
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof theory for hybrid(ised) logics

Renato Nevesa, Alexandre Madeiraa, Manuel A. Martinsb, Luís S. Barbosaa

aHASLab (INESC TEC) & Univ. Minho, Portugal
bCIDMA – Dep. Mathematics, Univ. Aveiro, Portugal

Abstract

The prevalent ability of software systems to adapt lead to a formal description
technique based on hybridisation — a process that systematically develops
the ingredients of hybrid logic on top of whatever logic is found useful for
property specification. The engineer, however, looks not only for logics able
to capture the requirements of the system at hands, but also for suitable
proof support for reasoning upon them. This calls for an enriched version
of hybridisation where both the logic and the corresponding calculus are hy-
bridised. In a previous paper, the authors addressed this issue by showing
how an Hilbert calculus for the hybridised version of a logic can be sys-
tematically generated from a calculus for the latter. This paper provides
a simpler version of this process and goes a step forward by characterising
a complementary (tableau based) technique, with increased computational
support. Such developments provide the basis for a complete proof theory for
hybrid(ised) logics, and thus offer (dedicated) proof support for the working
software engineer.

Keywords:
Hybrid logic, decidability, completeness, tableau systems, Hilbert calculus

1. Introduction

1.1. Motivation and context
This paper is motivated by a specific class of software systems that are

able to adapt (or reconfigure) their behaviour whenever context switches so

Email addresses: rjneves@inescporto.pt (Renato Neves),
amadeira@inescporto.pt (Alexandre Madeira), martins@ua.pt (Manuel A. Martins),
lsb@di.uminho.pt (Luís S. Barbosa)

Preprint submitted to Science of Computer Programming April 24, 2015

*Manuscript
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

demand. Such systems, often called reconfigurable, take a central place in
software development. In fact, more and more they influence our daily lives,
from service–oriented applications that change their services in accordance
with the traffic level to controllers embedded in cars that favour power over
economy when the ‘sports mode’ is engaged.

The formal specification of a reconfigurable system is often a challenge:
whatever logic the software engineer finds useful to define possible behavioural
requirements, it may not be suitable to relate the different contexts in which
they hold and express the reconfiguration dynamics. Actually, underlying
any reconfigurable system lies a labelled transition system whose states cor-
respond to configurations and characterise a specific behaviour; arrows relate
two possible configurations and are labelled by the event that triggers the
switch. Thus, while this transition system may be specified in (some variant
of) modal logic, to describe the possible behaviours of concrete configura-
tions requires a logic that suits the nature of the software system at hands.
For example, continuous systems advocate topological logics, and probabilis-
tic systems are better handled through logics that embed some fragment of
probability theory. Such a view hints at a framework, proposed in [1], for
the specification of reconfigurable systems:

• globally the system’s dynamics is represented by a transition structure
described in hybrid logic – an extension of modal logic with enough
expressive power to pinpoint specific states but without losing decid-
ability or increasing complexity.

• locally each state is endowed with a structure that models, in a suitable
logic, the specification of the associated configuration.

Therefore, to address both dimensions together in a single logical setting, the
features of hybrid logic are developed on top of the one used for the local
specification of configurations, thus giving rise to an hybridised logic.

The logic used locally, i.e. the one to be hybridised, depends on the
application requirements. Typical candidates are equational, partial algebra
or first–order logic (FOL), but one may equally resort to multivalued logics or
even to hybrid logic itself equipping, in this last case, each state with another
(local) transition system. Verification resorts to a parametrised translation
to FOL (developed in [2, 3] and further extended in [4]), but at the cost of
losing decidability and adding extra complexity.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our SBMF paper [5] introduced an alternative approach: not only the
logic is hybridised but also its calculus is systematically enriched into a
Hilbert calculus for the hybridised logic. Moreover, it showed that the latter
is sound and complete whenever the corresponding base calculus is. Such
development is a first step towards dedicated proof support for a broad spec-
trum of hybrid(ised) logics.

Hilbert calculi, however, although simple and versatile, are not amenable
to effective computational support, and so constrain the practical relevance
of the former results. Therefore, this paper introduces a similar procedure
but generating a tableau system instead. Tableau systems [6, 7], able to
systematically decompose sentences until contradictions are found, are well-
known for their impressive computational results, in particular for the class
of modal logics where hybrid(ised) logics live.

1.2. Contributions and roadmap
The paper starts by recasting the hybridisation method in the theory of

institutions with proofs, which makes possible the development of the whole
framework. Then, it simplifies the generation of Hilbert calculi originally
proposed in [5], and introduces the tableau version. Besides the theoretical
relevance of these results, from a pragmatic point of view they pave the way to
the development of effective tool support for the verification of reconfigurable
systems.

The remainder of the paper is organised as follows: Section 2 provides
the relevant background. Section 3 presents the generation of Hilbert calculi
and discusses decidability of hybrid(ised) logics. Section 4 introduces the
corresponding tableau version. Finally, Section 5 concludes.

2. Background

2.1. Institutions
The generic character of the hybridisation process is due to its rendering

in the context of the theory of institutions [8]. The notion of institution
formalises the essence of a logical system by encompassing syntax, semantics
and satisfaction. Formally,
Definition 1. An institution is a tuple (SignI ,SenI ,ModI , (|=I

⌃)⌃2|SignI |),
where

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• SignI is a category whose objects are signatures and arrows signature
morphisms,

• SenI : SignI ! Set, is a functor that, for each signature ⌃ 2 |SignI |,
returns a set of sentences over ⌃,

• ModI : (SignI)op ! Cat, is a functor that, for each signature ⌃ 2
|SignI |, returns a category whose objects are models over ⌃,

• |=I
⌃ ✓ |ModI(⌃)| ⇥ SenI(⌃), or simply |=, if the context is clear, is a

satisfaction relation such that, for each signature morphism ' : ⌃ ! ⌃0,

ModI(')(M 0) |=I
⌃ ⇢ iff M 0 |=I

⌃0 SenI(')(⇢), for any

M 0 2 |ModI(⌃0)| and ⇢ 2 SenI(⌃). Graphically,

⌃

'

✏✏

ModI(⌃)
|=I

⌃
SenI(⌃)

SenI(')
✏✏

⌃0 ModI(⌃0)

ModI(')

OO

|=I
⌃0

SenI(⌃0)

Intuitively, the property above tells that satisfaction is preserved under change
of notation. In order to build up the reader’s intuition, let us analyse some
typical examples.
Example 1. Many sorted first–order logic (FOL)

• Signatures. SignFOL is a category whose objects are triples (S, F, P),
consisting of a set of sort symbols S, a family, F = (Fw!s)w2S⇤,s2S, of
function symbols indexed by their arity, and a family, P = (Pw)w2S⇤ ,
of relational symbols also indexed by their arity.
A signature morphism in this category is a triple ('st,'op,'rl) : (S, F, P)
! (S 0, F 0, P 0) such that if � 2 Fw!s, then 'op(�) 2 F 0

'st(w)!'st(s)
, and

if ⇡ 2 Pw then 'rl(⇡) 2 P 0
'st(w).

• Sentences. For each signature object (S, F, P) 2 |SignFOL|,
SenFOL(S, F, P) is the smallest set generated by the grammar below

⇢ 3 ¬⇢ | ⇢ ^ ⇢ | t = t | ⇡(X) | 8x : s . ⇢0

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where t is a term of sorts with the syntactic structure �(X) for � 2
Fw!s and X a list of terms compatible with the arity of �. ⇡ 2 Pw

and X is a list of terms compatible with the arity of ⇡. Finally,
⇢0 2 SenFOL(S, F] {x}!s, P). SenI('), for ' a signature morphism,
is a function that, given a sentence ⇢ 2 SenI(S, F, P), replaces the
signature symbols in ⇢ under the mapping corresponding to '.

• Models. For each signature (S, F, P) 2 |SignFOL|,ModFOL(S, F, P)
is the category with only identity arrows and whose objects are models
with a carrier set |Ms|, for each s 2 S; a function M� : |Mw| ! |Ms|,
for each �w!s 2 Fw!s; a relation M⇡ ✓ |Mw|, for each ⇡ 2 Pw.

• Satisfaction. Satisfaction of sentences by models is the usual Tarskian
satisfaction.

N

Example 2. Equational logic (EQ)
The institution EQ is the sub-institution of FOL in which sentences are
restricted to those of the type 8x : s . t = t0

N

Example 3. Propositional logic (PL)
Institution PL is the sub–institution of FOL in which signatures with no
empty set of sorts are discarded.

N

Other examples of institutions underlie the algebraic specification language
CASL [9], many–valued logics [10, 11], and the relational–based language
Alloy [12].

However, the classic notion of an institution, does not include an abstract
structure to represent associated logic calculi. The problem was addressed
in [13] with the introduction of ⇡–institutions, and, more recently, in [14]
with the notion of an institution with proofs, a more general version of the
previous work.
Definition 2. An institution with proofs adds to the original definition of
an institution, a functor Prf I : SignI ! Cat such that, for each ⌃ 2
|SignI |, Prf I(⌃) (called the category of ⌃–proofs) has subsets of SenI (⌃)

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(i.e. |Prf I (⌃)| = P(SenI (⌃)) as objects, and the corresponding proofs as
arrows. The latter are preserved along signature morphisms. In addition,
for A,B 2 |Prf I (⌃)|, if A ✓ B then arrow B �! A exists; if A \ B = ;
and � 2 |Prf I (⌃)| has arrows p : � �! A and q : � �! B, then there is a
unique proof arrows hp, qi that makes the diagram to commute.

�
p

{{

q

##

h p,q i
✏✏

A (A] B) ⇡2
//

⇡1
oo B

For the sake of simplicity, when a singleton set of sentences is presented in a
proof arrow, we may drop the curly brackets. Also, observe that the restric-
tions imposed to the proof arrows force Prf I to follow the basic properties
of a proof system:

1. Reflexivity (if A 2 �, then � ` A) follows from the fact that {A} ✓ �
and, therefore, � �! A.

2. Monotonicity (if � ` A and � ✓ � then � ` A), follows from compo-
sition of proofs, where � �! � is given by inclusion and � �! A by
the assumption.

3. Transitivity (if � ` A and {�, A} ` B then � [� ` B), follows from
the product of disjoint sets, reflexivity and monotonicity,

� // A // A0

(� [�)

;;

//

##

�] A0 //

OO

✏✏

(� [A) // B

� // �

where A0 = A� (A \�).

Functor Prf I distinguishes different proof arrows between the same pair of
objects. In this work, however, we force the category Prf I(⌃) to be thin (i.e.
each pair of objects to have at most one arrow), which provides a clear focus
on entailment systems 1, and trivialises the uniqueness property of arrow
hp, qi.

1Typically, in an entailment system � ` A means that � derives (or entails) A.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In the sequel we use notation A `I B to say that arrow A ! B is in
Prf I(⌃), and expression `I B as an abbreviation of ; `I B. Conversely, we
use A 6`I B to negate A `I B. In the semantic side, we say that a sentence
⇢ 2 SenI(⌃) is ⌃–valid (or simply, valid) if for each model M 2 |ModI(⌃)|,
M |=I

⌃ ⇢. Usually we prefix such sentences by |=I
⌃ or, simply by |=I or just

|=.
Definition 3. Let I be an institution with proof system Prf I . We say that
Prf I is sound and complete if, for any signature ⌃ 2 |SignI | and sentence
⇢ 2 SenI(⌃),

`I ⇢ iff |=I ⇢

Specifically, sound if `I ⇢ entails |=I ⇢ and complete if |=I ⇢ entails `I ⇢.
A property equivalent to soundness and completeness arises from the

following definitions.
Definition 4. (From [15]) An institution I is called Boolean complete if it
has all semantic Boolean connectives. More formally, if given a signature
⌃ 2 |SignI |,

• for any sentence ⇢ 2 SenI(⌃), there is sentence ¬⇢ 2 SenI(⌃) such
that for any model M 2 |ModI(⌃)|, M |= ⇢ iff M 6|= ¬⇢,

• for any sentences ⇢, ⇢0 2 SenI(⌃), there is sentence ⇢ ^ ⇢0 2 SenI(⌃)
such that for any model M 2 |ModI(⌃)|, M |= ⇢ ^ ⇢0 iff M |= ⇢ and
M |= ⇢0.

Note that the Boolean connectives are unique up to semantic equivalence.
Definition 5. Then, negation makes possible to state that, given an insti-
tution I and signature ⌃ 2 |SignI |, for any sentence ⇢ 2 SenI(⌃),

⇢ is unsatisfiable iff ¬⇢ is valid.

As usual, ⇢_⇢0 denotes ¬(¬⇢^¬⇢0) and ⇢! ⇢0 denotes ¬(⇢^¬⇢0). Also, we
have sentence ⇢ ^ ¬⇢, denoted by ?, that no model in |ModI(⌃)| satisfies.
Symbol > represents the negation of ?. Finally,
Theorem 1. Consider a Boolean complete institution with proofs I, such
that Prf I contains the double negation introduction rule and, its inverse, the
double negation elimination. Then the following statements are equivalent.

1. Prf I is sound and complete, i.e. for any ⇢ 2 SenI(⌃), `I ⇢ iff |=I ⇢

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. for any sentence ⇢ 2 SenI(⌃), ⇢ is satisfiable iff 6`I ¬⇢.
Proof. Follows from:

• 1.) 2.

⇢ is sat
⌘ { Definition of satisfiability }

6|=I ¬⇢
⌘ { 1. }

6`I ¬⇢

• 2.) 1.

`I ⇢

⌘ { Double negation rules }

`I ¬(¬⇢)
⌘ { 2. }

¬⇢ is unsat
⌘ { Definition of satisfiability }

|=I ⇢

2.2. Hybridisation revisited
This subsection reviews the basis of the hybridisation process with the

global modality. Document [2] reports a version of hybridisation where uni-
versal quantification over worlds and polyadic modalities are also considered.
Definition 6. The category SignH is the category Set⇥ Set whose objects
are pairs (Nom,⇤), where Nom denotes a set of nominal symbols and ⇤ a
set of modality symbols.
Definition 7. Given an institution I = (SignI , SenI ,ModI , |=I) its hy-
bridised version HI = (SignHI , SenHI ,ModHI , |=HI) is defined as follows

• SignHI = SignH ⇥ SignI ,

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• given a signature (�,⌃) 2 |SignHI |, SenHI��,⌃) is the least set gen-
erated by

⇢ 3 ¬¬⇢ | ⇢ ^ ⇢ | i |@i⇢ | h�i⇢ | A ⇢ |

for i a nominal, � a modality, 2 SenI(⌃). We use non standard
Boolean connectives symbols (¬¬,^) in order to distinguish them from
the Boolean connectives that a base logic may have. Also, define [�]⇢ ⌘
¬¬h�i¬¬⇢, E ⇢ ⌘ ¬¬A¬¬⇢ and ⇢) ⇢0 ⌘ ¬¬(⇢ ^ ¬¬⇢0). We will use to
symbolise a sentence of the base logic.

• given a signature (�,⌃) 2 |SignHI |, a model M 2 |ModHI(�,⌃)| is a
triple (W,R,m) such that,

– W is a non–empty set of worlds,
– R is a family of relations indexed by the modality symbols ⇤, i.e.

for each � 2 ⇤, R� ✓ W ⇥W

– m : W ! |ModI(⌃)|.
Also, for each i 2 Nom, Mi 2 W .

• Given a signature (�,⌃) 2 |SignHI |, a model M = (W,R,m) 2
|ModHI(�,⌃)| and a sentence ⇢ 2 SenHI(�,⌃), the satisfaction rela-
tion is defined as,

M |=HI
(�,⌃) ⇢ iff M |=w ⇢, for all w 2 W

where,
M |=w ¬¬⇢ iff M 6|=w ⇢
M |=w ⇢ ^ ⇢0 iff M |=w ⇢ and M |=w ⇢0

M |=w i iff Mi = w
M |=w @i⇢ iff M |=Mi ⇢
M |=w iff m(w) |=I

⌃
M |=w A ⇢ iff for all v 2 W , M |=v ⇢
M |=w h�i⇢ iff there is some v 2 W such that

(w, v) 2 R� and M |=v ⇢

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Actually, if the base institution I is Boolean complete, due to the equiv-
alences ^ 0 ⌘ ^ 0, ¬ ⌘ ¬¬ , it is possible to collapse the Boolean
connectives ^,^, and also ¬,¬¬ (cf. [4]). Thus, the grammar of the hy-
bridised logic becomes,

⇢ 3 ¬⇢ | ⇢ ^ ⇢ | i |@i⇢ | h�i⇢ | A ⇢ |
Since it turns proofs simpler and more intuitive, we assume that all hybridised
logics adopt this approach.
Example 4. Hybridised propositional logic (HPL)

• Signatures are pairs (�,⌃) 2 |SignHPL| where ⌃ is a set of proposi-
tional symbols.

• Sentences are generated by the grammar

⇢ 3 i | p | ¬⇢ | ⇢ ^ ⇢ |@i⇢ | h�i⇢ | A ⇢

where i is a nominal and p a propositional symbol.

• Models are Kripke structures (W,R), where for each � 2 ⇤, R� ✓
W ⇥ W , equipped with a function m : W ! |ModI(⌃)| that makes
each world correspond to a propositional model (a subset of ⌃ that
denotes the propositions that are true).

N
When the only signatures considered are those that possess exactly one

modality symbol, HPL coincides with classical hybrid propositional logic
with global modality (the latter is decidable and has a complete calculus).
In this case symbols [�], h�i are replaced, respectively, by ⇤ and ⌃.

3. Generation of an Hilbert calculus for the hybridised logic

3.1. The method
This section introduces a refined version of the method for generation

of an Hilbert calculus for the hybridised logic, originally proposed in [5],
but in which the collapse of Boolean connectives is taken into consideration.
This new formulation simplifies the whole process and contributes to smaller
proofs. Thus, consider an institution I with a proof system Prf I . For
any signature (�,⌃) 2 |SignHI |, the category PrfHI(�,⌃) is generated by
the axioms and rules stated in Figure 3.1. Note that their schematic form
guarantees that the proof arrows are preserved along signature morphisms.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Axioms

All instances of classical tautologies for ¬,! (CT)
@i(⇢! ⇢0) $ (@i⇢! @i⇢

0) (Dist)
@i? ! ? (?)
@i@j⇢! @j⇢ (Scope)
@ii (Ref)
(i ^ ⇢) ! @i⇢ (Intro)
([�] ⇢ ^ h�ii) ! @i⇢ ([�]E)
A ⇢! @i ⇢ (AE)
 , for all `I (")

Rules

`HI ⇢, `HI ⇢! ⇢0 entails `HI ⇢0 (MP)

if `HI ⇢ then `HI @i⇢ (@I)

if `HI @i⇢ then `HI ⇢ (@E)?

if `HI
�
⇢ ^ h�ii� ! @i⇢

0 then `HI ⇢! [�]⇢0 ([�]I)?

if `HI ⇢! @i⇢
0 then `HI ⇢! A ⇢0 (AI)?

where symbol ? denotes condition if i does not occur free neither in ⇢ nor ⇢0.

Figure 1: Axioms and rules for PrfHI (based on the Hilbert calculus for hybrid logic
reported in [6]).

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Let us see some examples of Hilbert calculi (generated through this process)
at work.
Example 5. To show that [�](8 x : s . t = t) it is a theorem in HEQ one
starts with

`EQ 8 x : s . t = t

and proceeds

`HI 8 x : s . t = t (")
`HI @i (8 x : s . t = t) (@I)

`HI (> ^ h�ii) ! @i (8 x : s . t = t) (CT)

`HI > ! [�](8 x : s . t = t) ([�]I)

`HI [�](8 x : s . t = t) (CT)

N
Example 6. Sentence ⇤(p ! q) ! (⇤p ! ⇤q) is an instance of the famous
theorem K of classic hybrid propositional logic; let us prove it through the
generated Hilbert calculus of HPL. First one notes that,

`HI (⇤p ^ ⌃i) ! @ip (⇤E)

`HI (⇤(p ! q) ^⇤p ^ ⌃i) ! (⇤(p ! q) ^@ip ^ ⌃i) (CT)

Then,

`HI (⇤(p ! q) ^ ⌃i) ! @i(p ! q) (⇤E)

`HI (⇤(p ! q) ^ ⌃i) ! (@ip ! @iq) (Dist)

`HI (⇤(p ! q) ^ ⌃i ^@ip) ! @iq (CT)

Both cases lead to theorem,

`HI (⇤(p ! q) ^⇤p ^ ⌃i) ! @iq (MP,CT)

`HI (⇤(p ! q) ^⇤p) ! ⇤q (⇤I)

`HI ⇤(p ! q) ! (⇤p ! ⇤q) (CT)

N
Note that it is straightforward to generalise the property above to any hy-
bridised logic.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3.2. Soundness and completeness
We shall now show that, under certain conditions, any generated Hilbert cal-
culus is sound and complete whenever such is the case for the corresponding
base calculus. For this assume, in the sequel, that the logic to be hybridised
is Boolean complete.
Theorem 2. (Soundness) Consider an institution I with a sound proof
system Prf I . Then, for any signature (�,⌃) 2 |SignHI | and sentence
⇢ 2 SenHI(�,⌃),

`HI ⇢ entails |=HI ⇢

Proof. The result follows from the analysis of each rule and axiom in PrfHI .
In particular, for axiom (") we have

`I

) { `I is sound }

|=I

) { Definition of |=HI }

|=HI

Proof for the remaining cases is straightforward.

On the other hand, the proof of completeness requires preliminaries.
Definition 8. Consider a Boolean complete institution I. For any signature
(�,⌃) 2 |SignHI |, a given sentence ⇢ 2 SenHI(�,⌃) is basic iff sb(⇢) = {⇢}
where sb(') =

S
k>0

sbk(') for

sb0(') = '

sbk+1(') = {'0 : ~'0 2 sbk(') for some ~ 2 {¬,@i, h�i, A}}
[{'1,'2 : '1 ^ '2 2 sbk(')} for any k > 0

Definition 9. Consider a signature (�,⌃) 2 |SignHI |, ⇢ 2 SenHI(�,⌃) and
let B⇢ = { 1, . . . , n} ✓ SenI(⌃) be the set of maximal base sentences in ⇢
that are basic. Then, ⌦⇢ denotes the set such that for each a 2 2B⇢

(�1 ^ · · · ^ �n) 2 ⌦⇢ ✓ SenI(⌃)

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where

�i =

(
 i if i 2 a

¬ i otherwise

Lemma 1. Assume that ⌦⇢ 62 ;. Then, for any model M 2 |ModI(⌃)|, M
satisfies exactly one of the sentences in ⌦⇢.

Proof. First observe that for any different �,�0 2 ⌦⇢ at least one clause in
� appears negated in �0. This entails that M can never satisfy � and �0 at
the same time (conjunction and negation properties). Now, if M 6|= �, then
there is a sentence �0 2 ⌦⇢ that negates all clauses leading to M 6|= �, and
therefore M |= �0 (again by the conjunction and negation properties.)

Definition 10. Consider function � : SenHI(�,⌃) ! SenHPL(�, P) where
P = {⇡ | 2 SenI(⌃)} such that

�(¬⇢) = ¬�(⇢)
�(⇢ ^ ⇢0) = �(⇢) ^ �(⇢0)
�(i) = i
�(@i⇢) = @i�(⇢)
�(h�i⇢) = h�i�(⇢)
�(A ⇢) = A �(⇢)
�() = ⇡ , if is basic

Intuitively, this means that function � replaces the basic sentences of the
input ⇢ 2 SenHI(�,⌃) by propositional symbols.

Lemma 2. For any signature (�,⌃) 2 |SignHI |, ⇢ 2 SenHI(�,⌃)

6`HI ⇢ entails 6`HPL �(⇢)

or equivalently,

`HPL �(⇢) entails `HI ⇢

Proof. Observe that rules and axioms in PrfHPL also exist in PrfHI , and
that �(⇢), ⇢ are structurally the same. This implicates that if `HPL �(⇢),
then, whichever rules and axioms were used before, one can imitate the pro-
cess using the same rules and axioms, thus arriving at `HI ⇢.

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Definition 11. Let ⌦?
⇢ = {� 2 ⌦⇢ | `I ¬�} and consider the function

⌘ : SenHI(�,⌃) ! SenI(⌃) such that

⌘(⇢) =

(V{¬� | � 2 ⌦?
⇢} if ⌦?

⇢ 6= ;
> otherwise

Lemma 3. The sentence A ⌘(⇢) is a theorem, or in symbols `HI A ⌘(⇢)

Proof. Since `I ⌘(⇢) one has that `HI ⌘(⇢). Then, due to rule (AI), concludes
`HI A ⌘(⇢).

Lemma 4. Consider a signature (�,⌃) 2 |SignHI |, sentence ⇢ 2 SenHI(�,⌃)
and model M 2 |ModHPL(�, P)| such that

M |=w A �(⌘(⇢))

for some w 2 W . Given any � 2 ⌦⇢, if �(�) is satisfied at some world of M ,
then � is satisfiable.

Proof. If � is unsatisfiable then, because Prf I is complete, condition `I ¬�
holds, implying that ¬� is a clause of ⌘(⇢) and �(¬�) a clause of �(⌘(⇢)).
Therefore, since M |=w A �(⌘(⇢)), no world of M can point to a model that
satisfies �(�).

Definition 12. An institution I has the explicit satisfaction property, if for
any signature ⌃ 2 |SignI | and sentence ⇢ 2 SenI(⌃), satisfiability of ⇢ entails
the existence of a model M 2 |ModI(⌃)| such that M |=I

⌃ ⇢.
This last property holds in the most common logics used in software

specification, e.g., propositional, fuzzy, equational, partial and first-order.
In the following theorem assume that the base institution has the explicit
satisfaction property.
Theorem 3. (Completeness) Consider signature (�,⌃) 2 |SignHI | and sen-
tence ⇢ 2 SenHI(⌃)

If 6`HI ¬⇢ then ⇢ is satisfiable

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. Start with the observation

6`HI ¬⇢
) { (MP) and Lemma 3 }

6`HI ¬(⇢ ^ A ⌘(⇢))

) { Lemma 2 }

6`HPL �(¬(⇢ ^ A ⌘(⇢)))

) { Definition of � }

6`HPL ¬(�(⇢ ^ A⌘(⇢)))

Thus, by Theorem 1 and since PrfHPL is complete, there is a model M =
(W,R,m) 2 |ModHPL(�, P)| such that

M |=w �(⇢) ^ A �(⌘(⇢))

for some w 2 W .
Next we build a model for ⇢. Let M 0 = (W,R,m0) where for any w 2 W

m0(w) is a model for � where �(�) is satisfied at m(w) – recall Lemmas 1
and 4 and the fact that I has the explicit satisfaction property. To finish the
proof, it remains to show that M 0 |=w ⇢, which is done through induction on
the subformulas of ⇢. For any sentence 2 B⇢

M,w |= �()

⌘ { Definition of |= }

m(w) |= ⇡

⌘ { m0(w) satisfies some � in which is present }

m0(w) |=

⌘ { Definition of |= }

M 0, w |=

The remaining cases offer no difficulty.

3.3. Decidability
The decidability property is a famous concept, traditionally studied under

the light of any newly developed logic. Indeed, it is a central element in proof

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

theory, but it also takes a paradigmatic role in the validation of software
systems: a logic is decidable iff it has a decision procedure that can always
decide about the validity of any of its sentences. In other words, if the logic
is decidable, then the software engineer can always obtain yes–or–no answers
to queries that regard properties of the system at hands.

The machinery used before to achieve a proof of completeness provides
an interesting opportunity to discuss the decidability of hybrid(ised) logics.
More concretely, through slight changes in the definition of function ⌘, one
can show that if a logic is decidable then its hybridised version also is. This
subsection reports such result. Recall our assumption that all base logics are
Boolean complete. Then,
Lemma 5. Consider signature (�,⌃) 2 |SignHI | and sentence
⇢ 2 SenHI(�,⌃). For any � 2 ⌦⇢, �(�) is satisfiable.

Proof. Unsatisfaction of �(�) may only come from the following cases:

• a clause of �(�) is unsatisfiable;

• two clauses of �(�) contradict each other.

Clearly, a single clause of �(�) – a proposition – is always satisfiable.
Then, note that, according to definition of �, a clause in �(�) is ⇡ i or ¬⇡ i

and any other ⇡ j or ¬⇡ j . Since their corresponding propositional symbols
differ, it is clear that they never clash.

Theorem 4. Consider a signature (�,⌃) 2 |SignHI |, and sentence ⇢ 2
SenHI(�,⌃). If ⇢ is satisfiable �(⇢) also is.

Proof. Start with the assumption that ⇢ is satisfiable which means that there
is a model (W,R,m) = M 2 |ModHI(�,⌃)| such that M |=w ⇢ for some
w 2 W . From model M define model M 0 = (W,R,m0) 2 |ModHPL(�,⌃)|
such that for any w 2 W , � 2 ⌦⇢ if m(w) |= � then m0(w) |= �(�) (Lemmas
1 and 5). To finish the proof, it remains to show that M 0 |=w �(⇢), which is

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

done through induction on the subformulas of ⇢. For any v 2 W , 2 B⇢,

M |=v

⌘ { Definition of |=I }

m(v) |=

) { m(v) satisfies some � 2 ⌦⇢ where is a clause }

m0(v) |= �()

⌘ { Definition of |=HPL }

M 0 |=v �()

The remaining cases are straightforward.

Next, we redefine function ⌘.
Definition 13. Consider a decidable institution I with an effective decision
procedure SatI . Then, let ⌦?

⇢ = {� 2 ⌦⇢ | SatI(�) is unsat } and

⌘(⇢) =

(V{¬� | � 2 ⌦?
⇢} if ⌦?

⇢ 6= ;
> otherwise

Lemma 6. Consider a signature (�,⌃) 2 |SignHI |, sentence ⇢ 2 SenHI(�,⌃)
and model M 2 |ModHPL(�, P)| such that

M |=w A �(⌘(⇢))

for some w 2 W . Given any � 2 ⌦⇢ if �(�) is satisfied at some world of M ,
then � is satisfiable.

Proof. If � is unsatisfiable, ¬� is a clause of ⌘(⇢). Hence, since M |=w

A �(⌘(⇢)), no world of M satisfies �(�).

Theorem 5. Assume that I has the explicit satisfaction property. Then,
consider a signature (�,⌃) 2 |SignHI | and a sentence ⇢ 2 SenHI(�,⌃). If
�(⇢ ^ A ⌘(⇢)) is satisfiable then ⇢ also is.

Proof. Start with the assumption that �(⇢ ^ A ⌘(⇢)) is satisfiable which
means that there is a model M = (W,R,m) 2 |ModHPL(�, P)| such that

M |=w �(⇢) ^ A �(⌘(⇢))

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

for some w 2 W . From model M we define a model M 0 = (W,R,m0) 2
|ModHI(�,⌃)| such that for any w 2 W , m0(w) is a model for � 2 ⌦⇢ where
m(w) |= �(�) (recall Lemmas 1 and 6 and that I has the explicit satisfaction
property). To finish the proof, it remains to show that (W,R,m0) |=w ⇢,
which is done through induction on the structure of ⇢. For any sentence
 2 B⇢, any v 2 W ,

M |=v �()

⌘ { Definition of |=I }

m(v) |= �()

) { m0(v) satisfies some � in which is a clause, definition of m0 }

m0(v) |=

⌘ { Definition of |=HI }

M 0 |=v

The remaining cases are straightforward.

Corollary 1. Together, Theorems 4 and 5 tell that given a signature (�,⌃) 2
|SignHI |, and sentence ⇢ 2 SenHI(�,⌃)

⇢ is satisfiable iff �(⇢ ^ A ¬⌘(⇢)) is satisfiable.

Since HPL is decidable and the equivalence above holds, it is possible to
use the decision procedure of HPL to show the (un)satisfiability of ⇢. This
approach defines an effective decision procedure for HI, and thus shows that
the latter is decidable, which leads to the expected result
Corollary 2. If I is decidable then HI is also decidable.

Moreover, note that the strategy that underlies the proof of Theorem 5
paves the way for a constructive decision algorithm of HI; i.e., a decision
algorithm that in the case of the input sentence ⇢ being satisfiable says not
only that it is, but also provides a model that shows. In the task of validation,
this model may serve as a counter–example of some property (about the
system) that is put to test.

Technically, to construct such an algorithm one also needs to have con-
structive decision algorithms for both I and HPL – the latter has at least
one prover that meets this requirement [16]. Then, as indicated in the proof,

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

through a HPL decision procedure, one extracts a Kripke frame for the in-
put sentence in which suitable models of I are ‘attached’ given its example
decision algorithm for I. Note, however, that the algorithm may be compu-
tationally hard: for example, in order to define ⌘(⇢) the decision algorithm
for I must be executed 2n times where n = |B⇢|.

4. Generation of a tableau for the hybridised logic

4.1. The method
The current section is devoted to the generation of a tableau for the

hybridised logic, which, as already mentioned, complements the method of
(Hilbert) calculi generation discussed in the last section. Actually, prone
to computational support, tableau systems offer to the software engineer
automatic methods of verification, whereas Hilbert calculi, despite simple
and versatile, often require intensive human assistance for non trivial proofs.
Another key feature of tableau systems is their ability to provide counter–
examples when some wrong statement about the system is put to test. This
helps the engineer to locate flawed designs, and, overall, turns the validation
process more agile.

Tableau systems are driven by a set of rules, but, differently from other
proof systems, they cater for the possibility of executions paths to diverge.
Actually, when validating a sentence, tableau systems tend to open a num-
ber of execution paths, also called branches, each of them being examined,
through sentence decomposition, until contradictions are exposed or no fur-
ther rules can be applied. If the former case occurs the branch closes, and in
the latter it becomes saturated.

Generally speaking, when checking the validity of a sentence its negation
is fed to a suitable tableau: if all branches close – which means that all
possibilites have contradictions – the negated sentence is unsatisfiable and
therefore the assertion (i.e. the original sentence) valid. On the other hand, if
some branch saturates one can, in principle, extract a model for the negated
sentence that serves as a counter–example of the assertion being tested. For
a more detailed account on the mechanisms that underlie tableau systems,
check, for example, document [7]; but also, [6], which specialises on tableau
systems for hybrid logic.

Let I be a Boolean complete institution with proofs. The tableau system
for its hybridisation, T HI , is driven by the set of rules in Figure 2. Note that
before letting a branch to saturate, an extra test is added: each sentence

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of the type @i (where 2 SenI(⌃)) must be satisfiable (this is checked
through functor Prf I). The branch closes if it fails the test; otherwise it
becomes saturated.

Since the rules in T HI only cater for sentences of the type @i⇢,¬@i⇢, a
given input sentence � is replaced, at the beginning, by @0� where 0 is a
fresh nominal,i.e. the root sentence is prefixed by @0. Note that the process
preserves satisfiability.

The next example illustrates the mechanisms of T HI .
Example 7. Recall rule (Dist), introduced in the previous section; it states
that @i(⇢ ! ⇢0) ! (@i⇢ ! @i⇢

0). Thus, instantiating to classical hybrid
propositional logic, one gets:

@i(p ! q) ! (@ip ! @iq)

⌘ (@i(p ! q) ^@ip) ! @iq

⌘ ¬((@i(p ! q) ^@ip) ^ ¬@iq)

⌘ ¬((@i¬(p ^ ¬q) ^@ip) ^ ¬@iq)

Then, its negation, @i¬(p ^ ¬q) ^ @ip ^ ¬@iq, is fed to the tableau which
computes

@0(@i¬(p ^ ¬q) ^@ip ^ ¬@iq)

@0@i¬(p ^ ¬q),@0@ip,@0¬@iq (^)
@i¬(p ^ ¬q),@ip,¬@0@iq (@,¬)
@i(¬(p ^ ¬q) ^ p),¬@iq (^ #,¬@)

@i(¬(p ^ ¬q) ^ p ^ ¬q) (¬ #,^ #)

Now, as defined above, the tableau resorts to a prover of the base logic
(that corresponds to Prf I) to check the satisfiability of sentence ¬(p^¬q)^
p^¬q. For example, the tableau system of propositional logic, driven by the
rules,

p ^ q
p, q (^) ¬¬p

p (¬¬)

¬(p ^ q)

¬p | ¬q (¬^)

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

@i¬⇢
¬@i⇢

(¬) ¬@i

@i¬ (¬ #)
⇢ 62 SenI(⌃) 2 SenI(⌃)

@i(⇢ ^ ⇢0)
@i⇢,@i⇢

0 (^) @i ,@i
0

@i(^ 0)
(^ #)

⇢, ⇢0 62 SenI(⌃) , 0 2 SenI(⌃)

¬@i¬⇢
@i⇢

(¬¬) ¬@i(⇢ ^ ⇢0)
¬@i⇢ | ¬@i⇢

0 (¬^)

@i@j⇢

@j⇢
(@)

¬@i@j⇢

¬@j⇢
(¬@)

@iE⇢
@j⇢

(E)
¬@iE⇢
¬@l⇢

(¬E)

j is fresh l 2 Nom

@ih�i⇢
@k⇢,@ih�ik (h�i) ¬@ih�i⇢,@ih�il

¬@l⇢
(¬h�i)

k is fresh, ⇢ 62 Nom l 2 Nom

@ii
(R)

@ij,@i⇢

@j⇢
(N1)

i 2 Nom ⇢ 2 SenI(⌃) [Nom

@ik,@ih�ij
@kh�ij (N2)

j 2 Nom

Figure 2: The tableau T HI (based on the tableau system for hybrid logic reported in [6]).

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

leads to

¬(p ^ ¬q) ^ p ^ ¬q
¬(p ^ ¬q), p,¬q (^)
¬p, p, q q, p,¬q (¬^)
⇥ ⇥

Therefore, the test fails, the branch closes, and the unsatisfiability of the
input is disclosed. This means that sentence @i(p ! q) ! @ip ! @iq is
indeed valid.

N

4.2. Soundness and completeness
This section shows that any tableau system generated as explained above,

is sound and complete whenever the corresponding proof system for the base
logic is.

To prove that a tableau system is sound, usually suffices to show that
each rule preserves satisfiability. Thus
Theorem 6. (Soundness) Given an institution I with a sound proof system
Prf I , the tableau system T HI is sound ; i.e. given any signature (�,⌃) 2
|SignHI |, sentence ⇢ 2 SenHI(�,⌃), ⇢ being satisfiable entails that any
tableau for ⇢ has at least one branch that does not close.

Proof. Let us start by showing that rules (^ #), (¬ #) preserve satisfiability.
For any signature (�,⌃) 2 |SignHI |, model M 2 |ModHI(�,⌃)| and base
sentences 1, 2 2 SenI(⌃)

M |=w @i 1 and M |=w @i 2

⌘ { Definition of |=H }

M |=Mi 1 and M |=Mi 2

⌘ { Definition |=H }

m(Mi) |= 1 and m(Mi) |= 2

⌘ { Definition |=I }

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

m(Mi) |= 1 ^ 2

⌘ { Definition |=H }

M |=Mi 1 ^ 2

⌘ { Definition |=H }

M |=w @i(1 ^ 2)

Regarding rule (¬ #),

M |=w ¬@i 1

⌘ { Definition of |=H }

M 6|=w @i 1

⌘ { Definition of |=H }

M 6|=Mi 1

⌘ { Definition |=H }

m(Mi) 6|= 1

⌘ { Definition |=I }

m(Mi) |= ¬ 1

⌘ { Definition |=H }

M |=Mi ¬ 1

⌘ { Definition |=H }

M |=w @i¬ 1

Document [6] shows the proof the for remaining rules. To finish the
proof, Prf I is sound and therefore the test that regards satisfiability of base
sentences only closes branches with contradictions; more concretely, branches
with some unsatisfiable sentence of the type @i where 2 SenI(⌃).

Next, we show that T HI is complete. Being based on the tableau system for
hybrid logic reported in [6], T HI has a completeness proof similar to the one
for the former, though simpler as termination is not addressed in this paper.

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Theorem 7. Consider an institution I with a complete proof system Prf I

and the explicit satisfaction property. Then, the tableau system T HI is com-
plete, i.e. given any signature (�,⌃) 2 |SignHI |, sentence ⇢ 2 SenHI(�,⌃),
if some branch saturates for ⇢, then ⇢ is satisfiable.

Proof. Suppose that some branch saturates for ⇢. Then, we are able to build
model (W,R,m) 2 |ModHI(�,⌃)|, defined as

• W = (N / ⇠) where N denotes the set of nominals that occur in the
branch, and ⇠ the equivalence relation generated by the sentences in
the branch of the type @ij (Rules (R) and (N1) guarantee that ⇠ is
an equivalence relation).

• for any n 2 Nom, Mn = [n], where [n] denotes the class representative
of n.

• for any � 2 ⇤, w, v 2 W , (w, v) 2 R� iff there is some nominal n 2 Nom
such that n ⇠ v and sentence @wh�in occurs in the branch.

• for any w 2 W , m(w) is a model of |ModI(⌃)| for a sentence � 2
SenI(⌃) where @w� is a sentence that occurs in the branch’s leaf (Prf I

is complete and I has the explicit satisfaction property). If no such
sentence exists, m(w) is a model for >.

It remains to show that there is some w 2 W such that (W,R,m) |=w ⇢.
We prove this by showing that the following statements are true

• if @i' occurs in the branch then M |=w @i'.

• if ¬@i' occurs in the branch then M 6|=w @i'.

for any sentence ' 2 SenHI(�,⌃). Such is done by induction on the sen-
tence’s structure. In particular,

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• @ij

@ij occurs in the branch
) { Definition of ⇠ }

i ⇠ j

) { Definition of M }

Mi = Mj

) { Definition of |=H }

M |=w @ij

• ¬@ij

¬@ij occurs in the branch
) { Definition of ⇠ }

i 6⇠ j

) { Definition of M }

Mi 6= Mj

) { Definition of |=H }

M 6|=w @ij

) { Definition of |=H }

M |=w ¬@ij

• @i

@i occurs in the branch
) { Application of rule (^ #) }

 is a clause of some sentence @i� in the branch’s leaf where
� 2 SenI(⌃)

) { Application of rule (N1), definition of M (Mi = [i]) }

M(Mi) |=

) { Definition of |=H }

M |=w @i

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• ¬@i

¬@i occurs in the branch
) { Application of rule (¬ #) }

¬ is a clause of some sentence @i� in the branch’s leaf where
� 2 SenI(⌃)

) { Application of rule (N1), definition of M (Mi = [i]) }

M(Mi) |= ¬
) { Definition of |=I }

M(Mi) 6|=

) { Definition of |=H }

M 6|= @i

) { Definition of |=H }

M |=w ¬@i

• @ih�i⇢

@ih�i⇢ occurs in the branch

) { Application of rule (h�i) }

@k⇢,@ih�ik occur in the branch

) { Induction hypothesis }

M |=w @k⇢ and @ih�ik occurs in the branch

) { Application of rule (N2), definition of M }

M |=w @k⇢ and (Mi,Mk) 2 R�

) { Definition of |=H }

M |=Mi h�i⇢
) { Definition of |=H }

M |=w @ih�i⇢

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• ¬@ih�i⇢

¬@ih�i⇢ occurs in the branch

) { Definition of M and rule ¬h�i lead to }

for any v 2 W such that (Mi, v) 2 R�, ¬@v⇢

) { Induction hypothesis }

for any v 2 W such that (Mi, v) 2 R�, M |=w ¬@v⇢

) { Definition of |=H }

for any v 2 W such that (Mi, v) 2 R�, M 6|=v ⇢

) { Duality between existential and universal quantification }

there is no v 2 W such that (Mi, v) 2 R� and M |=v ⇢

) { Definition of |=H }

M 6|=Mi h�i⇢
) { Definition of |=H }

M 6|= @ih�i⇢
) { Definition of |=H }

M |= ¬@ih�i⇢

The remaining cases are straightforward.

4.3. An illustration in HAlloy – the reconfigurable buffers
Increasingly popular both in industry and academia, Alloy [17] is a

lightweight model finder for software design whose language is single sorted
relational logic extended with a transitive closure operator – hence its motto:
everything is a relation. Adding to this, Alloy has the ability to automati-
cally validate specifications with respect to bounded domains, and, moreover,
to graphically depict counter–examples of flawed assertions.

In order be able to hybridise Alloy specifications, to capture reconfig-
urable systems, – but also, in a wider perspective, to ‘connect’ it to a vast
network of logics and provers [18] – Neves et al [19, 12] introduced an insti-
tution for Alloy along with suitable translations to (variants of) first–order
and second–order logics. This makes possible to hybridise Alloy but also

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to verify the corresponding specifications in powerful provers such as SPASS
[20] and LEO-II [21].

Here, however, our focus is the development of dedicated tool support
for HAlloy, based on the tableau generation method. Thus, this section
illustrates the potentialities of the method through an example of T HAlloy

at work. The case study concerns the specification of a reconfigurable buffer,
addressed in documents [4, 22] through hybridised partial logic.

Consider a buffer that stores and pops out client requests. In general, the
store and pop operations follow the FIFO strategy. However, when client
requests increase, the buffer adapts by starting to behave as a LIFO system.
A question that is typically asked in this context is the following: once known
the expected behaviour for its different settings, when it is possible to discern
the current execution mode? To answer such a question, we start by defining
in Alloy the notion of a buffer as a list, i.e. a set List equipped with the
following relations

head : List ! Elem
tail : List ! List

where for each l 2 List, its head and tail (l · head, l · tail) has at most
cardinality one. Recall that operator · denotes relation composition. Then,
it is necessary to force exactly one empty list to exist, and any other to have
its head and tail well–defined.

one l : List | l · head ✓ ;
one l : List | l · tail ✓ ;
one l : List | l · head ✓ ; and l · tail ✓ ;
At this stage, Alloy can already provide several instances of a list. For

example, Figure 3 denotes the lists: List0 = [], List1 = [b], List2 = [a],
List3 = [b, a] and List4 = [a, a, a, . . .] where Elem0 = a and Elem1 = b.

The next step is to define the pop relation
pop : List ! List

and the possible execution modes. In particular, we state that the system
has only two possible execution modes

FIFO _ LIFO

and define the behaviour of pop at FIFO and LIFO as
@FIFO

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 3: Several instances of a list in Alloy

all l : List | ¬ l · tail = empty !
(l · pop) · head = l · head and
(l · pop) · tail = (l · tail) · pop

all l : List | l · tail = empty ! l · pop = empty

@LIFO

all l : List | ¬ l = empty ! l · pop = l · tail
all l : List | l = empty ! l · pop = empty

Let us denote the axiomatics of pop at FIFO by @FIFO 1 and at LIFO by
@LIFO 2. Alloy can also show the behaviour of pop at FIFO or at LIFO;
Figure 4 shows the behaviour of pop at FIFO with the lists mentioned above.
It tells: pop([]) = [], pop = ([b]) = [], pop([a]) = [], pop([b, a]) = [b] and
pop([a, a, a, . . .]) = [a, a, a, . . .].

We are now ready to answer our original question. Clearly, in models with
just the empty list, singleton lists and lists with only element repetition, it
is impossible to observe and distinguish the current execution mode. Indeed,
in these cases pop at FIFO behaves as pop at LIFO. But what happens in the
case of a list whose first element is different from the second? Or formally,
when
�1 ⌘ some l : List | ¬ (l · tail) · head = l · head and

¬ (l · tail) = empty

It turns out that, when such a condition is true, for any Alloy model with

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Examples of pop in action at state FIFO.

no more than four elements and fifty lists it is possible to distinguish the
current execution mode with the test
�2 ⌘ all l : List | ¬ l = empty ! l · pop = l · tail

Indeed, as tableau T HAlloy proves the validity of the sentence below, it also
proves that the proposition holds.

((FIFO _ LIFO) ^@FIFO 1 ^@LIFO 2 ^ �1) ! (�2 ! LIFO)

⌘ ((FIFO _ LIFO) ^@FIFO 1 ^@LIFO 2 ^ �1 ^ �2) ! LIFO

⌘ ¬((FIFO _ LIFO) ^@FIFO 1 ^@LIFO 2 ^ �1 ^ �2 ^ ¬LIFO)
⌘ ¬(¬(¬FIFO ^ ¬LIFO) ^@FIFO 1 ^@LIFO 2 ^ �1 ^ �2 ^ ¬LIFO)

Its negation, ¬(¬FIFO^¬LIFO)^@FIFO 1 ^@LIFO 2 ^�1 ^�2 ^¬LIFO, is fed
to the tableau which calculates

@0(¬(¬FIFO ^ ¬LIFO) ^@FIFO 1 ^@LIFO 2 ^ �1 ^ �2 ^ ¬LIFO)
@0¬(¬FIFO ^ ¬LIFO),@FIFO 1,@LIFO 2,@0�1,@0�2,@0¬LIFO (^,@)

@0¬(¬FIFO ^ ¬LIFO),@FIFO 1,@LIFO 2,@0�1,@0�2,¬@0LIFO (¬)
@0¬(¬FIFO ^ ¬LIFO),@FIFO 1,@LIFO 2,@0(�1 ^ �2),¬@0LIFO (^ #)

Then,

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

@0FIFO @0LIFO,¬@0LIFO (¬^)
@FIFO 1,@FIFO(�1 ^ �2) ⇥ (N1)

@FIFO(1 ^ �1 ^ �2) ⇥ (^ #)
⇥ ⇥ No model for 1 ^ �1 ^ �2.

Alloy cannot find a model up to four elements and fifty lists for 1 ^
�1 ^ �2, which means that, whenever no base model exceeds these domains,
our assertion is valid.

5. Conclusions and future work

Despite the major advantages of working in a single logical setting, the
current software complexity often forces the engineer to use multiple logics in
the specification of a single software system. Hence, it comes as no surprise
the emergence of several mechanisms for combining logics (e.g. [23, 24, 25,
26, 27]), but also what Goguen and Meseguer wrote in [28]

“The right way to combine various programming paradigms is to discover
their underlying logics, combine them, and then base a language upon the

combined logic.”

and the manifesto [29] on combination of logics.
Serving as a framework for the specification of reconfigurable systems,

the hybridisation method systematically adds the features of hybrid logics
on top of whatever logic is found useful in specification – and is, therefore,
a technique for combining logics asymmetrically. Its formal introduction, in
document [2], was ensued by further developments such as equivalence and
refinement notions in hybrid(ised) logics [30], definition of initial semantics
in this context [31], and, in the verification side, by suitable translations to
first–order logic [2, 4]. Recently, hybridisation was implemented [3] in the
HETS platform [18] and illustrations of its potentialities provided in [32].
However, contrary to what happened, for example with temporalisation [24]
and probabilisation [25], proof theory for hybrid(ised) logics was yet to be
explored.

Document [5] gave the first step in this line of research by showing how
an Hilbert calculus for the hybridised version of a logic can be systemati-
cally generated from a calculus for the latter. The current paper went one

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

step beyond by simplifying the previous method, and providing a similar
process that generates tableau systems instead. Such developments form a
sound basis for a complete proof theory for hybrid(ised) logics, which, from
a paradigmatic point of view, paves the way for dedicated proof support for
a broad spectrum of hybrid(ised) logics.

Actually, the next natural step in this direction is to ‘extract’ the algo-
rithms developed in this paper and implement them in the HETS platform
where provers of different logics can communicate with each other (and con-
sequently where hybridisation’s potentialities are maximised). Then, a com-
parison with the strategy of using the parametrised translation to first–order
logic shall ensue.

The completeness results that this paper reports had always present the
assumption that the base institution has the explicit satisfaction property.
Although prevalent in logics used in software specification, such property
does not hold in hybridised logics. It can, however, be regained by relaxing
the satisfaction definition into

M |=HI
(�,⌃) ⇢ iff M |=w ⇢, for some w 2 W

where M is the typical model of an hybridised logic and ⇢ a compatible
sentence. This means that in a multiple hybridisation (cf. [33]) of a logic
soundness and completeness of the corresponding calculi, as well as decid-
ability, can be obtained.

On a different note, other results in the literature abstract the combi-
nation of logics pattern by considering the “top logic” itself arbitrary. Such
is the case of what is called parametrisation of logics in [26] by C. Caleiro,
A. Sernadas and C. Sernadas. Similarly, the recent method of importing
logics suggested by J. Rasga, A. Sernadas and C. Sernadas [27] aims at for-
malising this kind of asymmetric combinations resorting to a graph-theoretic
approach. In both cases some decidability and completeness results are given.
It should be interesting to see in which ways the hybridisation method relates
to these approaches.
Acknowledgements. We would like to acknowledge Torben Bräuner due
to helpful discussions between him and the authors about the matter of this
paper.

This work is funded by ERDF - European Regional Development Fund,
through the COMPETE Programme, and by National Funds through Fun-
dação para a Ciência e Tecnologia (FCT) within project FCOMP-01-0124-
FEDER-028923. Also, by project NORTE-07-0124-FEDER-000060, financed

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

by the North Portugal Regional Operational Programme (ON.2 - O Novo
Norte), under the National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), and by National Funds
through FCT. Moreover, the first author is sponsored by FCT grant
SFRH/BD/52234/2013. Finally, M. Martins is also supported by FCT project
UID/MAT/04106/2013 at CIDMA and the EU FP7 Marie Curie PIRSES-
GA-2012-318986 project GeTFun: Generalizing Truth-Functionality.

[1] A. Madeira, J. M. Faria, M. A. Martins, L. S. Barbosa, Hybrid speci-
fication of reactive systems: An institutional approach, in: G. Barthe,
A. Pardo, G. Schneider (Eds.), Software Engineering and Formal Meth-
ods (SEFM 2011, Montevideo, Uruguay, November 14-18, 2011), Vol.
7041 of Lecture Notes in Computer Science, Springer, 2011, pp. 269–
285.

[2] M. A. Martins, A. Madeira, R. Diaconescu, L. S. Barbosa, Hybridization
of institutions, in: A. Corradini, B. Klin, C. Cîrstea (Eds.), Algebra and
Coalgebra in Computer Science (CALCO 2011, Winchester, UK, August
30 - September 2, 2011), Vol. 6859 of Lecture Notes in Computer Science,
Springer, 2011, pp. 283–297.

[3] R. Neves, A. Madeira, M. A. Martins, L. S. Barbosa, Hybridisation at
work, in: CALCO TOOLS, Vol. 8089 of Lecture Notes in Computer
Science, Springer, 2013.

[4] R. Diaconescu, A. Madeira, Encoding hybridized institutions into first-
order logic, Mathematical Structures in Computer Science FirstView
(2015) 1–44. doi:10.1017/S0960129514000383.
URL http://journals.cambridge.org/article_S0960129514000383

[5] R. Neves, M. A. Martins, L. S. Barbosa, Completeness and decidabil-
ity results for hybrid(ised) logics, in: C. Braga, N. Martí-Oliet (Eds.),
Formal Methods: Foundations and Applications: Brazilian Symp. on
Formal Methods, SBMF 2014. Proceedings, Vol. 8941 of Lecture Notes
in Computer Science, 2015, pp. 146–161.

[6] T. Braüner, Proof-Theory of Propositional Hybrid Logic, Hybrid Logic
and its Proof-Theory, 2011.

34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[7] R. Goré, Tableau methods for modal and temporal logics, in:
M. D’Agostino, D. Gabbay, R. Hähnle, J. Posegga (Eds.), Hand-
book of Tableau Methods, Springer Netherlands, 1999, pp. 297–396.
doi:10.1007/978-94-017-1754-0_6.
URL http://dx.doi.org/10.1007/978-94-017-1754-0_6

[8] J. A. Goguen, R. M. Burstall, Institutions: abstract model theory for
specification and programming, J. ACM 39 (1992) 95–146.

[9] T. Mossakowski, A. Haxthausen, D. Sannella, A. Tarlecki, CASL: The
common algebraic specification language: Semantics and proof theory,
Computing and Informatics 22 (2003) 285–321.

[10] R. Diaconescu, Institutional semantics for many-valued logics, Fuzzy
Sets Syst. 218 (2013) 32–52. doi:10.1016/j.fss.2012.11.015.
URL http://dx.doi.org/10.1016/j.fss.2012.11.015

[11] J. Agustí-Cullell, F. Esteva, P. Garcia, L. Godo, Formalizing multiple-
valued logics as institutions, in: B. Bouchon-Meunier, R. Yager,
L. Zadeh (Eds.), Uncertainty in Knowledge Bases, Vol. 521 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 1991, pp. 269–
278. doi:10.1007/BFb0028112.
URL http://dx.doi.org/10.1007/BFb0028112

[12] R. Neves, A. Madeira, M. Martins, L. Barbosa, An institution for alloy
and its translation to second-order logic, in: Integration of Reusable
Systems, Springer, 2014, pp. 45–75.

[13] J. Fiadeiro, A. Sernadas, Structuring theories on consequence, in:
D. Sannella, A. Tarlecki (Eds.), Recent Trends in Data Type Specifi-
cation, Vol. 332 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 1988, pp. 44–72. doi:10.1007/3-540-50325-0-3.
URL http://dx.doi.org/10.1007/3-540-50325-0-3

[14] R. Diaconescu, Institution-independent Model Theory, Birkhäuser
Basel, 2008.

[15] R. Diaconescu, Quasi-boolean encodings and conditionals in algebraic
specification, J. Log. Algebr. Program. 79 (2) (2010) 174–188.

35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[16] G. Hoffmann, C. Areces, Htab: a terminating tableaux system for hybrid
logic, Electr. Notes Theor. Comput. Sci. 231 (2009) 3–19.

[17] D. Jackson, Software Abstractions: Logic, Language, and Analysis, The
MIT Press, 2006.

[18] T. Mossakowski, C. Maeder, K. Lüttich, The heterogeneous tool set,
Hets, in: O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2007 - Braga, Portugal,
March 24 - April 1, 2007), Vol. 4424 of Lecture Notes in Computer
Science, Springer, 2007, pp. 519–522.

[19] R. Neves, A. Madeira, M. A. Martins, L. S. Barbosa, Giving alloy a
family, in: C. Zhang, J. Joshi, E. Bertino, B. Thuraisingham (Eds.),
Proceedings of 14th IEEE International conference on information reuse
and intergration, IEEE Press, 2013, pp. 512–519.

[20] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, P. Wis-
chnewski, SPASS version 3.5, in: R. A. Schmidt (Ed.), Proceedings
of the 22nd International Conference on Automated Deduction, CADE
2009, Vol. 5663 of Lecture Notes in Artificial Intelligence, Springer, 2009,
pp. 140–145.

[21] C. Benzmüller, F. Theiss, L. Paulson, A. Fietzke, LEO-II - a coopera-
tive automatic theorem prover for higher-order logic, in: A. Armando,
P. Baumgartner, G. Dowek (Eds.), Automated Reasoning, 4th Interna-
tional Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, Vol. 5195 of LNCS, Springer, 2008, pp. 162–170.
URL www.ags.uni-sb.de/ chris/papers/C26.pdf

[22] A. Madeira, R. Neves, M. A. Martins, L. S. Barbosa, When even the
interface evolves..., in: H. Wang, R. Banach (Eds.), Proceedings of 7th
Internl Symp. on Theoretical Aspects of Software Engineering (TASE
2013), IEEE Press, 2013, pp. 79–82.

[23] R. Diaconescu, P. Stefaneas, Ultraproducts and possible worlds se-
mantics in institutions, Theor. Comput. Sci. 379 (1-2) (2007) 210–230.
doi:10.1016/j.tcs.2007.02.068.
URL http://dx.doi.org/10.1016/j.tcs.2007.02.068

36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[24] M. Finger, D. Gabbay, Adding a temporal dimension to a logic sys-
tem, Journal of Logic, Language and Information 1 (3) (1992) 203–233.
doi:10.1007/BF00156915.
URL http://dx.doi.org/10.1007/BF00156915

[25] P. Baltazar, Probabilization of logics: Completeness and decidability,
Logica Universalis 7 (4) (2013) 403–440. doi:10.1007/s11787-013-0087-
8.
URL http://dx.doi.org/10.1007/s11787-013-0087-8

[26] C. Caleiro, C. Sernadas, A. Sernadas, Parameterisation of logics, in:
WADT, 1998, pp. 48–62.

[27] J. Rasga, A. Sernadas, C. Sernadas, Importing logics: Soundness
and completeness preservation, Studia Logica 101 (1) (2013) 117–155.
doi:10.1007/s11225-011-9363-x.
URL http://dx.doi.org/10.1007/s11225-011-9363-x

[28] J. A. Goguen, J. Meseguer, Models and equality for logical program-
ming, in: H. Ehrig, R. Kowalski, G. Levi, U. Montanari (Eds.), TAP-
SOFT ’87, Vol. 250 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 1987, pp. 1–22. doi:10.1007/BFb0014969.
URL http://dx.doi.org/10.1007/BFb0014969

[29] P. Blackburn, M. de Rijke, Why combine logics?, Studia Logica 59 (1)
(1997) 5–27. doi:10.1023/A:1004991115882.

[30] A. Madeira, M. Martins, L. Barbosa, R. Hennicker, Refinement in hy-
bridised institutions, Formal Aspects of Computing 27 (2) (2015) 375–
395. doi:10.1007/s00165-014-0327-6.
URL http://dx.doi.org/10.1007/s00165-014-0327-6

[31] R. Diaconescu, Quasi-varieties and initial semantics for hybridized insti-
tutions, Journal of Logic and Computation.doi:10.1093/logcom/ext016.

[32] A. Madeira, R. Neves, M. A. Martins, L. S. Barbosa, Hybridisation
for the working software engineer: a formal approach to reconfigurable
systems, submitted to a journal.

[33] A. Madeira, R. Neves, M. Martins, L. Barbosa, Introducing hierarchical
hybrid logic, in: Advances in Modal Logic 2014, 2014, pp. 74 – 78.

37

