®

Check for
updates

Stepwise Development of Paraconsistent
Processes

Juliana Cunha'®) | Alexandre Madeira!®™) and Luis Soares Barbosa2(®)
1 CIDMA, Department of Mathematics, Aveiro University, Aveiro, Portugal
juliana.cunha@live.ua.pt, madeira@ua.pt
2 INESC TEC & Department of Informatics, Minho University, Braga, Portugal
1sb@di.uminho.pt

Abstract. The development of more flexible and robust models for rea-
soning about systems in environments with potentially conflicting infor-
mation is becoming more and more relevant in different contexts. In this
direction, we recently introduced paraconsistent transition systems, i.e.
transition systems whose transitions are tagged with a pair of weights,
one standing for the degree of evidence that the transition exists, another
weighting its potential non existence. Moreover, these structures were
endowed with a modal logic [3] that was further formalised as an insti-
tution in [5]. This paper goes a step further, proposing an approach for
the structured specification of paraconsistent transition processes, i.e.
paraconsistent transition systems with initial states. The proposed app-
roach is developed along the lines of [12], which introduced a complete
methodology for (standard) reactive systems development building on
the Sannella and Tarlecki stepwise implementation process. For this, we
enrich the logic with dynamic modalities and hybrid features, and pro-
vide a pallet of constructors and abstractors to support the development
process of paraconsistent processes along the entire design cycle.

1 Introduction

The development of more flexible and robust models for reasoning about systems
in environments with potentially conflicting information is becoming more and
more relevant in different contexts. Applications scenarios where these patterns
emerge range from robotics (e.g. specifying a controller that has to react to
collected conflicting data due faulty or imprecise sensors), to diagnostic support
systems for the health domain (e.g. often dealing with contradictory marks).
Moreover, it is not uncommon that along a development process, engineering

The present study was developed in the scope of the Project Agenda ILLIANCE
[C644919832-00000035 — Project n 46], financed by PRR - Plano de Recuperagao
e Resiliéncia under the Next Generation EU from the European Union.

FCT, the Portuguese funding agency for Science and Technology suports the sec-
ond author with the project UIDB/04106,/2020 and the third with the project IBEX
PTDC/CCI-COM/4280/2021.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

C. David and M. Sun (Eds.): TASE 2023, LNCS 13931, pp. 327-343, 2023.
https://doi.org/10.1007/978-3-031-35257-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35257-7_20&domain=pdf
https://doi.org/10.1007/978-3-031-35257-7_20

328 J. Cunha et al.

teams make design decisions on often imprecise and contradictory requirements,
elicited from stakeholders with distinct perspectives.

This entails the need for the design of new models and logics resilient to
conflict, as well as methods prepared to assist the rigorous development and
analysis of such complex systems. Following this direction, we introduced in [4]
the notion of a paraconsistent transition system, where transitions are labelled
with a pair of weights, one weighting the degree of evidence that the transition
exists, another weighting its potential non existence. Then, in [3] these structures
were endowed with a modal logic, that was further extended to a multi-modal
logic, and formalised as an institution, in [5]. The latter reference, also discusses
preliminary steps towards the structured specification of these structures, by
characterizing a set of CASL-like operators.

The present paper contributes to this agenda along two main edges. Firstly,
we adjust the models and extend the logic to express and reason about paracon-
sistent processes, i.e. processes with paraconsistent weighted transitions with
specified initial states. Moreover, the multi-modal logic described in [5] is
extended to a dynamic logic [10]. This involves bringing into the picture struc-
tured modalities, to express abstract properties such as safety and liveness, as
well as hybrid logic constructs [2], such as binders and state-variables to express
some other properties of paraconsistent processes as concrete transitions within
concrete states. In the end, we end up with a paraconsistent version of the logic
introduced in [12], which we also formalise as a logical institution.

Secondly, we introduce a method for the structured specification of para-
consistent transition processes starting from their abstract design down to the
concrete implementation stage. More precisely, we fully instantiate the (generic)
Sannella and Tarlecki’s stepwise implementation process [15] for the case of devel-
opment of paraconsistent processes. On the base of the approach of Sannella and
Tarlecki is the notion of a specification as a syntactic representation of a class
of possible implementations of the envisaged system. Conceptually, the imple-
mentation process corresponds to a chain of refinement steps in the sense that
a specification refines another one if every model of the latter is a model of
the former. This is complemented by the concepts of constructor and abstrac-
tor implementations, conveying the idea that a specification may resort to one
or several given specifications applying a specific construction on top of them
to meet the envisaged requirements. Thus, this paper also considers abstractor
implementations to capture situations whose relevant requirements just need to
be satisfied up to some suitable abstraction (e.g. freed from some implementation
details). Note that this is not a trivial step since even the notion of a specifi-
cation characterized by a class of models has to be adjusted to the proposed
paraconsistent framework.

Finally, a pallet of constructors and abstracts was defined to support the
whole development process. We revisited the pallet of process constructors and
abstractors discussed in [12] for the development of (standard) processes, redefin-
ing their semantics in the paraconsistent setting. This includes operators to
relabel and hidden actions, but also to compose specification using the product

Stepwise Development of Paraconsistent Processes 329

constructor. Bisimulation of paraconsistent transition structures introduced in
[4] is used to support abstractor implementations.

The rest of the paper is organised as follows: Sect.2 introduces some back-
ground definitions for the development of the work. Then, Sect.3 introduces
P(A), an institution suitable to express and reason about paraconsistent tran-
sition systems. Section4 depicts a complete formal development ¢ la Sannella
and Tarlecki for these systems. Finally, Sect.5 concludes.

2 Preliminaries

Let us start by recalling what an institution is. Then, we will introduce a specific
algebraic structure over which the logical system to support our specification will
be defined. Such a structure is basically a particular class of residuated lattices in
which the lattice meet and the monoidal composition coincide, equipped with a
metric which measures the “distance” between specification which may be fully
consistent (in which case the weights in the double transitions considered are
complementary), vague (when their “sum” remains below the entire universe of
discourse, typically sum less than 1), or paraconsistent (when sums above).

Institutions. Informally, an institution abstractly defines a logic system by
describing through its spectrum of signatures, corresponding models and a sat-
isfaction relation between models and sentences.

Definition 1 ([9]). An institution I is a tuple I = (Sign;,Seny, Mody, |=r) con-
sisting of

— a category Sign; of signatures

— a functor Seny : Sign; — Set giving a set of X-sentences for each signature
X € |Sign;|. For each signature morphism o : X — X' the function Seny(o) :
Seny(X) — Seny(X') translates X-sentences to X'-sentences

- a functor Mod : Sign?’ — Cat assigns to each signature X' the category of
Y-models. For each signature morphism o : X — X' the functor Mod;(c) :
Mod;(X") — Mod;(X) translates X'-models to X-models.

— a satisfaction relation |=¥ < |[Mod;(X)| x Sen;(X) determines the satisfaction
of X-sentences by X-models for each signature X € |Sign;|.

such that satisfaction is preserved under change of signature, that is for any
signature morphism o : X — X', for any ¢ € Sen;(X) and M’ € [Mod(X')]

(M’ =5 Sens(0)()) = (Mods (o) (M) -) (1)

When formalising multi-valued logics as institutions, the equivalence on the sat-
isfaction condition (1) can be replaced by an equality [1]:

(M |5 Sens(0)()) = (Modi (o) (M) |7) (2)

330 J. Cunha et al.

(Metric) Twisted Algebras. Metric twisted algebras are introduced to deal
with weights in paraconsistent transition systems.

A residuated lattice (A, M, u, 1,0,®, —, €), over a nonempty set A, is a complete
lattice (A, m,), equipped with a monoid {A,®,e) such that ® has a right
adjoint, —, called the residuum. We will focus on a class of complete residuated
lattices that are bounded by a maximal element 1 and a minimal element 0 and
that are integral, that is 1 = e. Additionally, we want the lattice meet (M) and
the monoidal composition (®) to coincide. Hence, the adjunction is stated as
amb<ciff b <a— c. A pre-linearity condition is also enforced

(a—bud—a) =1 (3)

A residuated lattice obeying prelinearity is known as a MTL-algebra [7], with a
slight abuse of nomenclature, the designation iMTL-algebra, from integral MTL-
algebra, will be used in the sequel for the class of semantic structures considered.
Examples of iMTL-algebras are:

— the Boolean algebra 2 = {{0,1},A,V,1,0,—)

/\3‘J_u—|— v;»,‘J_uT —>3‘J_u—|'
L1l 1jlaT LI|TTT
ulluuw wijvuT w|LTT
TlLawT TITTT T|LuT
-G = ([0, 1], min, max, 1,0, —), with implication defined as

1 ifa<b

b otherwise

- 3={T,u,L},A3,Vs, T, L, —3), where

a— b=

We focus on iMTL-algebras A whose carrier A supports a metric space (4, d),
with suitable choice of d. Where d: A x A — R" such that d(z,y) =0if z =y
and d(z,y) < d(z, z) +d(z,y). The notion of a A-twisted algebra, was introduced
n [3] to operate with pairs of truth weights, which consists of an enrichment of a
twist-structure [11] with a metric. This metric is necessary to the characterization
of the consistency of these pairs of values, relevant on the interpretation of the
consistency operator o in the logic (see [3] for details).

Definition 2 ([3]). Given a iMTL-algebra A enriched with a metric d, a A-
twisted algebra A = (Ax A,M, W, =, /., D) is defined as: (a,b)M(c,d) = (amc,bu
d), (a,b) U (c d) (aI_IC brd), (a,b) = (¢,d) = (a — ¢,and), [(a,b) = (b,a)
and D((a, Vd(a,c)? +d (b,d)?. The order in A is lifted to A as
(a,b) = (c d) zjj”a<c and b >d.

3 An Institution for Paraconsistent Transitions Processes

This section introduces P(A), a logic for paraconsistent processes formalized as
a (many-valued) institution. P(A) starting point is the logic for paraconsistent
systems presented in [5]. However, in P(A) modalities can be indexed by regular

Stepwise Development of Paraconsistent Processes 331

expressions of actions, as in dynamic logic, and a binder | x and identification
@, operator, borrowed from hybrid logic, are introduced.

Let us fix any twisted algebra A to introduce all the necessary ingredients
for an institution P(A) = (Sign, Sen, Mod, |=). Whenever the choice of A is not
essential, P(A) will be abbreviated to P. Note here that all constructions of
P(A) are parametrically defined, thus admitting different instances according
to the structure of the truth values domain relevant for the application at hands.

Firstly we introduce the signatures:

Definition 3. A signature is a tuple (Act,Prop) where Act is a finite set of
action symbols and Prop is a set of propositions.

The set of actions Act = {ay,...,a,} will induce a set of structured actions,
Str(Act), defined by o := a|a; o |a+«a|a* where a € Act. As usual, we use —a;
to denote the structured action a; +---+a;—1 + a;+1 + - - - + a, and, given a set
of atomic actions B = {by,...by} € Act, we write B to refer to the structured
action by + - -+ + by.

Let X, X’ € Sign be signatures. A signature morphism o : ¥ — X’ involves
two functions opyop : Prop — Prop’ and oact : Act — Act’, where oac; extends
to Str(Act) as follows:

— Oact(a) = oact(a) Act A Act/
— Oact(a;a’) = Gace(@); Tace ()

— Oact(a+a') = Tact(@) + Tact(a)

— Oact(@) = Tact()” OAct

Str(Act) ————— Str(Act’)

for all @ € Act and a,a’ € Str(Act). The category of signatures and their
morphisms form category Sign.
Now, let us introduce the models:

Definition 4. A (Act,Prop)-paraconsistent transition process, abbreviated to
PTP, is a tuple P = (W,wo, R, V) such that,

- W is a non-empty set of states,

— wo € W s called the initial state

- R=(Ry: W xW — Ax A)geact is an Act-indezed family of functions;
R, (wy,ws) = (&, ff) means that there is the evidence degree t that there
exists a transition from wy to wo by a, and the evidence degree [f that this
transition does not exists.

- V:W x Prop — A x A is a valuation function; V(w,p) = (&, ff) means that
in state w there is the evidence degree tt that the proposition p holds, and [f
that it does mot hold.

For any pair (&, ff) € A x A, (&, ff)" denotes tt and (&,)~ denotes ff.

The interpretation of o € Str(Act) in a model (W, wg, R, V) extends the
relation R to a relation R defined for states w,w’ € W as:

332 J. Cunha et al.

>0
1,0) ifw=w
,1) otherwise

_ PO _ (
7 {(

— R (w,w') = (R¥; Ry (w, w')

~—

where [N and [L are the distributed versions of M and I, respectively.

Definition 5. A morphism connecting two (Act, Prop)-PTPs (W, wo, R, V) and
(W wy, R, V') is a function h : W — W', such that: for each a € Act,
Ry(w1,w2) < R (h(wyi),h(ws)); for any p € Prop, w € W, V(w,p) <
V' (h(w),p); and h(wy) = wy.

We say that P and P’ are isomorphic, in symbols P =~ P’, whenever there are
morphisms h: W — W’ and h~! : W — W such that h'oh = idy+ hoh' = idy .

Models and their corresponding morphisms form a category, denoted by Mod,
which acts as the model category for our institution P.

Definition 6. For any signature morphism o : {(Act, Prop) — (Act’, Prop’) and
P = (W wy, R, V') a{(Act',Prop’)-PTP, the o-reduct of P' is a {Act,Prop)-
PTP P|, = W, wo, R,V) such that W = W', wg = w}; for p € Prop, we W,
V(w,p) = V'(w,0(p)); and for w,v e W and a € Act, Ro(w,v) = R) (w,v).

Therefore, each signature morphism o : X' — X’ defines a functor Mod(o) :
Mod(X') — Mod(X) that maps processes and morphisms to the corresponding
reducts. This lifts to a functor, Mod : (Sign)°? — CAT, mapping each signature
to the category of its models, and each signature morphism to its reduct functor.

Definition 7. Given a signature X = (Act,Prop) the set Sen(X) of sentences
s given by the following grammar

o =p|lLl~¢le—olevelprel|laeayellalpllaselop|| | z.0]|Qup

where p € Prop, a € Str(Act) and © € X, with X being an infinile set of
variables.

Each signature morphism o : (Act, Prop) — (Act’, Prop’) induces a sentence
translation scheme Sen(o) recursively defined as follows:

Stepwise Development of Paraconsistent Processes 333

— Sen(0)({p) = (Tact(a)) Sen(o)()
-~ Sen(0) () = [Gacrtr]] Sen(o) ()
~ Sen(0)((eryp) = (Gaccta])y Sen(o)()
— Sen(a)(op) = oSen(a)()

- Sen(o)(x) =z

— Sen(o)({ z.¢) =| 2.Sen(0)(p)

— Sen(0)(Q,p) = @,Sen(c)(p)

Entailing a functor Sen : Sign — Set mapping each signature to the set of
its sentences, and each signature morphism to the corresponding translation of
sentences.

Definition 8. Let X' = (Act, Prop) be a signature, P = (W, wo, R, V) a ¥-PTP
and @ a X-sentence, the satisfaction relation

PkEy) = Ml (P —
(| Lp) geWX(7g?w0| QP)

where g : X — W is a valuation function such that, for x € X, gz — w]
denotes the valuation given by glz — w](z) = w and glx — w|(y) = g(y) for any
y # x € X. If is a formula without free variables then the valuation function g
is trrelevant, that is, (M, g,w = ¢) = (M,w [= ¢). The relation |= is recursively
defined as follows

- (M,w [=p) =V(w,p)

- (M,w=1)=1(0,1)

(M,w = —¢) = [(M,w [= ¢)

- (MwlEp—¢)=(Muwllp) = (Mwly)

MwEeve)=(Muwlk) U(Muwl=¢)

- (MwlEepne)=MuwlkE) (Muw | ¢)

((1,0) if (M,w k)€ Ac

(0,1) otherwise

- (M’g’w |: [04]%0) = ([CW](M,g,w g0+),<0é+> M,g,w,cp_))

= (M, g,w = app) = ({a™ (M, g, w, " -
(M, g,w = [o]p) = (o™)M, g,w,¢7), [a7 (M, g,w, "))
()
(
(
(

- M,g,U)|:%Q0):([}(M g,w 7<a7>(Mvng790)
- Mang |: l’) = (130) Zﬁg(l’) =w

- Magaw |:l IE(p) = (Mmg[‘r = w],w ‘: QD)

- (M,g,w = Qup) = (M, g,9(z) = ¢

where

- [a"](M,g,w,¢") = !_Iw(ﬁé(mw') — (M, g,v" = ¢)")

- [ai](Mv.%wv@*) = !—IW(I/%&(w’w/) - (M7g’w/ |: 30)*)
@M gwg) =] (Ri(w,w) 0 (Mg.w' = ¢))
~a)(M,g.w,) = U (Ro(w,w’) n (M, g,w' | @))

w'eW

334 J. Cunha et al.

- Ac = {(CI,, b) |D((a7b)7 (0’0)) < D((a’b)a (17 1))}

with = € {T,7 }, a € Str(Act) and | | and [] are the distribuited versions of 1
and M, respectively.

Proposition 1. Let X = (Act,Prop) and X’ = (Act’, Prop’) be signatures and
o: X — X be a signature morphism. For any P' = (W' w(, R', V') € Mod(X")
and ¢ € Sen(X),

(P'lo @) = (P' = Sen(0)(¢)) (4)

Proof. For any w e W (P'|,,g,w |= ¢) = (P',g,w |= Sen(c)(¢)). The proof
of this statement is done by induction over the structure of sentences. Cases
L is trivial (P'|,,g9,w = L) = (P',g,w |= Sen(o)(L)) = (0,1) and for any
p € Prop, by the defn of o-reduct, V(w,p) = V'(w, oprop(p)) which is equal to
(P’|g,g,w = p) = (P’,g,w = Sen(a)(p)). For Boolean connectives =, A, V, —
and o the proof boils down to first using the defn of Sen, followed by the defn
of |=, the induction hypothesis and finally the defn of |= again. For more details
regarding this part of the proof we refer to [5] where a similar proof is done. For
[a] ¢ the proof is similiar to the other modal connectives.
P',g,w |~ Sen(o)([a] ¢)
= {defn of Sen}
P’ g,w = [6(a)] Sen(0)(¢)
= {defn of =}
([6(c) " 1(P', g,w,Sen(0)(¢)") , (@(a) ")(P', g,w,Sen(a) () "))
= {defn of [@"] and (a™)}

([(Boiay(w,w') — (P',g,w' |= Sen(a)(¥))"),

|| (Byi(w,w') o (P g,w' = Sen(0)(¢)) "))
= {(step %)}
(M eww) = (Plosgew o). [Beww) 0 (Plogiw b o))
w'eW w'eW

= {defn [a"] and (")}
([P |or g, w, ") () (P, g, w,07))
= {defn of |=}
P,‘Uvng |: [O‘]SD
(step *) By the definition of reduct we have that W = W’ and for any
w, w € W, R%(a) (w,w') = Ro(w,w") = (&, ff). Also by the induction hypothe-
sis, (P', g,w |= Sen(0)(¢)) = (P'|s, 9, w |= ¢), which is equivalent to writing:

((Pcw = Sen(0)(¢))", (P g, w b Sen(U)(w))_)> _
(5)

- ((P’Lng,w L o)) (Plovgw 90)’)

Stepwise Development of Paraconsistent Processes 335

Therefore P’/ g,w = Sen(o)(p))"™ = (Pls,9,w E ¢)" and (P g,w |

Sen(0)(9))" = (P'lo, g, =)

For the case of state variables we have that P’, g, w |= Sen(o)(x) is either (1,0)
r (0,1). We illustrate the proof is it is equal to (1,0) then, if (P',g,w =

Sen(o)(z)) = (1,0), by definition of Sen, we have (P’,g,w |=) = (1,0). Thus,

by induction hypothesis, (P'|,, g, w = z) = (1,0).

The case M, g, w |= Sen(c)(| x.¢) using the defn of Sen and |=, M, g[x —
w], w |= Sen(o)(p) by the induction hypothesis and defn of =, M'|,, g, w =] x.¢.
Similarly, for M’, g,w [= Sen(0)(Q,.¢) = M’ g,w = @,.Sen(c)(y) using the
defn of |=, M’, g,g9(z) |= Sen(c)(p) followed by using the induction hypothesis
and defn of =, M'|,, g,w |= Q.

In conclusion we have proven for any w € W, (P'|,,g,w |= ¢) = (P',g,w |=
Sen(0)(y)) if w is replaced by wo, (M|, = ¢) = (M’ = Sen(o)(p)).

The following theorem is a consequence of this subsection where all the ingre-
dients of institution P are formalized in a categorical manner.

Theorem 1. P(A) = (SignP(A),Senp(A),I\/Iodp(A), Fpa)) is an institution,
for any fized twisted algebra A.

4 Formal Development Method a la Sannella and Tarlecki

Once set a suitable institution to reason about specifications of paraconsistent
processes, we turn to the methodological level. Therefore, the notions of a simple,
constructor and abstract implementation for paraconsistent specifications are
presented below.

A paraconsistent specification consists of a pair SP = (Sig(SP), Mod(SP))
where Sig(SP) is a signature in Sign and M od(SP) : Mod(Sig(SP)) — AxAisa
mapping that associates to any process P € Mod(Sig(SP)) a pair (#, ff) € Ax A
such that # represents the evidence degree of P satisfying the requirements of
SP and ff represents the evidence degree of P not satisfying the requirements
of SP.

Definition 9. A flat specification is a pair SP = (X,P) where X € Sign is
a signature and ® < Sen(X) is a set of azioms. Hence, Sig(SP) = X and

Moasp)(P) = ([P E)).

Flat specifications, that consist of a signature and a set of axioms, are suitable
to capture requirements that can be easily expressed by a set of axioms. A
simple refinement of specifications is classically seen as a restriction of the class
of models. For paraconsistent specifications refinement is defined as follows

Definition 10. A paraconsistent specification SP’ is said to simple refine, or
implement, another paraconsistent specification SP, in symbols SP v~ SP’, if
both are over the same signature and for all P € Mod(Sig(SP)), Mod(SP')(P) <
Mod(SP)(P).

336 J. Cunha et al.

Transitivity of < ensures that vertical composition of simple implementations is
well defined, that is, if SP v~ SP’ and SP’ v~ SP” then SP «~» SP".

The running example in this work is adapted from the examples documented
in [12] of a file compressing service. It consists of a compressing service of text files
whose information regarding inputs and outputs can admit contradictions, for
example because some components of the service are malfunctioning or subject
to malicious manipulation.

Ezample 1. Let G be the underlying iMTL-algebra, that is weights are a real
number in the interval [0,1]. Consider the specification SP, over signature
{in,out}, &y where the set of propositions is empty and the set of actions
is Act = {in,out} with {in} standing for the input of a text file and {out}
standing for the output of a zip-file. SF, is a very loose specification, whose only
requirement is (in)T A [out]L, i.e. at the beginning of a computation only an
input action is allowed. Let Py = (W, wo, R, V') be the following process:

out|(0.7,0.4)

(1
wo D in|(1,1)
Notice that!,

Mod(SPy)(Py)
=Py |= ((in)T A [out] L)
= Py, wo = ((in)T A [out] L)
= (Py,wp = (in)yT) M (P, wo = [out] L)
= ((n™Y(Po, wo, T), [in™](Po, wo, T)Ml
([out*](Py, wo, L 1), lout*Y(Py, wq, L7))
= (min(R;, (wo, wo), (Po, wo |= T)"), Ry, (wo,wo) — (Po,wo = T)7) M
(R (wo, wo) — (Po,wo |= L)*, min(R,,, (wo, wo), (Po, wo = L)7))

= (mi;u(l, 1),1 - 0) M (0.7 — 0,min(0.7,1)) = (1,0) Ml (0,0.7)
= (min(1,0), max(0,0.7)) = (0,0.7)

Since there is some evidence degree that the computation may start with an
output action, Py has an evidence degree 0 of satisfying the requirements of S P,
and an evidence degree 0.7 of not satisfying them. Notice that Mod(SFy)(Py)~
is equal to the evidence degree of action out occurring, that is, R, (wo, wo)-

If we now consider a more concrete specification S P; over the same signature,
whose requirement is | zq.((in) | x1({out)zo A [in]L) A [out] L), meaning that
at the beginning only an input action is allowed, after every input the next
action must be an output action, and after any output action the system must
go on with an input returning to the initial state. Consider the following P; =
(W', wj, R', V") process where all transitions represent consistent information
except for Ry (w],wh) that conveys inconsistent information.

! Valuation g is omitted since (in)T A [out]L is a sentence without free variables.

Stepwise Development of Paraconsistent Processes 337

. in|(1,0) .
wy ————————— w}

0ut|(1,0)1\ Jout|(0.7,0.4)

! !
%
w3 Wo

in|(1,0)
The requirement of SP, is also a requirement of SP;. Therefore, SPy
SP; and Mod(SP)(Py) = (0,1) < (0,0.7) = Mod(SPy)(Fy) and
Mod(SPy)(Py) = (0,1) < (1,0) = Mod(SPy)(Py). As expected,

Mod(SPy)(Py) = (0,1) since in P; after an initial input action followed by
an output action the initial state is not reached.

For one specification to implement another (i.e. SP v~ SP’) they both
need to have the same signature. Such definition of implementation can be too
strict since some practices in software development often require implementation
decisions, such as introducing new features or reusing previously defined features,
which entail the need to deal with different signatures along the development
process. The notion of a function called constructor that transforms models
into other models, possible with different signatures. In such cases constructor
implementations are the tools to be used.

Given signatures Xy,...,%,, X, a constructor is a function k : Mod(X;) x

- x Mod(X,,) — Mod(X). For a constructor k and a set of constructors
ki © Mod(X}) x --- x Mod(XF) — Mod(%;) for 1 < i < n, the construc-
tor, k(k1,... kn) © Mod(Z1) x ... x Mod(Z¥) x ... x Mod(Z}) x ... x
Mod(X%n) — Mod(X) is obtained by the usual composition of functions.

Definition 11. Let SP,SPy,...,SP, be paraconsistent specifications over sig-
natures X, X, ..., X, respectively, and k : Mod(X)x---xMod(X,,) — Mod(X)
a constructor. We say that (SPy,...,SP,) is a constructor implementation via
k of SP, in symbols SP vy (SPy,...,SP,) if for any P; € Mod(X})

@1 Mod(SP;)(P;) < Mod(SP)(k(P1,...,P,))

The implementation is said to involve decomposition if n > 1.

We illustrate the concept of a constructor by redefining the constructors
documented in reference [12] to suit our paraconsistent logic.

Definition 12. Let X = (Act, Prop) and X' = (Act’, Prop’) be signatures such
that Prop < Prop’ and Act < Act’. The signature estension constructor is
kewt : Mod(X) — Mod(X"). Let P = (W, wq, R, V') be a process. Then, keyt(P) =
(W, wo, R, V') with

CRw] = R,[w] if a € Act
“ {(w,w’,0,1) for allw' € W} otherwise

338 J. Cunha et al.

Vi, p) = {V(w,p) ifpe ?rop

0,1) otherwise
Definition 13. Let Xy = (Act, Prop) and Y5 = (Act’, Prop’) be signatures. The
parallel composition constructor is kg : Mod(X;) x Mod(X3) — Mod(X®) where
X® = (ActU Act’, Prop UProp’). The parallel composition of P = (W, wq, R, V)
and P’ = (W’,w(’),R',V') is PQ P = (W%, (wg,w)), R®, V®) with

- W =W x W
— for any (w,w') € W®

— ifa e ActNAct’, R,(w,v) = (o, 8) and R, (w',v") = (', 3'), then (v,0') €
W® and RE((w, w'), (v, >=(<am,ﬂuﬂ>

—ifae Act\ Act’, R,(w,v) = (a, B), then (v,w') € W® and
RZ((w,w'), (v,w)) = (o, B)

fzfaeAct \Act R (w',v") = (o, 3), then (w,v") € W® and
R ((w,w’), (w,v)) = (o/, ')

— for any (w, w') € VV®
— if p € Prop N Prop’, VO ((w,w’),p) = V(w,p) MV'(w',p)
— if p€ Prop \ Prop’, V®((w,w’),p) = V(w,p)
— if pe Prop’ \ Prop, V®((w,w’),p) = V'(w’, p)

Example 2. A specification interface for SP; is now built from two components.
One is Ctrl with actions Actey = {in, tat, zip, out}. It receives an input, action
in, from the user, to be given with action txt to the other component GZip, and
receives a zip-file, action zip, that is returned with action out. This behaviour is
specified by

L @o.((in) | @1.({twt)y | xo.((zip) | x3.(Cout)yzo A [—out] L)
A [=zip]L) A [—tat] L) A [—in]L)

The other component is GZip with actions Actgziy, = {txt, comp, zip}. First it
receives action txt from Ctrl, then with action comp compresses it, and finally
delivers a zip-file with action zip. This behaviour is specified as

L 2o (Gxt) | x1.({comp) | xo.((zipyxg A [—zip|L) A [—comp] L) A [—txt]Ll)

Let P and P’ be models of Ctrl and GZip, respectively.

in|(1,0)) txt|(1,0))
Wy ——————— Wy wh —————— W]
0ut|(1,0)1\ J{ta"ﬂ(lao) compl(1,0)
zip[(0.8,0.5)
W3 ¢———— Wy o
zip|(0.7,0.4) 2

The parallel composition of process P and P’ is the process P ® P’:

Stepwise Development of Paraconsistent Processes 339

- inl(1,0) [tat](1,0) ,
(wo, wh) ———— (w1, wp) ———— (w2, wh)

Jcomp(l, 0)

w3, wp) ——————— (wo, W)
(123, 105) 2ip|(0.7,0.5) (102, 102)

out|(1,0)

The models of specification Ctrl®G Zip, by the definition of ®, consist of all the
possible parallel compositions of the models of C'trl and G Zip. Therefore, Ctri®
GZip vy, (Ctrl,GZip) is a constructor implementation with decomposition,
with the requirements of Ctrl ® GZip being similar to the previous ones. Thus,

Mod(Ctrl)(P) A Mod(GZip)(P') =(0.7,0) [(0.8,0) = (0.7,0)
=Mod(Ctrl® GZip)(P ® P’)

Definition 14. A signature morphism o : X — X' between signatures X =
{Act,Prop) and X' = (Act’',Prop’) defines a constructor k, : Mod(%') —
Mod(X) that maps any P’ € Mod(X") to its reduct k,(P') = P'|,.

If o is bijective then k, is a relabelling constructor; if o is injective then k, is a
restriction constructor.

Definition 15. Let X = {(Act,Prop), X' = (Act’,Prop’) be signatures and
X = {(D,Prop’) also be a signature such that D < Str(Act’) is a finite sub-
set and f : X — X% is a signature morphism. Then, the action refinement
constructor ky : Mod(X,) — Mod(X) maps any P’ € Mod(X},) to its reduct
Mod(f)(P).

Ezample 3. Let us define an action signature morphism f : {in,out} —
Str(Actcirr U Actazip) with f(in) = injtat;comp and f(out) = zip;out.
The following process P = (W,wp, R,V) is the f-reduct of P ® P’, with
Rout(wlll7wg) = R(z%p;out((w%wé)V(wvaé)

in|(1,0)

out|(0.7,0.5)

We are now able to define an action refinement step SP; v Ctrl ® GZip.
Notice that, Mod(Ctrl ® GZip)(P® P') = (0.7,0) = Mod(SP1)((P® P')|y).
Thus, we are now able to define a refinement chain: SPy v SPp v Cirl®
GZip vk, (Ctrl @ GZip). That can be written as SPy v SPp v ok,
(Ctrl, GZip).

Often in software development some model does not satisfy exactly the
requirements of a specification because of certain implementation details. In
this situations a model may still satisfy them abstractly if it exhibits the desired

340 J. Cunha et al.

observable behaviour. Abstractor implementations aim at defining what pre-
cisely it means for two models to be identical from an observational perspective.
This will be expressed by the use of an equivalence relation = between mod-
els, which, as one might expect, comes from a suitable notion of bisimulation
between paraconsistent processes. Next definition generalises the bisimulation
notion introduced in [3] to multi-modalities:

Definition 16. Let ¥ = (Act,Prop) be a signature and P = (W,wq, R,V),
P = (W' wjy, R, V") be X-processes. A relation B € W x W’ is a bisimulation
between P and P’ if for any (w,w’) € B:

(Atom) for any p € Prop, V(w,p) = V'(w',p)

(Zig) for any v € W such that R,(w,v) = («a, 3), there is v' € W' such that
R, (w',v") = (a0, B) and (v,v') € B

(Zag) for any v' € W' such that R, (w',v") = (o, 8), there is v € W such that
R, (w,v) = (o, B) and (v,v') € B

If there is a bisimulation B such that (w,w’) € B for some w € W, w' € W/,
we say that w and w’ are bisimilar states and write w ~ w’. Given two para-
consistent processes P = (W, wp, R, V) and P’ = (W', w{, R', V') over the same
signature, we say that P and P’ are behaviourally equivalent, in symbols P = P/,
if and only if wy ~ w(. Clearly, = is an equivalence relation.

Let SP be a paraconsistent specification over X' then, Mod(abstractor SP)
is the closure of Mod(SP) under =. Thus,

Mod(abstractor SP)(M) = WU | Mod(SP)(N)

Ne[M]=
where [M]= = {N € Mod(X) | N = M}.

Definition 17. Let SP, SP’ be paraconsistent specifications over X and =<
Mod(X) x Mod(X). We write SP ~~»= SP" when SP’ is a simple abstractor
implementation of SP, that is, for any M € Mod(X)

Mod(SP")(M) < Mod(abstractor SP)(M)

The next definition combines abstractor implementation with constructor for
paraconsistent specifications, generalizing [12, Definition 5.

Definition 18. Let SP, SPy, ... ,SP, be paraconsistent specifications over sig-
natures X, Xy, ..., X, respectively, k : Mod(X1) x -+ x Mod(X,,) — Mod(X)
a constructor and =< Mod(X) x Mod(X) an equivalence relation.

We say that (SPy,...,SP,) is an abstractor implementation of SP, in symbols
SP o (SPy, ..., SPy,) if for any P; € Mod(X;),

_ﬁ Mod(SP;)(P;) < Mod(abstractor SP)(k(Py,...,P,))

Stepwise Development of Paraconsistent Processes 341

Let k& : Mod(X;) x -+ x Mod(X,) — Mod(X) be a constructor and,
for each 1 < ¢ < n, =; an equivalence relation between X;-models and =
an equivalence relation between X-models. We say that a constructor k pre-
serves abstractions =; if for any M;, N; € Mod(X;) such that M; =; N;
k(My,..,M,) = k(Ny,...,Ny).

Proposition 2. The alphabet extension, parallel composition, reduct and action
refinement constructors perverse behavioural equivalences, that is,

— for any P =P’ keyt(P) = kext(P')

— for any Py = P{ and P, =Pj, PL® P, = P/ ® P,

—leto : X — X' be a signature morphism. For any P, P’ € Mod(X"), if P = P’
then P|, = P'|,

— let X, X" be signatures. Consider the subset D < Str(Act’) and signature
YXp = (D,Prop’) and let f : ¥ — Xp be a signature morphism. For any
P, P’ € Mod(Xp), if P = P’ then P|y = P'|f

The proof of Proposition 2 is omitted since it is similar to the ones found in [12]
for Theorems 4, 5 and 6. Analogously to [12, Theorem 3], next theorem states
vertical composition for constructors and abstractor implementations:

Theorem 2. Consider specifications SP,SPy,...,SP, over signatures X X,
.., X respectively, a constructor k : Mod(X1) x -+ x Mod(X,) — Mod(X
and an equivalence relation =< Mod(X) x Mod(X) such that SP %
(SPy,...,SP,). For each i € {1,...,n} let SP; v (SP},...,SP") with
specifications SP}, ..., SPI over signatures X}, ..., X" respectively, construc-
tors ki : Mod(X}) x --+ x Mod(X]?) — Mod(X;) and equivalence relations
=; € Mod(X;) x Mod(X};). Suppose that k preserves the abstractions =;. Then,

SP k) (SP},...,SP",...,SPL ... SP™)

With k(ki,...,k,) @ Mod(Z1) x -+ x Mod(Z]') x --- x Mod(X1) x - x
Mod(X7») — Mod(X) being a constructor defined by the composition of con-
structors k; and k.

Proof. For each 1 <i<mnandforalll<j<r;, let Mf € Mod(Eg). For each 1,
by hypothesis, SP; v (SP},...,SP"),

ITﬁl Mod(SP/)(M]) < Mod(abstractor SP; w.r.t =;)(k;(M},..., M)
j=

= W Mod(SP)(N;)

 Nie ks (M. M,
For each i, let M; be a X;-model such that
lrﬁl1 Mod(SP})(M?) < Mod(abstractor SP; w.r.t =;)(k;(M},..., M)
=

(6)

342 J. Cunha et al.
By definition of M;, we have that M; € [k;(M},...,M]")]=,, that is, M; =;
ki(M}, ..., M"). Since k preserves abstraction =,

E(My,...,M,)=k(ky,... k) (M}, ..., M. M}

ni*

M) (7)
By hypothesis, SP vwwi (SPy,...,SP,),

ﬁl Mod(SP;)(M;) < Mod(abstractor SP w.r.t =)(k(M,...,M,))

= uj Mod(SP)(N)
Ne [k(My,...,M,)]=

(®)

By Eq. 7, we have that:

k(ki, ... ko) (M}, ..., M. MY M) e [k(My,...,My)]= (9)
Since = is transitive, in Eq.8, [k(My,...,M,)]= can be replaced with
(k(k1, .. ko) (ML, MY o MY M)]—. Considering Eq.6, we know
that for each 1,

‘ﬁ1 Mod(SPij)(Mf) < Mod(SP;)(M;)
j=
Since [Ml is monotone,

M fil Mod(SP!)(M]) < 1 Mod(SP)(M;) (10)

=1 j=
With (9) and Eq. 10 we can rewrite Eq. 8 as:

n T . .
MM Mod(SP))(M]) <
i=1 j=

Mod(abst. SPw.r.t =)(k(ky, ... ko)(Mi,... MY, M, ... M)
Thus, SP w (SPL...SP™, ... SPL, ... SPm).

noi*

5 Conclusions

This paper is part of on-going research agenda on the (pragmatical) use of para-
consistency in a discipline of software design. Building on previous contributions
[3,5] detailed in the Introduction, we define i) an institution to frame modelling
and reasoning about paraconsistent processes, and i) develop a formal, step-
wise development method a la Sannella and Tarlecki for this sort of systems. In
particular constructor and abstractor implementations were addressed in detail.

There are, of course, several directions for future work. One certainly worth
to be explored consists in framing the logics discussed here under the paradigm
of asymmetric combination of logics, where the features of a specific logic are
developed on top of another one (see e.g. [14]). More precisely, we intend to
introduce a systematic way to build paraconsistent modal logics on top of a
(base) logic, used to represent the state space. This can be done along the lines
of the so-called temporalization [8], and hybridisation of logics [13] processes. A
detailed discussion of our method with respect to the approach introduced by
Costa [6] to convert classic into paraconsistent logics is also in order.

Stepwise Development of Paraconsistent Processes 343

References

10.

11.

12.

13.

14.

15.

Agusti-Cullell, J., Esteva, F., Garcia, P., Godo, L.: Formalizing multiple-valued
logics as institutions. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.)
IPMU 1990. LNCS, vol. 521, pp. 269-278. Springer, Heidelberg (1991). https://
doi.org/10.1007/BFb0028112

Brauner, T.: Hybrid Logic and its Proof-Theory. Springer, Applied Logic Series
(2010)

Cruz, A., Madeira, A., Barbosa, L.S.: A logic for paraconsistent transition systems.
In: Indrzejczak, A., Zawidzki, M., (eds.) 10th International Conference on Non-
Classical Logics. Theory and Applications, vol. 358. EPTCS, pp. 270-284 (2022)
Cruz, A., Madeira, A., Barbosa, L.S.: Paraconsistent transition systems. In: Work-
shop on Logical and Semantic Frameworks, with Applications, EPTCS (in print)
Cunha, J., Madeira, A., Barbosa, L.S.: Structured specification of paraconsistent
transition systems. In: Fundamentals of Software Engineering. LNCS (in print)
de Souza, E.G., Costa-Leite, A., Dias, D.H.B.: On a paraconsistentization functor
in the category of consequence structures. J. Appli. Non-Class. Logi. 26(3), 240—
250 (2016)

Esteva, F., Godo, L.: Monoidal t-norm based logic: Towards a logic for left-
continuous t-norms. Fuzzy Sets Syst. 124, 271-288 (2001)

Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. J. Logic
Lang. Inform. 1(3), 203-233 (1992)

Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for tpecification
and programming. J. ACM 39(1), 95-146 (1992)

Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge, MA,
USA (2000)

Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos.
Log. 27(1), 49-73 (1998)

Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the stepwise
development of reactive systems. Theor. Comput. Sci. 744, 78-96 (2018)
Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of insti-
tutions. In: Corradini, A., Klin, B., Cirstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 283—-297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22944-2_20

Neves, R., Madeira, A., Barbosa, L.S., Martins, M.A.: Asymmetric combination of
logics is functorial: a survey. In: James, P., Roggenbach, M. (eds.) WADT 2016.
LNCS, vol. 10644, pp. 39-55. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-72044-9_4

Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Monographs on TCS, EATCS. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-17336-3

https://doi.org/10.1007/BFb0028112
https://doi.org/10.1007/BFb0028112
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-319-72044-9_4
https://doi.org/10.1007/978-3-319-72044-9_4
https://doi.org/10.1007/978-3-642-17336-3

	Stepwise Development of Paraconsistent Processes
	1 Introduction
	2 Preliminaries
	3 An Institution for Paraconsistent Transitions Processes
	4 Formal Development Method à la Sannella and Tarlecki
	5 Conclusions
	References

