

showing the advantage of using long range IEEE 802.11 links

for broadband maritime communications.

III. EXPERIMENTAL SETUP

In this section, the setup used to achieve the experimental

results is characterized, including the communications nodes

used, the testbed created, and the variables collected along the

experiments.

A. Communications nodes

The communications nodes consist of a Base Station (BS)

and one USV developed in the context of the FLEXUS1

project [13]. The BS (Figure 1) is a static node that acts as

a gateway to the Internet; the USV (Figure 2) is a catamaran

with 0.90 m of length and 0.65 m of height; Both the USV

and BS are equipped with two Network Interface Cards

(NICs) operating at 2.4 GHz and 5.8 GHz bands, and four

omnidirectional antennas, two for each band, as illustrated

in Figure 2, in order to take advantage of the IEEE 802.11n

spatial diversity technique. The BS antennas were fixed on a

tripod and the USV antennas were fixed on the vehicle frame.

B. Testbed

The experiments were carried out in different periods be-

tween 6th and 7th September 2017, in the Gulf of Elefsina sea

in Athens, Greece. The sea was flat most of the time. The

BS was placed on shore and the USV was moved over the

sea, following the trajectories depicted in Figure 3. The NICs

physical data rate was configured to auto mode but switching

only between Modulation and Coding Scheme (MCS) 0 and

1. The 2.4 GHz NICs used a frequency channel with 40 MHz

bandwidth; the 5.8 GHz NICs used a frequency channel with

20 MHz bandwidth. The transmission power of both the USV

and BS was set to 22 dBm at 2.4 GHz and 25 dBm at 5.8 GHz.

For the 2.4 GHz band, the BS and USV 4 dBi antennas were

placed respectively at 5.83 m and 0.39 m above the sea level;

for the 5.8 GHz band, the BS and USV 3 dBi antennas were

placed respectively at 6.06 m and 0.55 m. The antennas height

above the sea level was restricted by the structures to which

1http://flexus.inesctec.pt

they were fixed. The antenna gains were only considered for

the USV. For the BS antennas, by considering 1) their altitude

above the sea level, 2) E-plane measurements, and 3) the

USV operation range between 50 m and 450 m, the following

antenna gains were calculated. The 2.4 GHz BS antennas gain

was around 2.5 dBi for all distances; on the other hand, the

5.8 GHz BS antennas gain was −3.7 dBi for distances around

50 m, −2.2 dBi for 60 m and 70 m, −0.7 dBi between 80 m and

110 m, and 0.5 dBi between 120 m and 450 m. The dependency

of the antenna gains with distance was taken into account to

obtain the theoretical results presented in Section IV for the

Two-ray and Friis propagation models.

 

 

Fig. 1: The Base Station deployed on top of a 4 m high

concrete platform.

Fig. 2: The USV used in the sea trials.

Fig. 3: The trajectories followed by the USV during the sea

trials.

C. Data collection

The real conditions experienced by the USV throughout the

experiments were collected periodically by means of three
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variables: 1) the quality of the radio links at 2.4 GHz and

5.8 GHz; 2) the USV position over time; 3) the USV axis

orientation. In the following, the way these variables were

collected and their processing is explained.

• Quality of the radio link. This was achieved by col-

lecting 1) the Received Signal Strength Indicator (RSSI)

and 2) the Noise floor power, which are reported by the

IEEE 802.11n NICs used on each node. Based on these

variables, the Signal to Noise Ratio (SNR) for the link

between the BS and the USV was calculated.

• USV position and distance to the BS. Using a GPS

receiver on the USV, the 2D position coordinates (latitude

and longitude) were collected periodically. Since the BS

position was known during the experiments, the distance

to the USV was calculated by applying the Haversine
Formula [14].

• USV axis orientation. Since the USV is equipped with a

magnetometer, the pitch, roll, and yaw were periodically

collected. Taking into account USV and BS coordinates,

USV heading to the BS was calculated based on the USV

yaw values, considering the BS as reference, as depicted

in Figure 4. Due to some incoherent experimental values

for the pitch and roll axis, we do not include their

influence in the study presented herein.

Fig. 4: Heading of the USV to the BS.

IV. EXPERIMENTAL RESULTS

The obtained experimental results are presented in this

section. The results are expressed in the form of average values

with a 95% confidence interval and compared with the results

obtained using the Two-ray and Friis propagation models.

A. SNR versus Distance
The variation of SNR at 2.4 GHz and 5.8 GHz versus

the distance between the USV and the BS is depicted in

Figures 5 and 6. The SNR obtained using the Two-Ray and

Friis propagation models is also shown, considering a constant

Noise floor power of −95 dBm, in order to be consistent with

the noise power observed along the experiments. The results

are divided into four segments, according to the USV heading

to the BS, which represents the angle between the USV and BS

antennas. This division aims at evaluating the real influence

of distance on the radio link quality for approximately the

same alignment between the USV and BS antennas. In the

following, the most relevant conclusions for the 2.4 GHz and

5.8 GHz bands are presented.

1) 2.4 GHz band: for distances up to 200 m, a significant

variation on the SNR values is observed, which may be

justified by the USV antennas tilt variation to the BS. We

believe the NICs Auto Gain Control (AGC), which instructs

the Low Noise Amplifiers (LNAs) in the receiving radio

chain to attenuate/amplify the signal, does not act with the

required responsiveness. For the radio propagation over the

sea, the Earth curvature needs to be taken into account, since

it may become an obstruction to the Fresnel ellipsoid clearance

and cause a degradation of the SNR, as mentioned in the

literature [15]. In fact, as from 210 m, the first Fresnel ellipsoid

is obstructed up 40%. This justifies the sudden decrease in the

SNR from this distance on (cf. Figure 5). Overall, neither the

Two-Ray propagation model nor the Friis propagation model

provide a good fit to the experimental measurements, which

can be justified by the used small size USV, navigating very

close to the water, and by the placement of the 2.4 GHz anten-

nas of the USV, for which a side-wards obstruction to the radio

propagation occurs. Although in some situations one USV

antenna is blocked towards the BS antennas (Figures 5b and 5d

- 1×2 system), the SNR values are almost the same when

the two USV antennas are in LoS towards the BS antennas

(Figures 5a and 5c - 2×2 system). According to the definition

of the maximum-ratio combining (MRC) technique [16], the

SNR values are slightly lower in Figures 5b and 5d in relation

to the ones in Figures 5a and 5c.

2) 5.8 GHz band: in general, the experimental results

match the Friis propagation model, even though the Two-

Ray propagation model is also a good match for distances

lower than 200 m. For this frequency band, the clearance of the

Fresnel ellipsoid was assured for the considered distances. In

addition, since the 5.8 GHz antennas were placed in the highest

point of the USV mast, good radio propagation conditions

were achieved. Typically, there is no obstruction between the

USV antennas and the BS antennas; the exception occurs when

the USV heading to the BS is ±90o. Due to this fact, the SNR

values are almost the same for all plots in Figure 6.

B. SNR versus Heading to the BS

In Figure 7, the variation of SNR at 2.4 GHz and 5.8 GHz

versus the USV heading to the BS is depicted. The results

are divided into seven segments, considering the different

distances between the USV and the BS.

By observing the plots of Figure 7, we can draw the

following conclusions. Firstly, the 5.8 GHz band is more stable

than the 2.4 GHz band, since the fluctuations between average

values in each plot have lower amplitude, especially when the

distance between the BS and the USV is lower than 200 m.

Additionally, the measured SNR for this band is, typically,

lower than for the 2.4 GHz band, namely when the distance

is lower than 200 m. For distances up to 200 m, the decrease

of the SNR for the 2.4 GHz band can be justified by the LoS

obstruction caused by the Earth curvature. In spite of such

particularities, some general aspects can be identified for both

bands. The first is the decreasing influence of the USV heading

as distance increases, especially above 300 m. Furthermore, the
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Fig. 5: SNR at 2.4 GHz versus distance to the BS, from the

USV point of view, against the Two-Ray and Friis propagation

models.
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Fig. 6: SNR at 5.8 GHz versus distance to the BS, from the

USV point of view, against the Two-Raw and Friis propagation

models.
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same trend is followed by both bands, regarding the increase

and decrease of the average SNR under the same conditions.

Globally, the highest SNR values are registered when the USV

heading is close to 0o or ±180o, i.e., when both the USV and
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Fig. 7: SNR versus heading to the BS from the USV point of

view.

BS antennas tend to be fully aligned. 2.4 GHz SNR reduction

when the heading of the USV to the BS is close to ±90o

occurs mainly due to radio signal obstruction of one antenna,

which implicitly disables spatial diversity.

V. CONCLUSIONS

In this paper, we evaluated the influence of distance and

heading on the Wi-Fi link quality for the 2.4 GHz and 5.8 GHz

bands, between a moving USV and a BS on shore. Considering

the Two-Ray and Friis propagation models as baseline, we

compared the theoretical predicted values for the SNR, with a

set of experimental measurements collected during sea trials.

For the 2.4 GHz band, we concluded that neither the Two-

Ray propagation model nor the Friis propagation model allow

a good fit to the experimental measurements; conversely, for
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the 5.8 GHz band, the Friis propagation model matches the

obtained experimental results. Additionally, we showed the

possible negative effect of the Earth curvature on the 2.4 GHz

link quality for distances between the USV and the BS above

200 m. This is due to the the small size USV navigating very

close to the water. Regarding the heading of the USV to the

BS, we concluded that its influence on link quality is negligible

for distances above 300 m. On the other hand, for near-shore

operations, the SNR will be higher when the heading tends to

0o or ±180o, i.e., when the USV and BS antennas tend to be

perfectly aligned, as it would be expected. Lastly, we pointed

out that the 2.4 GHz band allows to achieve higher SNR values

than the 5.8 GHz band, for the same conditions, however the

fluctuations on the experimental SNR values for the 5.8 GHz

band are smoother. As such, it may be more suitable to use the

5 GHz band than the 2.4 GHz band for shore-to-USV Wi-Fi

communications.

As future work, it would be important to collect accurate

pitch and roll data with another sensor, so we can better

characterize the real impact of those variables on the radio

link in both frequency bands. Additionally, a rearrangement of

the placement for the USV antennas can be explored, namely

putting the 2.4 GHz antennas in the highest point of the USV

mast. Furthermore, tests considering the use of IEEE 802.11n

MIMO spatial multiplexing may be considered.
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