Chapter 16
Parallel Algorithms for Multirelational Data
Mining: Application to Life Science Problems

Rui Camacho, Jorge G. Barbosa, Altino Sampaio, Joao Ladeiras,
Nuno A. Fonseca and Vitor S. Costa

16.1 Introduction

The amount of data stored nowadays in databases is huge and increases every year
at a very fast pace. The analysis of such data can be very useful for both business
and research. However, in order to analyze large amounts of data or address highly
complex problems, computational-based tools are required. Knowledge Discovery
in Databases (KDD) [15] aims at the discovery of patterns that are both novel and
potentially useful. In some applications the comprehensibility of the pattern is also a
requirement. The KDD process encompasses a series of steps, one of them being the
DM step. In the DM step, algorithms based on Machine Learning (ML) and Statistics,
among others, are used to construct models from the data. One may classify the ML
algorithms into two groups. Those that require the input data to be contained in a
single table of a relational database, and those that can handle directly all the tables
in a database. For simplicity, let us denominate the former ones as propositional
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learners and the latter ones as multirelational learners. Multirelational learners are
the focus of this chapter and, for simplicity sake, we will use, from now on, a shorter
name, that is relational learners.

One of the most well-known flavors of relational learning is Inductive Logic
Programming [37, 42] (ILP). ILP has been used to construct highly sophisticated
models that address very diverse tasks. Examples include Structure—activity pre-
diction [26, 59], a major challenge in rational drug design; Natural language under-
standing with Grammar acquisition [62]; Protein secondary structure prediction [27];
Qualitative model identification in naive qualitative physics [6]; Workload predic-
tion in computer networks [1]; and Expected survival time of kidney transplanted
patients [52].

The success of ILP in the above-mentioned applications is due to the following
three major features. First, ILP can very naturally accept background knowledge
that can be integrated into the constructed models. Second, ILP learning can harmo-
niously combine numerical and symbolic computations, while being able to handle
structured data. And finally, and very important, it has the capacity of building highly
comprehensible models even for complex tasks.

In the remaining part of this chapter, we introduce the basic concepts of ILP that
are necessary to understand the rest of the text (Sect. 16.2). We then survey the
main approaches to take advantage of parallel execution to speedup ILP systems
(Sect. 16.3). Scheduling approaches are discussed in Sect. 16.4 to improve execution
of current ILP implementations. In Sect. 16.5, we present applications where the
scheduling techniques discussed here will most benefit the parallel execution. Finally,
we present a summary of this chapter and draw some conclusions in Sect. 16.6.

16.2 ILP Basic Concepts

We shall address ILP within the broader area of Machine Learning (ML) called
supervised learning. This core learning task may be stated in a set-theoretic perspec-
tive. It aims at learning an intentional description of a certain set in a universe of
elements (U), given that we are aware that some elements belong in this set (positive
examples), and that others do not (negative examples). The intentional description we
strive to learn is called the concept. In an ILP setting the concept is usually referred
to as the hypothesis. Elements known to be in the target set are called instances of
the concept. Let Q* denote the target set. Elements in Q™ = {—x | x € U\ Q')
are called negative instances or counter-examples and are elements of the universe
that are not instances of the target concept.

Note that both or either Q and Q™ may be infinite. Learning systems usually
consider finite subsets of Q and Q™. These finite subsets will be denoted by E*
(€ Q") and E™ (€ Q). If not stated otherwise E™ will be referred as the positive
examples and E~ will be referred as the negative examples.
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16.2.1 ILP Framework

ILP is concerned with the generation and justification of hypotheses from a set of
examples making use of prior knowledge. The representation most often used is
Horn clauses, a subset of First-Order Predicate Calculus.! The induced hypotheses
are represented as a finite set or conjunction of clauses denoted by H. H is of the form
h; A - -+ Ah; where each h; is a nonredundant clause. The prior knowledge, also called
background knowledge, will be denoted by B. B is described in the same language,
that is, it is a finite set or conjunction of clauses, B=C; A - - - A C,,, typically definite
clauses. In the ILP setting a positive example is often represented by a positive unit
ground clause, also known as a ground atom; this largely corresponds to a database
tuple. E* is a conjunction of ground atoms. E* =ef Aej A ... A€, where e/ is an
individual positive example.

Negative examples are typically negative unit ground clauses. E™ represents the
conjunction of negated ground atoms. If we denote a negative example by f; then
E - =fiA o A...A f..ET A E™ is the training set.

Notice that ILP systems can use nonground examples and not all of them need
negative examples to arrive at a concept description [40].

In the ILP framework to learn corresponds to induction, and we must meet the
following conditions. First, we must ensure consistency conditions, that is, the back-
ground B and the training set must be logically consistent. The first two conditions
are required for consistency:

B = 0O
ETAE™ 0O
The background knowledge should be consistent with the negative examples. In other
words, B should not logically imply any of the negative examples. This condition is
called prior satisfiability [38]:
B AN E” L.
To justify the need for the induction process it is necessary to satisfy the so called
prior necessity condition [38]:
B ¥~ ET.
The induced hypotheses should satisfy the posterior satisfiability condition [38]:

B ANHANE O

That means the hypotheses found should be consistent with the negative examples.

I'We refer to John Loyd’s book [30] for basic concepts and definitions of Logic Programming.
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The set of hypotheses should not be vacuous and explain the positive examples,
as stated by the posterior sufficiency condition [38]:

BAHEE'

The last condition states that each hypothesis h; € H should not be vacuous. This
condition is called posterior necessity condition.

BAhi=efvefv.---vel (Yh,h; € H)

As an example imagine that the system is learning the concept of a virtuoso player.
Consider that the information given to the system is the following:

[ plays_instrument (glenn_gould, piano) <«
plays_instrument (david_oistrach, violin) <«
plays_instrument ( fisher, piano) <«
plays_instrument (john, violin) <«

B { performance(glenn_gould, piano, superb) <«
performance(david_oistrach, violin, superb) <«
performance(fisher, piano,lousy) <«
performance(fisher, chess, superb) <
performance(john,violin, lousy) <«

4 | virtuoso(glenn_gould) <
virtuoso(david_oistrach) <
E- <« virtuoso(fisher)
<« virtuoso(john)

The previously stated prior conditions are met. B is trivially consistent. E* AE™
are also trivially consistent. B does not logically entail the negative examples or any
of the positive examples since the predicate symbol virtuoso does not appear in B.

A possible hypothesis generated by an ILP system could be the following single
clause:

virtuoso( Player ) <
plays_instrument( Player, Instrument ) A
performance( Player, Instrument, superb).

The hypothesis found satisfies the posterior conditions. B A H does not logically
entail E™ since neither fisher nor john are capable of a superb performance when
playing an instrument.
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16.2.2 A Generalization Ordering

The number of hypotheses satisfying the previously stated conditions is, in general,
very large and even infinite in most cases. However, it is possible to constrain the
hypothesis space by imposing an ordering on the set of clauses. The learning algo-
rithm may then take enumerate hypotheses according to that ordering. The search
space may be systematically searched and some parts of the space may be justifiably
ignored during the search.

One such ordering over the set of clauses was mentioned originally in [53] and is
called subsumption.

Definition 1 If C and D are two distinct nonempty clauses, then C subsumes D and
we write C < D iff there is a substitution 6 such that CO C D.

Definition 2 A clause C is subsumption equivalent to a clause D and we write C
=, Diff Cx D and D < C. A clause is reduced if it is not subsumption equivalent
to any proper subset of itself.

Subsumption is the most common ordering over the set of clauses used in ILP
systems. 6-subsumption [46] is usually the name used in ILP to refer to the concept
of subsumption. The ordering over the set of clauses is sometimes called a gener-
alization model [7]. If not stated otherwise, the generalization ordering assumed in
the definitions of the rest of the chapter is subsumption.

The concept of redundancy follows naturally from the idea of an ordering over
the set of clauses and the concept of equivalence between clauses or sets of clauses.
Note, that there are two kinds of redundancy. A literal may be redundant within a
clause and a clause may be redundant within a set of clauses.

Definition 3 A literal | is redundant in clause C V 1 relative to background theory
B iff
BA(CVvI)=BAC.

Definition 4 A clause C is redundant in the theory B A C iff
B AC=B.

The subsumption ordering imposes a lattice over the set of clauses.

Definition 5 A lattice is a partially ordered set in which every pair of elements a,b
has a greatest lower bound (glb) (represented by a 1 b) and least upper bound (lub)
(represented by a L b).

Definition 6 A generalization ordering (or generalization model) is a partial
order’ over the set of clauses. The lattice imposed by a generalization ordering
is called a generalization lattice.

2 A partial order is a reflexive, antisymmetric, and transitive binary relation.
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i=0

Ef=E" H =0

if E;r = () return H; otherwise continue
increment i

Train; = Eltl UE™

D; = search(B,H;_1,Train;, Z.,p, f)

H =H,_ U {D,}

E,={ep:e, €E' | st. BUH; = {ep}}.
Ei+ = Eitl\EP

Go to Step 3

S R S

—

Fig.16.1 AnILPimplementation using a greedy cover set procedure. The final set H is constructed
by progressively finding the next best clause in Step 6 (this is the clause with the highest utility).
The search for this clause is some generic search procedure that returns the best clause that meets
the requirements (previously stated in this section)

The top element of the subsumption lattice is [, the empty clause. The glb of
two clauses C and D is called the most general instance (mgi) and is the union of the
two clauses mgi(C,D) = C U D. The lub of two clauses C and D is called the least
general generalization (Igg) [46] of C and D. Under subsumption the glb and lub
of clauses are unique up to renaming of variables.

As pointed out by Mitchell [36] the task of concept learning can be mapped into a
search through a space of hypothesis. A generalization ordering is a crucial concept in
ILP for it is the basis of an organized search of the hypothesis space. The search for an
hypothesis is mapped into the traversal of the generalization lattice. The traversal of
the generalization lattice is, in general, what leads to the computationally expensive
nature of the learning task.

Figure 16.1 shows how these principles are applied in the popular greedy set cover
procedure. We repeatedly enumerate hypotheses until finding the best one, and then
drop all examples entailed by the hypothesis. Opportunities for parallelism arise
within the search process, or by relaxing the coverage algorithm so that searchhes
can run in parallel, as we discuss next.

16.3 Parallel Algorithms for ILP

Based on the principal performance bottlenecks for ILP systems, we classify three
main sources of parallelism in ILP systems [16].

Notice that other classification criteria can be used. For example, as for LP sys-
tems, we can divide strategies into those that expect to use shared memory and those
that expect to use distributed memory. Clare and King’s Polyfarm [9] is an example
of a system designed for distributed environments. Fonseca et al.’s survey of parallel
ILP systems [16] reports that most of the best results for parallel ILP were obtained
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on shared-memory architecture, but argues that there is scope for experimenting with
distributed-memory “clusters”.

Search. We can distinguish here between parallel execution of multiple searches,
and the parallel execution within a search. The granularity of the latter is substan-
tially finer than the former.

Data. In this, individual processors are provided with subsets of the examples
prior to invoking the search procedure in Fig. 16.1. We distinguish between two
forms of parallel execution, with different communication requirements. In the
first, each processor completes its search and returns the best clause. The set of
all clauses are then reexamined in conjunction and a final result constructed by
recomputing the utility of each clause using all the data. In the second approach,
as each processor finds a good clause, its utility in the final set is recomputed using
all the data. The granularity of the second approach is finer than the first, but it
has the advantage that all clauses found will also be in the final set of clauses (in
both cases, recursive clauses cannot be identified reliably).

Evaluation. The search procedure invoked in Fig. 16.1 evaluates the utility of a
clause. This usually requires computing its “coverage”, that is, determining the
subset of E entailed by the D; given B and H;_;. An “example-based” strategy
involves partitioning E into blocks. The blocks are then provided to individual
processors, which compute the examples covered in the block. The final coverage
is obtained by the union of examples entailed in each block. There is a similarity
to the coarse data parallelism strategy described above. These two processors
are provided with subsets of the data. There, the subsets are used to identify
different clauses. Here, the subsets are used to evaluate a given set of clauses. An
“hypothesis-based” strategy would involve determining subsets of literals in each
D; that can be evaluated independently (this could be identified, for example,
using the “cut” transformation described in [54]). Each such independent subset
is then evaluated on a separate processor and the final result obtained by the
intersection of examples is entailed by the subsets.

The three strategies above are not mutually exclusive. In fact, a parallel algorithm
may exploit several. Furthermore, we again observe that the parallel algorithms can
be classified in many different ways. For instance, we could also classify the parallel
algorithms regarding their correct, i.e., do they produce the same solution (correct)
as the corresponding sequential algorithm. Next, we will focus our classification of
previous work on parallel ILP systems on the three strategies mentioned above, along
with the hardware architecture. Figure 16.2 shows a brief summary of the entries that
follow.

Dehaspe and De Raedt [13] developed the first parallel ILP system that we are
aware of. The system is a parallel implementation of Claudien, an ILP system capa-
ble of discovering general clausal constraints. The strategy is based on the parallel
exploration of the search space where each processor keeps a pool of clauses to spe-
cialize, and shares part of them to idle processors (processors with an empty pool).
In the end, the sets of clauses found in each processor are combined. The system was
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Fig. 16.2 Parallel ILP Parallelism Architecture
Systems Reported in the ) Shared-Memory Distributed-Memory
Literature Dehaspe & De Raedt [13]
Ohwada & Mizoguchi [43
Search Ohwada et al. [4‘%] 143] No reports
Wielemaker [61]
Matsui et al. [32]
Data Wang & Skillicorn [55] Clare & King [9]
Graham et. al [22] Blatdk & Popelinsky [4]
Evaluation Ohwada & Mizoguchi [43]|Matsui ez al. [32]
Graham et al. [22] Konstantopoulos [28]

evaluated on a shared-memory computer with two data sets and exhibited a linear
speedup up to 16 processors.

Ohwada and Mizoguchi [43] have implemented an algorithm based on inverse
entailment [39]. The implementation uses a parallel logic programming language
and explored the parallel evaluation of clause coverage, and two strategies for search
parallelisation (parallel exploration of independent hypotheses and parallel explo-
ration of each refinement branch of a search space arising from each hypothesis). The
system was applied to three variants of an email classification data set and the exper-
iments performed evaluated each strategy. The results on a shared-memory parallel
computer showed a sublinear speedup in all strategies, although parallel coverage
testing appeared to yield the best results.

An algorithm that explores the search space in parallel was first implemented by
Ohwada et al. [44]. The set of nodes to be explored is dynamic and implemented
using contract net communication [56]. Their paper investigated two types of inter-
process communication, with results showing near-linear speedups on a 10-processor
machine.

Wielemaker [61] implemented a parallel version of a randomized search found
in the Aleph system. The parallel implementation executes concurrently several ran-
domized local searches using a multithreaded version of the SWI Prolog engine.
Experiments examined performance as the number of processors was progressively
increased. Near-linear speedups were observed up to 4 processors, however the
speedup was not sustained as the number of processors increased to 16.

Wang and Skillicorn [55] have implemented a parallel version of the Progol algo-
rithm [41] by partitioning the data and applying a sequential search algorithm to each
partition. Data are partitioned by dividing the positive examples among all proces-
sors and by replicating the negative examples at each processor. Each processor then
performs a search using its local data to find the (locally) best clause. The true utility
of each clause found is then recomputed by sharing it among all processors. Note
that this algorithm exploits the parallelization strategies identified (parallel search,
data and evaluation) mentioned above, thus being an example that the strategies are
not mutually exclusive. Experiments with three data sets suggest linear speedups on
machines with four and six processors.

A study by Matsui et al. [32] evaluates and compares two algorithms based on
data parallelism and parallel evaluation of refinements of a clause (the paper calls this
parallel exploration of the search space, although it really is a parallelisation of the
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clause evaluation process). The two strategies are used to examine the performance
of a parallel implementation of the FOIL [47] system. Experiments are restricted
to a small synthetic data set (the “trains” problem [35]) and the results show poor
speedups from parallelisation of clause evaluation. Data parallelism showed initial
promise, with near-linear speedups up to four processors. Above four processors,
speedup was found to be sublinear due to increased communication costs.

PolyFarm was a parallel ILP system specifically designed for the discovery of
first-order association rules on distributed-memory machines developed by Clare and
King [9]. Data are partitioned amongst multiple processors and the system follows
a master—worker strategy. The master generates the rules and reports the results and
workers perform the coverage tests of the set of rules received from the master on the
local data. Counts are aggregated by a special type of worker that reports the final
counts to the master. No performance evaluation of the system is available.

An implementation of a parallel ILP system, using the PVM message passing
library, was done by Graham et al. [22]. Parallelisation is achieved by partitioning
the data and by parallel coverage testing of sets of clauses (corresponding to different
parts of the search space) on each processor. Near-linear speedups are reported up to
16 processors on a shared-memory machine.

Konstantopoulos [28] has investigated a data parallel version of a deterministic
top-down search implemented within the Aleph ILP system [57]. The parallel imple-
mentation uses the MPI library and performs coverage tests in parallel on multiple
machines. This strategy is quite similar to that reported in Graham et al., with the
caveat that testing is restricted to one clause at a time (Graham et al. look at sets
of clauses). Results are not promising, probably due to the overfine granularity of
testing one clause at a time.

dRap was developed by Blatdk and Popelinsky [4]. This was a parallel ILP system
specifically designed for the discovery of first-order association rules on distributed-
memory machines. Data are partitioned amongst multiple processors and the sys-
tem follows a master—worker strategy. The master generates the partitions and each
worker then executes a sequential first-order association rules learner. The master
collects the rules found by the workers and then redistributes the rules by all the
workers to compute the support on the whole data set. No performance evaluation
of the system is reported.

Angel-Martinez et al. [31] describe the use of GPUs to perform parallel evaluation
of hypotheses. The authors extended the widely used Aleph system, parallelism is
implemented by evaluating clauses as Datalog queries, and then taking advantage of
prior work in implementing the main database primitives in GPUs. Results show a
one or two order of magnitude in large data sets, where the overhead of sending a
clause to a GPU is significantly less than the benefits of parallel execution.

Results reported by these papers are summarized in Fig. 16.3. The principal points
that emerge are these:

1. Most of the effort has been focused on shared-memory machines where the com-
munication costs are lower than for distributed-memory machines.
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Fig. 16.3 Summary of Paralleli Speedup
speedups reported of parallel arafielism Shared-Memory Distributed-Memory
ILP systems. The numbers in Dehaspe & De Raedt: Linear (16)
parentheses refer to the Search Ohwada & Mizoguchi: 2-3 (6) |\~
number of processors. Ohwada et al.: 8 (10) port
Neither Clare and King nor Wiclemaker: 7 (16)7
Blatak and Popelinsky report Wang & Skillicorn: Matsui er al.: 4 (15)F
any speedups Data Linear or better (6) Clare & King: —
Graham et. al:linear (16) Blatdk & Popelinsky: —
. Ohwada & Mizoguchi: 4 (6) Matsui et al.: 1 (15)
Eval
valuation Graham et al.: 5 (8) Konstantopoulos: none

T linear up to 4 processors
# linear up to 5 processors

2. Speedups observed on shared-memory machines are higher than those observed
on distributed-memory ones. Maximum disparity is observed with parallel execu-
tion of the coverage tests: this is undoubtedly due to the fact that communication
costs are high for distributed-memory machines, and the granularity of the task
is finer than other forms of parallelism.

Despite the apparently discouraging results observed to date on distributed-
memory machines, we believe that a further investigation is warranted for several
reasons. First, the results are not obtained from a systematic effort to investigate
the effect of the different kinds of parallelism. That is, results that are available are
obtained from a mix of fine and coarse-grained parallelization, on differently config-
ured networks and with different communication protocols. Second, the availability
and-parallelism of shared-memory architecture machines continues to be substan-
tially lower than distributed-memory ones (for example, distributed-memory “clus-
ters” comprised of 10s or 100s of machines are relatively easy, and cheap, to con-
struct). There is, therefore, practical interest in examining if significant speedups are
achievable in distributed-memory architectures. In this paper, we present a systematic
empirical evaluation of coarse-grained search, data and evaluation parallelization for
such architectures using a well-established network of machines (a Beowulf clus-
ter) and a widely accepted protocol for communication (an implementation of the
Message Passing Interface, or MPI [17], that can be used by applications running in
heterogeneous distributed-memory architectures).

16.3.1 The APIS ILP System

There is a strong connection between parallelism in the context of ILP and-parallelism
in the context of logic programming (LP). Parallelism has been widely studied in
LP [23], where it can be exploited implicitly, by parallelising the LP inference mech-
anism, or explicitly, by extending logic programs with primitives that create and
manage tasks and allow for task communication.



16 Parallel Algorithms for Multirelational Data Mining . .. 349

Two major sources of implicit parallelism have been recognized within LP. In or-
parallelism, the search in the LP system is run in parallel. Or-parallelism is known to
achieve scalable speedups on current hardware [10] but it works best when we want
to perform complete search, which may be expensive in the context of ILP.

And-Parallelism corresponds to running conjunctions of goals, or/and tasks, in
parallel. If the goals communicate during the parallel computation, it is called depen-
dent and-parallelism. Dependent and-parallelism may be used for concurrent lan-
guages or to implement pipelines [5]. On the other hand, independent and-parallelism
(IAP) is useful in divide-and-conquer applications and often corresponds to coarse-
grained tasks. Our approach is based on independent and-parallelism (IAP).

The APIS system introduces a new approach to the parallel execution of ILP sys-
tems. APIS partitions the hypothesis space so that each subspace can be executed
in parallel. We define two types of subspaces: standard subspaces requiring theorem
proving for clause evaluation; and subspaces that efficiently compute clause evalua-
tion without the need of theorem proving. Not only the partition enables the parallel
search but also achieves additional speedups resulting from the fact that some of
the subspaces do not use theorem proving to evaluate the hypotheses. Unfortunately,
although a partition is established on the hypothesis space the resulting subspaces
are not completely independent as we discuss later.

It is well known in LP that if a clause has subsets of literals with literals in each
subset not sharing variables with any literal of the other subsets, then each subset
can be executed in parallel. When traversing the hypothesis space an MDIE-based
ILP system constructs and evaluates clauses. Traditionally, clause evaluation is done
using a theorem prover.> Among the clauses constructed during the search, there are
clauses that satisfy the LP IAP constraint: clauses with sets of literals that do not
share variables. In this case, we can then apply bottom-up techniques. We generate
in parallel each subset of literals in the “traditional” way (using theorem proving
for evaluation) and then combine each subset to form a new clause and make the
evaluation of the combined clause in a more efficient way. The coverage of the
combined clause is computed by the intersection of the coverage lists of the clauses
being combined. This result cannot, however, be efficiently applied in a traditional
ILP system since it is computationally expensive to determine if the partition of the
clause’s literals into subsets that do not share variables exists. The key point of the
APIS system approach is to establish the partition of the hypothesis space based
on the usage mode of the predicates and verify independence at compile time, thus
avoiding the analysis of each clause for independent sets of literals at induction time.
Such partition can be computed as a preprocessing step in an efficient way. The
overall process is therefore divided into two steps: a preprocessing step where user-
provided mode of usage information used to establish the partition of the hypothesis
space; and the execution in parallel of the subspaces resulting from the previous step.
We now explain each step in detail.

An island is a set of mode declarations satisfying the following two conditions.
Each mode declaration shares at least one type with other modes in the same island.

3Counting the number of examples derivable from the hypothesis and the background knowledge.
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Each mode declaration does not share any type with any other mode declaration
outside the island. Types of the head literal are excluded from the above-mentioned
“type checking”.

The core of the APIS system is the identification of the islands since they will
be used in the partition of the hypothesis space. The algorithm for the automatic
identification of the islands is described by Algorithm 1. The use of the islands in
the parallel search of the hypothesis space is described by Algorithm 2.

Algorithm 1 Islands computation from the mode declarations

1: function COMPUTEISLANDS(AlIModes)

2 IslandsSet < @

3 Modes <« removeHeadInputArguments(AllModes) > preprocessing step
4 while Modes # ¢ do > process all modes
5 Mode = withoutInputArguments(Modes)

6: Modes = Modes \ { Mode }
7

8

9

Island = ExtendIsland({Mode}, Modes)
IslandsSet < IslandsSet U { Island }
end while
10:  return IslandsSet
11: end function

12:

13: function EXTENDISLAND(Island, Modes)

14:  repeat

15: Mode = LinkedToThelsland(Modes) > returns # if no mode was found
16: Modes = Modes \ { Mode }

17: Island <« Island U { Mode }

18:  until Mode = ¢

19:  return Island > Island as a set of modes

20: end function

The algorithm accepts as input a set of mode declarations and returns a set of
islands. First, a preprocessing step removes the types appearing in the head mode
declaration and the mode arguments that are constants. After the preprocessing the
algorithm enters a cycle where each island is determined and terminates whenever
there are no more mode declarations to process. In the main cycle a seed mode is
chosen to start a new island and then the island is “expanded”. Expanding an island
consists in adding any mode declaration not yet in the island sharing a type with any
mode already in the island. The expansion stops as soon as there is no mode outside
the island sharing a type with the modes inside the island.

The APIS execution algorithm is schematized as Algorithm 2. Algorithm 2 starts
by computing the islands: each client node is instructed to upload the data set without
the mode declarations. In the line of MDIE greedy cover ILP algorithms the main
cycle generates hypotheses, adds the best discovered hypothesis to the final theory,
and removes the examples covered by the added hypothesis. The cycle repeats until
no uncovered positive examples are left. The specificity of APIS is evident in (Steps
8 through 19). In this part of the algorithm APIS uses a pool of client nodes and
a pool of subspaces of the hypothesis space to search (determined by the partition
made on the mode declarations). Each node searches a subspace. There are two kinds
of subspaces: “saturation-based” subspaces; and “combination-based” subspaces. A
saturation-based subspace is generated as in a typical ILP general-to-specific search
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Algorithm 2 The APIS parallel execution algorithm

1: function INDUCETHEORY(DataSet, Clients)
. Islands < COMPUTEISLANDS(GetModes(DataSet))

3:  Theory < ¢

4 Examples < PositiveExamples(DataSet) > initial positive examples
5:  broadCast(Clients, loadIslandsDataSets)

6:  while Examples # ¢ do > while not covering all positives
7 Samples = getSample(Examples)

8 Jobs <« getJobs(Islands, Samples)

9: while Jobs # ¢ do > all islands processed in the cycle
10: if Clients # ¢ then

11: W < client(Clients) > get next available client
12: Clients < Clients \ { W }

13: J < nextJob(Jobs) > select a nonprocessed job
14: Jobs < Jobs \ {J}

15: sendMsg(W, J) > client W processes job J
16: end if

17: if FinishedClient(C) # @ then Clients < Clients U { C }

18: end if

19: end while

20: h = IslandsResults() > returns the best hupothesis
21: Covered = Cover(h, Examples) > compute h coverage
22: Examples = Examples \ Covered

23: if Examples # ¢ then broadcast(Clients, removeExamples(Covered))

24: end if

25: Theory < Theory U { h }

26:  end while
27:  return Theory
28: end function

followed by reduction steps that characterize MDIE systems [39]. The difference is
that to generate the subspace a subset of user-provided mode declarations (an island)
is used. All clauses constructed in this kind of subspace are evaluated by proving the
examples from background knowledge and the hypothesis under evaluation. On the
other hand in “‘combination-based” subspaces no further theorem proving is required.
Each clause constructed in a combination-based subspace merges pairs of clauses
each one coming from previously searched spaces that do not share islands. This
restriction allows the evaluation of the new clauses by intersection of the parent’s
coverage lists. We can see that there is a dependency among combination-based
subspaces. The saturation-based subspaces are the only ones completely independent.
Let us further remark that in the main cycle of the algorithm we search several
hypothesis spaces at the same time.* We have an hypothesis space for each example
of the seed. All of the jobs to execute (subspaces to be searched) are in a common pool
but only subspaces belonging to the same example are combined. The number of jobs
associated with each example is equal to the number of all possible combinations of
the islands up to the clause length. First, the saturation-based subspaces are generated,
then these subspaces are combined in pairs, in groups of three, and so on up to the
“clause length” value. The combinations are all computed once before execution of
the algorithm and each subspace is scheduled to run as soon as the two “parents”
finish.

4 As many as the size of the sample
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16.4 Scheduling and Load Balancing

Parallel implementations have been employed to significantly enhance and speed
up solution search, allowing to reach high-quality results with reasonable execution
times even for hard-to-solve optimization problems. In this section, we first present
the state of the art of computing platforms for parallel computing, and then several
approaches for accelerating ILP algorithms are discussed.

16.4.1 Parallel Computing Platforms

Parallel applications demand for substantial number of computing resources, which
were traditionally deployed by dedicated high-performance computing (HPC)
infrastructures such as clusters, and later by Grid computing [18]. Even though Grids
introduce new capabilities such as larger number of resources belonging to different
administrative domains and the ability to select the best set of machines meeting the
requirements of applications, there are limitations related to runtime environments
for applications and accomplishment of applications’ needs.

Rather than owning physical, fixed-capacity clusters, organizations have recently
shifted onto the Cloud computing [19] paradigm. Compared to aforementioned tra-
ditional networked computing environments, Cloud computing offers to end users a
variety of services covering the entire computing stack. Clouds represent a new kind
of computational model, providing better use of distributed resources, while offering
dynamic flexible infrastructures and quality of service (QoS) guaranteed services.
They support various configurations (e.g., CPU, memory, I/O networking, storage)
and scaling capacities while abstracting resource management. Cloud computing has
recently gained popularity as a resource platform for on-demand, high-availability,
and high-scalability access to resources, using a pay-as-you-go model [3]. Some
of today’s major commercial Cloud providers are Amazon EC2 [2], and Google
Cloud Platform [21]. Clouds rely on virtualisation technology for the management
of traditional data center resource provisioning. Virtualisation has several benefits
for scientific computing, such as provisioning of isolated computing environments
on shared multicore machines. Huang et al. [24] have conducted a performance eval-
uation regarding the use of virtualisation and have concluded that HPC applications
(which are performance oriented) can achieve almost the same performance as those
running in a native, nonvirtualized environment.

By means of virtualisation, a collection of virtual machines (VMs) run on top of
physical machines (PMs) to create virtual clusters [33]. Also, a VM can be suspended
and later resumed on either the same or on a different PM, which is useful for fault
tolerance and load balancing. A virtual cluster is created so a user has exclusive
access to a customized virtual execution environment. The provisioning of elastic
virtual clusters as on-demand pay-as-you-go resources is an essential characteristic of
Clouds, endowing great flexibility and scalability for end users and their applications.
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In this context, resources can be dynamically allocated, expanded, shrunk, or moved,
according to applications demand.

Parallel and distributed applications, as is the case of parallel implementation of
ILP systems, exploit the processing power of a cluster of processors. As such, these
applications can utilize the Cloud to rapidly deploy an application-specific virtual
cluster infrastructure to achieve new levels of availability and scalability. Although
Clouds were built primarily with business computing needs in mind, their value has
been already recognized within the scientific community as an easy way to store,
process, and retrieve huge data without worrying about the hardware needed. For
example, Delgado et al. [14] have explored the use of Cloud computing to execute
scientific applications, with a specific focus on medical image processing and com-
putational fluid dynamics applications. Also Juve and Deelman [25] discussed many
possible ways to deploy scientific applications on a Cloud, ranging from astronomy
to earthquake science. The Magellan project, which takes place at the Argonne Lead-
ership Computing Facility and the National Energy Research Scientific Computing
Facility, aimed at investigating the use of cloud computing for science [48]. A diverse
set of scientific data parallel applications, with no tight coupling between tasks, was
running on the Magellan resources, and the results allowed to conclude that current
cloud software can be used for science clouds.

16.4.2 Load Balancing for ILP Algorithms

In the specific case of parallel ILP systems considered in this chapter, islands are char-
acterized by having diverse sizes and requiring different processing capacity needs. A
task parallel approach is adequate to this problem and homogeneously scheduling the
same amount of CPU resource to jobs in charge of processing diverse-sized islands
will result in jobs’ finish time imbalances, with consequent nonoptimized makespan.
Furthermore, if we take into account that Cloud resources are usually billed by hour
[2], an inefficient schedule of parallel ILP jobs will result in increased costs to solve
the parallel ILP search problem. Therefore, it is important to produce schedules of
jobs that consider their diverse needs, and the heterogeneity of resources, in order to
achieve the objectives of reducing the makespan (i.e., the finishing time of the last
job in the system) and maximizing load balancing. To minimize makespan it is essen-
tial to allocate jobs correctly so that computer loads and communication overheads
will be well balanced. In turn, load balancing aims to distribute workload between
available machines to obtain as good throughput and resource utilization as possible.
Despite load balancing and makespan concepts being related, a good load balancing
does not always lead to minimal makespan and vice versa.

Several papers address the problem of static and dynamic minimization of
makespan and maximization of load balancing in parallel and distributed sys-
tems. A good review and classification of state-of-the-art load balancing methods
for jobs dispatched to run independently on multiple computers can be found in
[45, 64, 67]. This section points out some relevant scheduling algorithms and
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strategies that we believe can improve load balancing and optimize makespan of inde-
pendent and-parallelism ILP approach. When managing resources in a cloud com-
puting environment, scheduling can be made in different layers, as described next.

16.4.2.1 Scheduling at the Application Level

Concerning the scheduling of jobs onto VMs, Dhinesh and Krishna [29] proposed to
minimize the makespan and maximize load balancing of applications in the Cloud.
They use Swarm Intelligence (SI) to propose an Artificial Bee Colony (ABC) algo-
rithm, named Honey Bee Behavior inspired Load Balancing (HBB-LB), which aims
to achieve well-balanced load across VMs for maximizing the throughput and min-
imization of makespan in a Cloud infrastructure. Cumulatively, HBB-LB algorithm
not only dynamically balances the load but also considers the priorities of tasks in
the waiting queues of VMs in order to minimize the time spent in the queues. The
scheduling problem is solved considering that a job is a honey bee and VMs are
the food sources. First, VMs are grouped into three sets: (i) overloaded VMs; (ii)
underloaded VMs; and (iii) balanced VMs. Processing time of a job varies from one
VM to another based on VM’s capacity. Then, jobs removed from overloaded VMs
have to find suitable underloaded VMs to get placed in. If there are several suitable
VMs to allocate the task in, the task chooses the VM which as a less number of tasks
with the same kind of priority. The winning task is allocated to the selected VM and
state information is updated, which includes the workload on all VMs, number of
various jobs in each VM, jobs priority in each VM, and the number of VMs in each
set. These details will be helpful for other jobs, i.e., whenever a high priority job is
submitted, it will consider the VM that has less number of high priority jobs to exe-
cute earlier. Once the jobs switching process is over, the balanced VMs are included
into the balanced VM set. The load balancing process ends when this set contains
all the VMs. This solution was successfully tested with Cloudsim [8] by means of
simulation. The results have showed a good performance for heterogeneous Cloud
computing systems, in terms of average execution time and waiting time of jobs on
queue.

Ramezani et al. [S0] contributes with a Task-based System Load Balancing method
using Particle Swarm Optimization (TBSLB-PSO) that achieves system load balanc-
ing in Cloud environments by only transferring extra tasks from an overloaded VM
instead of migrating the entire overloaded VM (which is known to be time- and
cost-consuming). The problem of finding an optimal solution for allocating these
extra tasks from an overloaded VM to appropriate host VMs is solved using Particle
Swarm Optimization (PSO) heuristic. PSO is a population-based search algorithm
based on the simulation of the social behavior of birds. The scheduling algorithm
is multi-objective, aiming at minimizing task execution time and task transfer time.
TBSLB-PSO method considers both computing-intensive and data-intensive tasks.
Computing-intensive tasks demand extensive computation (e.g., scientific applica-
tions) while data-intensive tasks are characterized by high volumes of data to be
published and maintained over time. The scheduling optimization model takes into
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account the number of CPUs on host VMs to schedule computing-intensive tasks, and
the bandwidth as a variable to minimize the tasks transferring time for data-intensive
applications. To solve this multi-objective optimization problem, the PSO algorithm
is applied to find an optimal way to allocate extra tasks to the new (underloaded)
VMs with less task execution and task transfer time. The TBSLB-PSO algorithm
works in six steps, ranging from monitoring and analysis of PMs, VMs, and tasks,
determining overloaded VMs, finding optimal homogeneous VMs to transfer the
tasks to and optimal task migration schema, and transferring tasks and updating
the scheduler information. Authors simulated their proposal with Cloudsim toolkit,
which was able to schedule a set of 10 tasks onto 5 VMs over 3 PMs, in 0.224s.
The authors have also solved this problem with Multi-Objective Genetic Algorithm
(MOGA) [49] as an alternative to PSO, although no comparison information of the
two alternatives was provided.

16.4.2.2 Scheduling at the Virtualisation Level

In the case of scheduling VMs onto PMs, Dasgupta et al. [11] proposed a novel load
balancing strategy using Genetic Algorithms (GA) aiming at balancing the load of
the cloud infrastructure while trying to minimizing the makespan of a given tasks
set. GAs is a stochastic searching algorithm based on the mechanisms of natural
selection and genetics, widely used in complex and vast search space and known to
be very efficient in searching out global optimum solutions. The results showed that
the proposed algorithm outperformed the existing approaches like First Come First
Serve (FCFS), Round Robing (RR), and the local search algorithm Stochastic Hill
Climbing (SHC).

16.4.2.3 Scheduling at the Programming Level

Aiming at optimizing load balancing, Xu et al. [65] proposed a novel model to bal-
ance data distribution to improve Cloud computing performance in data-intensive
applications, such as distributed data mining. Their work consists in extending the
classic MapReduce model [12] in order to fight its computational imbalance problem.
MapReduce provides a set of frameworks that aim to enable productive programming
of computer clusters. The frameworks are efficient in the processing of huge data sets
with flexible job decomposition and subtasks allocation. Using distributed program-
ming frameworks such as Hadoop [60], the application programmers can construct
parallel dataflows using map and reduce functions to achieve portability and scalabil-
ity of their applications. However, these frameworks are not suitable for all scientific
workloads since they are designed for data-intensive workloads. In fact, the original
load balance in Hadoop considers only static storage space balance, without consid-
ering the workloads attached to the data blocks, which is of paramount importance
for the unbalanced ILP jobs. To tackle this issue, authors have proposed a completely
distributed approach for adjusting load balancing based on agent—workers running
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on nodes, unlike original Hadoop which relies on an agent—master for centralized
task processing such as task allocation. By representing each node, agents can com-
municate with each other to cooperatively manage and adjust the balance of working
loads. These series of agents monitor the data nodes (e.g., hardware performance,
working load in real time), and jointly make decisions on how to move data blocks
to maximize load balancing. In the process of load balancing, the overload nodes
request computing resources from other nodes, and copy their data to the new nodes
who have more resources. Initially, agents have no knowledge of their neighbors’
working load distribution, and so a token-based heuristic algorithm is proposed as
well. The goal of balancing working load is to reduce calculation and free storage
variance. In the optimal case, each node holds at most one computation task and
has almost the same size of the free storage. Authors have evaluated their proposal
through simulation and concluded that agents can improve load balancing efficiency
with limited communication costs among agents.

16.5 Life Science Applications

The Life Sciences have a lot of scientific problems where Machine Learning tech-
nique may be very helpful. However, some of the important problems have to deal
with data from quite different sources, encoded in difference representation schemes
and with structure. To analyze data sets in those kinds of problems/domains using
algorithm such Decision Trees, SVMs or Artificial Neural Nets,’ the data has to be
“enclosed” into a single table of a Relational Database.® Most often this reduction
procedure leads to information loss or an extensive amount of preprocessing. The
advantages of such algorithm’s analysis are that, usually, they are much faster than
ILP’s analysis.

To analyze data with structure, encoded in different encoding schemes, ILP have
been recognized to have advantages over propositional learners. ILP can handle
“naturally” several relations, data with structure, encoded in different representa-
tion schemes, can combine harmoniously symbolic and numerical computations
and, most importantly the constructed models and most often comprehensible to the
domain experts. This last feature may be of capital importance to scientific appli-
cations where understating the phenomena that produced the data is required. ILP
models may provide clues for such explanations.

In this section, we visit two applications where ILP have given very good results,
produced comprehensible models, and showed several advantages over propositional
learners. We discuss also the advantage of the application of the parallel execution
of ILP in these types of applications.

SPropositional level algorithms

Sor a sheet of a spreadsheet
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16.5.1 Structure-Activity Relationship Experiments

ILP have been extensively used in Structure—Activity Relationship’ (SAR) problems.
Published studies include [26, 51, 59] where ILP systems predicted mutagenicity and
[58] caricnogenicity activity. In order to assess the impact of the parallel approach
to ILP implemented in the APIS system (See Sect. 16.3) we have used four data
sets originated from SAR problems.® Two of them are the ones just mentioned for
predicting mutagenicity and carcinogenicity. The other two are toxicity data sets
(DBPCAN and CPDBAS). DBPCAN is part of the water disinfection by-products
database and contains predicted estimates of carcinogenic potential for 178 chemi-
cals. The goal is to provide informed estimates of carcinogenic potential to be used
as one factor in ranking and prioritizing future monitoring, testing, and research
needs in the drinking water area [63]. The second data set is CPDBAS, the Carcino-
genic Potency Database (CPDB) that contains detailed results and analyzes of 6540
chronic, long-term carcinogenesis bio assays.” The other two data sets used in this
study were the carcinogenesis and mutagenesis mentioned above.'?

The data sets are characterized in Table 16.1 together with the associated Aleph’s
parameters used in the experiments. The nodes limit parameter indicated in the table
concern the sequential execution value. When running APIS same node limit was
used. The background provided for the data sets were as follows. Far all data sets,
the structure of each molecule (atoms and bonds) was available in the background
knowledge. For the toxicity data sets (DBPCAN and CPDBAS) a set of molecular
descriptors for each molecule was also available in the background knowledge.

Table 16.1 Characterization of the data sets used in the study. In the cells of the second column
P/N represents the number of positive examples (P) and negative examples (N). The five right most
columns are the values for Aleph’s parameters

Data set name |Number |Number | Clause Nodes Noise Minimum | Sample
of of islands | length limit positives | size
examples (Mil-
lions)
carcinogenesis | 162/136 |4 5 0.5 10 12 30
mutagenesis 125/63 5 6 1 4 9 25
dbpcan 80/98 37 7 1 2 5 30
cpdbas 843/966 |37 6 0.1 150 150 5

7 An approach where the activity of acompound, for example, is predicted only based on its structure
features.

8 A detailed description of this study can be found in [66]

9Source data for both data sets is available from the Distributed Structure-Searchable Toxicity
(DSSTox) Public Database Network from the US Environmental Protection Agency http://www.
epa.gov/ncct/dsstox/index.html, accessed Dec 2008.

10 Available from the Oxford University Machine Learning repository http://www.cs.ox.ac.uk/
activities/machlearn/applications.html


http://www.epa.gov/ncct/dsstox/index.html
http://www.epa.gov/ncct/dsstox/index.html
http://www.cs.ox.ac.uk/activities/machlearn/applications.html
http://www.cs.ox.ac.uk/activities/machlearn/applications.html
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Table 16.2 Speedups (a) and accuracy (b) obtained in the experiments numbers in each cell corre-
spond to average and standard deviation (in parenthesis). There is no statistical difference (o < 0.05)
between the sequential execution accuracy values and the parallel execution for each data set.

(a)
Data set Number of worker nodes
2 4 6 7
carcinogenesis | 4.8(2.1) 5.6(2.7) 6.7(2.6) 6.1(2.6)
mutagenesis | 76.5(32.9) 138.9(82.7) 188.4(119.3) |231.3(148.6)
dbpcan 13.8(2.5) 26.7(4.3) 36.5(5.5) 41.1(5.9)
cpdbas 18.3(7.0) 31.4(16.1) 36.2(26.9) 28.5(11.8)
(b)
Data set name | Sequential Number of worker nodes
execution
2 4 6 7
carcinogenesis | 53.7(3.8) 58.9(5.5) 57.8(3.8) 57.8(4.8) 58.0(7.6)
mutagenesis | 84.1(6.9) 80.7(5.4) 82.0(4.8) 80.9(5.2) 81.3(4.7)
dbpcan 87.9(5.0) 89.8(4.1) 89.3(5.1) 89.3(5.1) 89.3(5.1)
cpdbas 54.0(1.8) 51.2(1.4) 53.6(1.2) 53.5(1.2) 53.4(1.0)

Overall, the results show that significant speedups were achieved by APIS, well
beyond the number of processors (Table 16.2 (a))'! without affecting accuracy (no
statistical significant difference for « < 0.05), Table 16.2 (b).

The major contribution for the speedups is, however, from the parallel search of
the subspaces. We identified two sources of the parallel execution on the speedups.
With enough CPUs (number of workers larger than the number of the islands) the
execution time would be broadly determined by the slower subspace search. For
example, in mutagenesis data set, if we have more than five CPU workers we can
search the five saturation-based subspaces in parallel. The overall time is determined
by the slower search. With this effect alone we would expect the speedups to be close
to the speedup of the search in the slower subspace.

However, we have also noticed that the speedup of the slowest subspace search
alone does not explain the global speedups obtained. In a deeper analysis, we can see
that the number of “slow” subspaces (1 in mutagenesis and 3 in dbpcan, for example)
than the other subspaces use less than 10 % of the time of the slower ones. That is,
there are one or few “slow” subspaces and their run time is much larger than the
others. This means that we can start processing the next example much earlier than
the finish time of the slower subspace. In practice we can run several examples in
parallel. This is also a significant contribution for the global speedup.

Another contribution, although weaker, for the speedup results is the use of inter-
section of coverage lists instead of theorem proving. The number of clauses evaluated

"Except for the carcinogenesis data set
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using intersection of coverage lists is rather small (when compared with the theorem
proving case) but represent also a faster method to evaluate clauses.

As seen from the above results, the APIS approach provides several “opportuni-
ties” for the parallel execution to produce very good speedups. In the next applica-
tion, we describe an example of a chemoinformatics application where the number of
islands that can be identified is quite large making that kind of applications adequate
for the use of the APIS approach.

16.5.2 Predicting Drug Efficiency in Cancer Cells Treatment

The data used in the experiments is the result of the work done in the “Genomics
of Drug Sensitivity in Cancer” project [20], and its preprocessing follows the same
approach used in [34]. The original data set, publicly available in the “Genomics of
Drug Sensitivity in Cancer” project website, consists of measured IC50 values for
various cell lines and compound pairs. It contains 639 different cell lines, each with 77
gene mutation properties. Each cell line also has information about its microsatellite
instability status (MIS), cancer type, and correspondent tissue. The IC50 value is
available in its natural logarithmic form, ranging from —18.92 (6.07E-9 raw form) to
15.27 (4.28E-6 raw form). Each gene mutation is described by its sequence variation
and copy number variation.

The data set contains 131 drugs that were applied to the cell lines leading to
83709 potential IC50 values. Each example was characterized with the cell line
feature together with the features of the drug that was used in that cell line and the
IC50 value obtained. Cell features are the cell mutation properties and drug features
are molecular descriptors and fingerprints generated with the same version of PaDEL
used in [34]. The final amount of cell line features was 142, and the final amount of
drug features was 790, resulting in a total of 932 features plus the IC50 value. The
final data set resulted in 40,691 instances.

An experiment was done using the Aleph ILP system in the classification task of
predicting “good” drugs in the cell line data set described above. We have transformed
the original regression problem into a binary classification problem. We have sorted
the examples by their IC50 value and established a lower threshold below which
examples are in class “good” and a upper threshold above which example where in
class “bad”. Examples in the “gray zone” between the lower and upper thresholds
were discarded. The discretisation resulted in a total of 27,120 examples. The back-
ground knowledge included the molecular descriptors, fingerprints as well as the cell
lines features.

Some simple rules found by Aleph include:

body of Rule 1: pubchemfp567(Compound), pubchemfp516(Compound), pub-
chemfp692(Compound); Positive cover = 3571, Negative cover = 77.

“If the compound molecule has the substructure O-C-C-O, the substructure [#1]-
C=C-[#1], and the substructure O=C-C-C-C-C-C, then the IC50 is considered as
good (98 % of the covered examples).”
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body of Rule 2: pubchemfp188(Compound); Positive cover = 4069, Negative
cover = 2915.

“If the compound molecule has two or more saturated or aromatic heteroatom-
containing ring of size 6, then the IC50 is considered good (58 % of the covered
examples).”

Aleph was able to construct very simple rules that are easily understood by the
experts. The accuracy was 91 %.

The background knowledge used in the just described experiment is typical in
chemoinformatics data analysis. There is a large number of molecular descriptors
and fingerprints. When encoding such information in the background knowledge, a
large number of [APIS] islands will be produced. These types of chemoinformatic
data analysis can profit a lot from the type of parallelisation available in the APIS
system.

16.6 Conclusions

In this chapter, we have discussed how ILP systems can profit from parallel execution.
We have surveyed parallel and distributed executions of ILP systems. We have paid
special attention to the parallel approach implemented in the APIS ILP system.
A survey on parallel and distributed computation was also presented. To link ILP
to parallel execution we have also discussed how a distributed system scheduler
framework could be used to improve the execution of ILP systems by running in
parallel several of the tasks involved in the execution of an ILP system. We have
presented several applications where ILP have been successfully used and discussed
how those applications can profit from a parallel approach like the one of the APIS
system.

As a conclusion we may state that ILP systems have several advantages when
applied to data analysis in Life Sciences domains. Those applications can profit even
more if a parallel execution is used. A parallel execution can substantially improve
execution time or improve the quality of the models by searching larger regions of
the hypothesis space in the same time as the sequential execution. Parallel execution
can be used in a very large number of parts of an ILP algorithm. We can use it at the
theory-level search (coarse level) to the hypothesis space search to even use ILP with
a parallel execution of the Prolog engine, for highly nondeterministic background
knowledge.
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