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• 3/6 DoF localization system capable to operate in cluttered/dynamic and challenging environments.
• Efficient C++ ROS implementation with multi-level point cloud registration and recovery.
• Robust initial pose estimation using geometric feature matching.
• 2D/3D mapping with integration of full sensor data or only unknown areas.
• Fully configurable and modular processing pipeline, extensible to other tasks besides self-localization.
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a b s t r a c t

Mobile robot platforms capable of operating safely and accurately in dynamic environments can have a
multitude of applications, ranging from simple delivery tasks to advanced assembly operations. These
abilities rely heavily on a robust navigation stack, which requires stable and accurate pose estimations
within the environment. To solve this problem, a modular localization system suitable for a wide range
of mobile robot platforms was developed. By using LIDAR/RGB-D data, the proposed system is capable of
achieving 1–2 cm in translation error and 1°–3° degrees in rotation error while requiring only 5–35 ms
of processing time (in 3 and 6 DoF respectively). The system was tested in three robot platforms
and in several environments with different sensor configurations. It demonstrated high accuracy while
performing pose tracking with point cloud registration algorithms and high reliability when estimating
the initial pose using feature matching techniques. The system can also build a map of the environment
with surface reconstruction and incrementally update it with either the full field of view of the sensor
data or only the unknown sections, which allows to reduce the mapping processing time and also gives
the possibility to update a CAD model of the environment without degrading the detail of known static
areas due to sensor noise.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Humanity has sought a reliablemethod of navigation ever since
it started to explore the world. It began with simple landmark ref-
erence points for local travels, then perfected celestial navigation
for global journeys, and when it finally conquered space, it de-
ployed a global localization system. Autonomous robots face the
same problem, because in order to be able to navigate with preci-
sion, they first need to know their location.
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Over the years, several localization methods have been
proposed and refined, according to the navigation environment
and the accuracy requirements. Some are meant for high precision
local navigation, while others provide an approximate global
position.

A robot capable of operating safely and accurately in a dynamic
environment can have innumerous applications, ranging from sim-
ple delivery tasks to advanced assembly. Besides improving pro-
ductivity by performing repetitive tasks with precision and speed,
robots can also act as coworkers, helping humans perform their
jobs more efficiently and thus, reducing the overall production
costs.

Mobile robot platforms have a wide range of localization sys-
tems to choose from. Odometry is one of the simplest localiza-
tion methods and relies on proprioceptive information provided
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by wheel encoders to incrementally update the known pose. But
this approach is very sensitive to wheel drift and can accumulate
a significant amount of error over time. This method can be im-
proved with filters that model the odometry error, such as Kalman
filters [1], but most localization systems choose to rely on a com-
bination of proprioceptive and exteroceptive information in order
to reliably estimate the robot pose. In [2] it is presented a very de-
tailed analysis of the available indoor localization systems and the
sensing devices that can be used. Most mobile manipulators that
require high precision tracking and safety certified sensors rely
on LIght Detection And Rangings (LIDARs), since they can operate
in a wide range of atmospheric and lighting conditions and
provide very accurate measurements of the environment. Never-
theless, stereo vision and RGB-D systems can also achieve very
accurate pose estimations and can perform mapping of the envi-
ronment much faster.

Most of the available localization systems can be categorized
as point cloud registration systems, feature registration systems
or probabilistic pose estimation systems. Examples of point cloud
registration systems such as the ones presented in [3] and [4]
can operate in robots moving at high speeds while the one
introduced in [5] can directly register clouds in polar coordinates.
A different kind of cloud registration is proposed in [6] in which
the points normal distributions are used instead of the points
themselves. Other systems perform feature matching either from
stereo cameras [7] or RGB-D sensors [8] and can achieve very high
update rate, map the environment really fast and integrate color
information besides the geometry itself. Particle filters [9,10] are
another group of localization systems that rely on probabilistic
models in order to provide robust pose estimation even when
the robot becomes temporarily lost. Besides localization, other
systems such as [11–15] were developed to perform long term
localization and mapping in dynamic environments in order to
improve both the pose estimation accuracy and the navigation
path planning efficiency. On a more smaller scale, the work
presented in [16] showed impressive mapping results even with
dynamic and deformable objects.

Some of these localization systems can be used for accurate
pose tracking while others provide global pose estimations with
less accuracy. The proposed implementation achieves both of these
goals and provides an efficient, modular, extensible and easy to
configure localization system, capable to operate on a wide range
of robot platforms and environments. It is capable of performing
high accuracy pose estimation (and robust tracking recovery) using
point cloud registration algorithms and it can also reliably estimate
the global position using feature matching. It can use several
point cloud sensing devices (such as LIDARs or RGB-D cameras)
and requires no artificial landmarks. Moreover, it can dynamically
update the localizationmap at runtime and can adjust its operation
rate based on the estimated sensor velocity in order to use very
few hardware resources when the robot platform is not moving. It
also offers a detailed analysis of each pose estimation, providing
information about the percentage of registered inliers, the root
mean square error of the inliers, the angular distribution of the
inliers and outliers, the pose corrections that were performed in
relation to the previous accepted pose and in case of initial pose
estimation it also gives the distribution of the accepted initial
poses, which can be very valuable information for a supervisor
when the robot is in ambiguous areas that are very similar in
different parts of the known map (and as such, requires the
navigation supervisor to plot a path to disambiguate the initial pose
before beginning any critical operations).

The next section provides a detailed description of the
proposed localization system, explaining each main stage of its
processing pipeline. Section 3 describes the testing platforms and
environments that were used in the evaluation of the proposed
3/6 Degrees of Freedom (DoF) Robot Operating System (ROS)
implementation. Sections 4 and 5 discuss the achieved results in
3/6 DoF and Section 6 finishes with the conclusions.
2. Localization system

This section details the ROS implementation of the proposed 3/6
DoF Dynamic Robot Localization system (DRL).1 It starts with an
overviewof themain processing stages and then details the control
flow and algorithms within the processing pipeline.

2.1. Overview

The self-localization systemwas implemented as a ROS package
and extensible uses the Point Cloud Library (PCL) [17] for its pro-
cessing pipeline. It provides 3/6 DoF localization by publishing ge-
ometry_msgs::PoseStamped and geometry_msgs::TransformStamped
messages along with a detailed analysis of the pose estimation and
registered point cloud (split into inliers and outliers). Moreover, it
also gives detailed analysis of the computation runtime of each of
its modules in order to pinpoint which algorithms are using more
computational resources (which is very useful information when
configuring or upgrading the system).

The ROS implementation can receive sensor data through
sensor_msgs::PointCloud2 messages and as a result it can directly
use data from RGB-D and Time of Flight (ToF) cameras. To use
LIDARs it provides an assembler that can produce point clouds by
merging measurements from several sensor scans using spherical
linear interpolation. As such, if the LIDAR sensors are mounted on
tilting platforms, they can emulate a 3D sensor and retrieve a very
detailed view of the environment.

The self-localization system has a modular software architec-
ture and was implemented as several C++ templated shared li-
braries that can be easily used for other applications besides robot
self-localization. As can be seen in Figs. 1 and 2, it is an extensible
and flexible system able to fit the needs of a wide range of mobile
platforms. It can be configured as a tracking system, with or with-
out pose recovery and can also have initial pose estimation using
feature detection and matching. Moreover, it can dynamically cre-
ate and update the map if necessary.

It supports two configurable processing pipelines in order to
allow fast deployment of robots in large environments. One to
process new reference maps and another to localize a mobile
robot platform using live point clouds. This enables the loading
of either processed or unprocessed referenced point clouds and
allows a navigation supervisor to dynamically provide the relevant
map sections based on the robot position (in order to reduce the
computational resources needed by lowering the number of kd-
tree levels of the reference point cloud).

2.2. Pipeline configuration

The self-localization system was designed to allow fast
reconfiguration2 and parameterization through the use of yaml
files and the ROS parameter server. This gives the possibility
to quickly tune the localization system to the specific needs of
a given mobile platform moving in a particular environment,
in order to use the least amount of computational resources
possible and without requiring any reprogramming or source
code modification. Nevertheless, the system can use a generic
configuration if hardware resources are not a concern.

In a typical configuration (following the Yes paths of the activity
diagram in Fig. 2), the first time the localization system is used,
it receives a raw reference point cloud that is preprocessed and

1 https://github.com/carlosmccosta/dynamic_robot_localization.
2 https://github.com/carlosmccosta/dynamic_robot_localization/blob/hydro-

devel/yaml/schema/drl_configs.yaml.
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https://github.com/carlosmccosta/dynamic_robot_localization/blob/hydro-devel/yaml/schema/drl_configs.yaml
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Fig. 1. DRL system modules overview.
saved to long termmemory alongwith its associated keypoints and
keypoint descriptors (this allows a much faster startup the next
time the localization system is initialized). After having a reference
point cloud the localization system will estimate the robot pose
periodically by analyzing the live point cloud sensor data. This data
can be preprocessedwith several filters and can be associatedwith
computed surface normals. The robot pose estimation is performed
by applying amatrix transformation correction to the current robot
pose and is based on the registration of the live point cloud with
the known map. This registration can use a tracking algorithm
configuration tuned for efficiency and a second configuration for
tracking recovery purposes. These tracking algorithms require a
initial pose estimation, and as such, if one is not available, a third
configuration can be employed to estimate the global position
of the robot using geometric features of the environment. The
switch between these configuration is based on the analysis of the
registered cloud metrics, such as outlier percentage, inliers root
mean square error, inliers angular distribution and the registration
corrections performed on the live point cloud. After successfully
performing the robot pose estimation, the map can be updated by
either integrating the full registered point cloud, its inliers or its
outliers. Finally, like most ROS nodes, the localization system will
stop its execution when it receives a termination signal request.

The next subsections explain in detail the architecture and
algorithms used in each of the processing modules present in
Figs. 1 and 2.
2.2.1. Reference map
The reference point cloud can be loaded from a Computer Aided

Design (CAD) file, point cloud file or dynamically arrive through
a ROS topic as either a 3 DoF nav_msgs::OccupancyGrid or 6 DoF
sensor_msgs::PointCloud2. This allows a localization supervisor to
give only sections of a global map in order to use the least amount
of memory and processing time (very large maps have deeper
search structures, such as kd-trees, and should be avoided in order
to keep the number of tree levels within reasonable values).

2.2.2. Point cloud assembly
The self-localization system can use any sensor that provides

point clouds, namely RGB-D/ToF cameras, LIDARs and stereo
vision systems. Each of these types of sensors have very different
operation rates and measurements accuracies. As such, the
localization system allows the assembly of several live scans using
a circular buffer in order to reduce the impact of sensor noise.

For LIDARs, the system provides a sensor_msgs::LaserScan
assembler3 that converts laser measurements in polar coordinates
into Cartesian coordinates and projects the points using spherical
linear interpolation (in order to account for laser scan deformation
that occurs when the robot is moving and rotating). It can merge

3 https://github.com/carlosmccosta/laserscan_to_pointcloud.

https://github.com/carlosmccosta/laserscan_to_pointcloud
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Fig. 2. DRL system detailed processing pipeline.
scans from several lasers sensors and it will publish the final point
cloud after assembling a given number of scans or periodically
after a specified duration (example in Fig. 3). These assembly
configurations can be changed at runtime based on the robot
velocity (for example, when the robot moves slower, more laser
scans are assembled for each published point cloud) or through
the use of the ROS dynamic reconfigure Application Programming
Interface (API), which allows a navigation supervisor to control the
rate at which the localization system operates.

2.2.3. Filtering and down sampling
The time it takes to perform cloud registration increases

considerablywhen the amount of points in the live point cloud and
in the reference map becomes larger. As such, adjusting the level
of detail of the point clouds by using voxel grids gives some control
over the desired localization accuracy and the computational
resources that will be required. This stage is also useful to mitigate
the measurement errors of the depth sensors, since the centroid of
a voxel that contains points from several scans will be closer to the
Fig. 3. Laser scans assembled with tilting platform (red points).

real surface (if the voxels have dimensions slightly larger than the
expected measurement errors).

The localization system allows the application of several pre-
processing algorithms (algorithm type/configuration and execu-
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tion order customizable). The next sections detail some of the
methods that can be used to filter and downsample point clouds.
Voxel grid sampling. A voxel grid is a uniform space partition
technique that can be used to cluster points according to their
Euclidean coordinates. It is a very effective method to control the
level of detail of a point cloud because it gives the ability to specify
themaximumnumber of points that a region of space should have.

The point cloud downsampling is achieved by replacing each
voxel cluster with a single point. The selection of this point can be
very fast if the voxel center is used (pcl::ApproximateVoxelGrid),
but computing the centroid of the cluster (pcl::VoxelGrid) yields
better results because it represents the underlying surface with
more accuracy and it attenuates errors in the sensors measure-
ments.
Random sampling. Random sampling [18] is a fast downsampling
method that randomly selects points from the input cloud until the
specified number of samples is reached (pcl::RandomSample). This
has the advantage of using real measures instead of downsampled
approximations, but also means it is more sensible to sensor
measurements noise. However, for outdoor environments or very
complex scenes, using the real measurements might be preferable
than using cluster centroids because the voxels may not have the
necessary resolution ormay have a prohibitive computational cost.
Covariance sampling. Covariance sampling [19] is a subsampling
method that aims to create a stable downsampled point cloud
to be registered with Iterative Closest Point (ICP) algorithms. It
incrementally builds the downsampled point cloud while trying to
keep the 6 eigenvalues of the filtered point cloud covariancematrix
as close to each other as possible (pcl::CovarianceSampling). The
resultant point cloud has the desired number of points and is stable
enough to be matched with ICP point to plane algorithms.

2.2.4. Outlier removal
Some depth sensors can perform measurements with high

accuracy, but they have some limitations that can lead to the
creation of outliers [20]. One of those limitations can produce
shadow points around objects boundaries. This is due to the fact
that a portion of the laser beam may hit the object boundaries
and other part may hit areas in the object background. And given
that most laser range finders use a weighted sum of several beams,
this can yield measurements that are not associated with any real
object (outliers). Another issue is related to the angle in which
the depth sensor sees the objects areas. If the incidence angle
is very low, then it may be difficult to compute its distance and
detect if the beam had ambient reflections. This can significant
increase the measurements noise or even lead to the creation of
outliers. Other common problem is associated with the material
properties of the surfaces. For example, objects with very high
or very low reflectance, such as metals or glass, can increase the
measurements noise. Moreover depending on the combination of
surface geometry, material and incidence angle, some objects may
even be undetectable by depth sensors.

Given the negative effect that outliers have in surface normal
computation and registration algorithms, they should be removed
in a preprocessing stage. There are several approaches to perform
outlier detection and removal [21], ranging from simple distance
thresholds to more robust statistical analysis. The next sections
present some of the methods that can be useful in a localization
system.
Distance filter. Given that depth sensors have a minimum and
maximum recommended distance for their measurements, it is
wise to remove points that are close or beyond these limits.
Moreover, it may be useful to remove points that are too close to
the sensor, because they may belong to the robot itself and not the
environment.
This can be achieved by applying a minimum and maxi-
mum threshold to the distances returned by the depth sensor
(drl::LaserAssembler and pcl::CropBox).

Passthrough filter. A passthrough filter (pcl::PassThrough) can
select or remove points according to their properties. For outlier
removal, it can be used to select points that are within a given
bounding box (useful when we already know what area of the
environment we want to analyze) or remove points that do not
have the appropriate intensity or color.

Radius outlier removal filter. The radius outlier removal filter
(pcl::RadiusOutlierRemoval) deletes points that do not have a
minimum number of neighbors within a specified radius distance.
It can be useful when the point density is known and is very
effective in removing isolated points.

Statistical outlier removal filter. The statistical outlier removal filter
(pcl::StatisticalOutlierRemoval) [22] performs a global analysis of
the distances between points and discards the ones that do not
follow the global distance distribution. It is a robust filter that
adapts itself to the point cloud density and is very effective in
removing shadow points. To do so, it computes the mean distance
that each point has to a given number of neighbors and builds a
global distance distribution. Then, assuming that the distribution
is Gaussian, it discards the points that have a distance higher than
a given threshold (that is a percentage of the standard deviation of
the distance distribution).

2.2.5. Surface and object reconstruction and resampling
Depending on the level of sensor noise and amount of outliers

present in a given point cloud, it may be necessary to employ
surface reconstruction techniques to fill gaps in sensor data or
correct measurements errors.

The Moving least squares [23] is a surface reconstruction
algorithm that uses higher order bivariate polynomials to fit
surfaces to a given set of points. It can be used to fill possible gaps
in sensor data, smooth the point cloud, refine surface normals and
perform downsampling or upsampling.

Surface reconstruction can also be useful when the point cloud
is built from several live scans with different origins and registered
with some alignment errors. This allows to improve the points
normals by using the surfaces computed by the moving least
squares algorithm (pcl::MovingLeastSquares) instead of using the
point’s neighbors.

2.3. Normal estimation

Most of feature detection, description andmatching algorithms
along with some registration methods rely on the point’s surface
normal and curvature. These algorithms analyze the neighborhood
of a given point in order to compute the line/surface normal,
and as such, the correct specification of what points should be
included in the estimation is crucial to achieve accurate results.
This depends on the environment geometry and the level of detail
that is required, and is usually done by specifying a radius distance
or by limiting the number of neighboring points to use.

The next sections describe some of the methods that are
supported by the DRL system for 2D/3D sensor data.

2.3.1. Line normal estimation
Line normals give information about the spatial disposition and

orientation of a given cluster of collinear points. Each point normal
can be computed using Random Sample Consensus (RANSAC)
methods [24] by fitting lines to the cluster of neighboring points
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(bounded by a given distance or limiting the number of neighbors).
After knowing the line equation that best fits a given point
cluster, its 6 DoF normal is corrected using the sensor origin in
order to be on the same plane as the laser scan/point cloud data
(drl::NormalEstimatorSAC).

2.3.2. Surface normal estimation
Surface normals provide information about the orientation of

the underlying geometry of a given point cluster. They can be
computed using plane fitting methods or using more advanced
techniques such as Principal Component Analysis (PCA) [25]
(pcl::NormalEstimationOMP) or the one presented in Section 2.2.5
(pcl::MovingLeastSquares).

2.4. Keypoint detection and description

Aligning two point clouds with overlapping views of the
environment requires the establishment of point correspondences.
If both point clouds have similar sensor origins, these can be
determined with nearest neighbor’s searches and filtered with
correspondence rejectors (using other point properties such as
reflectance and color). But if they were acquired in two very
different positions, then more advanced techniques must be
employed.

One of those techniques uses histograms to describe the geo-
metric properties of the environment around a given point. This
allows points to be matched even if they have completely differ-
ent Euclidean coordinates. Also, by using histograms and sampling
techniques, these descriptors are much more robust against sen-
sor noise and varying level of point density. However, these ad-
vantages comewith a heavy computational cost, and as such, point
descriptors should only be computed on themost descriptive areas
of the environment.

Identifying these environment points is known as feature/
keypoint detection [26], and usually involves finding interesting
points, such as corners or edges. Besides uniqueness, these points
must also be repeatable. This means that the detection algorithms
should be able to find the same points even if they are present in
different point clouds with sensor noise and varying point density.
This is of the utmost importance, because if the same keypoints are
not identified on both clouds, then matching the point descriptors
will likely fail.

Currently, the localization system can use the Scale Invariant
Feature Transform (SIFT) [27] algorithm on the point’s curvature
or the 3D Intrinsic Shape Signatures (ISS3D) [28] keypoint detector
on the point’s normals.

Describing a keypoint usually involves analyzing its neighbor-
ing points and computing a given metric or histogram that quan-
tifies the neighbor’s relative distribution, their normals angular
relation, associated geometry or other metrics that are deemed
useful. Several approaches were suggested over the years accord-
ing to different recognition needs and they are the basis of feature
matching algorithms used in the initial pose estimation.

The DRL system can use most of the keypoint descriptors
available in PCL, namely the Point Feature Histogram (PFH) [29],
the Fast Point Feature Histogram (FPFH) [30], the Signature
of Histograms of Orientations (SHOT) [31], the Shape Context
3D (SC3D) [32], the Unique Shape Context (USC) [33] and the
Ensemble of Shape Functions (ESF) [34].

2.5. Cloud registration

Point cloud registration is the process of finding the transfor-
mation matrix (usually translation and rotation only) that when
applied to a given live point cloud will minimize an error metric
(such as the mean square error of the live point cloud in relation to
a given reference point cloud). Several approaches were suggested
over the years and they can be categorized as point or feature cloud
registration.
2.5.1. Initial alignment with keypoints descriptor matching
Feature registration is the process of matching keypoint

descriptors in order to find an initial alignment between two point
clouds. The DRL system uses a feature registration method similar
to the Sample Consensus Initial Alignment (SAC-IA) algorithm
presented in [30]. It uses a RANSAC approach to select the best
registration transformation after a given number of iterations. In
each iteration a subsample of randomly selected descriptors from
the live point cloud is retrieved. Then for each of these descriptors,
k best matching descriptors in the reference point cloud are
searched (using a kd-tree) and one of them is chosen randomly
(this improves robustness against noise in the sensor data and
changes in the environment that are not yet integrated into the
map). After having filtered these correspondences between live
and reference descriptors, the registration matrix is computed. If
this registration matrix results in a point cloud overlap that has a
minimum of inliers percentage (a point in the live point cloud is an
inlier if it has a point in the reference point cloud closer than a given
distance), then it is considered an acceptable initial pose and it is
saved (to allow a localization supervisor to analyze the distribution
of the acceptable initial poses). In the end of all iterations, the best
initial pose (if found) is refined with a point cloud registration
algorithm.

2.5.2. Final alignment with point cloud error minimization
Point cloud registration algorithms such as ICP [35] (with its

several known variations [4,36] like ICP point-to-point, ICP point-
to-point non-linear, ICP point-to-plane and generalized ICP [37])
and the Normal Distributions Transform (NDT) [6] are among the
most popular algorithms to register point clouds. They can achieve
very accurate cloud registration but they require an approximate
initial pose for the registration to successfully converge to a correct
solution (otherwise they may achieve only partial cloud overlap or
even fail to converge to a valid solution).

2.6. Outlier detection

Detecting which points of the environment are not part of the
reference point cloud can be very useful to evaluate the quality
of point cloud registration as well as to analyze the presence
of previously unknown objects. It’s computation splits the live
cloud into two point sets. One containing inliers (points correctly
registered and present in the reference point cloud) and the other
having the outliers (points that are either incorrectly registered or
not present in the reference cloud).

A given live point can be classified as outlier if the correspond-
ing closest point in the reference cloud is farther away than a
given distance threshold. These calculations can be done efficiently
(drl::EuclideanOutlierDetector) using the reference point cloud
kd-tree. In Fig. 4 is an example of a live point cloud retrieved with
a tilting laser and registered with an indoor map (yellow points).
After registration, the live point cloud was split into inliers (red
points) and outliers (blue points).

2.7. Localization validation

After a point cloud is registered by the localization system,
several metrics are calculated in order to evaluate if a valid pose
can be retrieved using the registration matrix.

The first computed metrics are the percentage of inliers and
the Root Mean Square Error (RMSE) of these inliers. If a minimum
number of points was registered and the inlier percentage and
root mean square error are acceptable (typical values for dynamic
environments are at least 35% of inliers with a RMSE lower than
30 mm), then the registration is considered successful. However,
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(a) Gazebo overview. (b) RViz overview.

Fig. 4. Point cloud registration with outlier detection.
these registered points can be agglomerated in a small area and
may not be representative of the robot location. As such, a second
metric is computed that takes into account the angular distribution
(drl::AngularDistributionAnalyzer) of these inliers. This metric
gives a measurement of how reliable is this registration and is
based on the fact that there is high confidence in a given pose
estimation when there are correctly registered points all around
the robot. The recommended parameters for thismetric depend on
the combined field of view of the sensors and if the robot is in an
environment with geometry surrounding it. For typical use cases,
a minimum of 60° of inliers angular distribution is reasonable.

The last metrics are the corrections that the registration matrix
introduced. Given that the localization system will be in tracking
mode most of the time, it is possible to define how far a new pose
can be in relation to the previous accepted location and discard
new poses that exceed a given threshold. This is useful to discard
pose corrections that are very unlikely to happen, such as the
robot moving half a meter between poses when it is expected to
move only at 30 cm/s. These situations can happen when there
is a sudden decrease in the field of view (that can occur due to
sensor occlusion or malfunction) or when large unknown objects
very similar to sections of the map appear into the field of view of
the robot. For a typical robot moving slowly due to safety reasons,
a maximum of 10 cm of translation and 10° of rotation between
pose estimation might be reasonable (these thresholds depend on
the sensors refresh rate and on the expected robot speed).

If all these metrics are within acceptable limits, then the robot
pose can be computed by applying the matrix correction to the
initial pose associated with the live sensor data.

If any of these metrics are not acceptable, then the system can
be configured to simply discard this pose estimation and try to
estimate the pose in the next sensor data updates or it can apply
a tracking recovery attempt with a different registration algorithm
(or the same algorithm with different parameters). This tracking
recovery can be activated after a given number of failed point cloud
registrations or after a specified timeout (this allows to ignore
point clouds that are deformed due to the robot motion during
acquisition or that have too much outliers).

If several consecutive pose estimations are discarded (or a given
time has passed since the last know pose), the system can have a
second level of recovery that can be configured to use the initial
pose estimation algorithms in order to finally estimate the global
robot pose and reset the tracking state.

2.8. Dynamic map update

After performing a successful pose estimation, the DRL system
can update the localization/navigation map by either integrating
only the unknown objects or the full registered point cloud (it can
also be used in conjunction with OctoMap [38] in order to perform
probabilistic map updates).
Integrating only the unknown objects is the recommended
approach when there is a known map and the environment is
expected to change gradually. This is also more efficient as only
the points that need to be integrated are processed and ray traced
in OctoMap. Moreover, integrating only new sections avoids map
degradation or pollution (by sensor noise) of the detail of static
areas (that were provided by CAD models).

On the other hand, integrating the full registered point cloud
can be desirable if the map of the environment is very incomplete,
very outdated or expected to change considerably during the
operation of the robot.

Introducing new elements in the localization map may change
slightly the reference coordinate system. As such, the DRL system
in conjunction with OctoMap can use a static map for localization
and continuously update a differentmap for the navigation system
in order to keep valid previous localization/navigation waypoints
and also allow better path planning for longer robot travels (given
that some map sections might be obstructed by objects or new
pathways might have become available).

3. Testing configurations

This section presents several test scenarios that were devised
to evaluate the implemented localization system. They aim to test
the accuracy and robustness of the DRL implementation under
different environmental conditions and hardware configurations.

3.1. Testing platforms

The localization system was tested on laser sensor data re-
trieved from three different mobile robot platforms and was exe-
cuted on the same computer in order to allow a direct comparison
of computation time. This computer was a Clevo P370EM3 laptop
(with a Intel Core i7 3630QM CPU at 2.4 GHz, 16 GB of RAM DDR3,
NVidia GTX680M graphics card and a Samsung 840 Pro SSD) and
it was running Ubuntu 12.04 along with ROS Hydro, PCL 1.7 and
Gazebo 1.9.

The sensor data was recorded into rosbags, and is publicly
available in the dynamic_robot_localization_tests repository4 along
with all the detailed results, configurations and experiments
videos, in order to allow future comparisonswith other localization
systems.

The hardware specifications of the LIDARs used is presented
in Table 1 and the laser points after downsampling and registration
can be seen on the movement paths figures as green dots (inliers)
and red dots (outliers).

4 https://github.com/carlosmccosta/dynamic_robot_localization_tests.

https://github.com/carlosmccosta/dynamic_robot_localization_tests
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Table 1
LIDARs hardware specifications.

Laser model Range (m) Field of view (degrees) Scanning frequency (Hz) Angular resolution (degrees) Statistical error (mm)

SICK NAV350 [0.5..250] 360 8 0.25 15
SICK S3000 [0.1..49] 190 8 0.25 150
SICK LMS200 [0.1..80] 180 10 1.0 35

Hokuyo URG-04LX [0.06..4.095] 240 10 0.36 10
Hokuyo URG-04LX_UG01 [0.02..4] 240 10 0.36 30
Fig. 5. Jarvis testing platform.

3.1.1. Jarvis platform
The Jarvis platform was used to create 4 tests (two navigation

paths with two different sets of movement velocities) within a
RoboCup field in order to test the 3 DoF DRL system with a long
range LIDAR. It is an autonomous ground vehicle equipped with a
SICK NAV 350 laser for self-localization (mounted about 2 m from
the floor) and a SICK S3000 laser for collision avoidance (mounted
about 0.20 m from the floor). It uses a tricycle locomotion system
with two back wheels and a steerable wheel at the front.

In Fig. 5 the robot is performing a delivery taskwith the package
on top of a moving support.

The 3 DoF ground truth was provided by the SICK NAV350
system and relied on 6 laser reflectors (with 9 cm of diameter)
to perform the pose estimations (it is certified for robot docking
operations with precision up to 4 mm).

3.1.2. Pioneer 3-DX platform
The Pioneer 3-DX shown in Fig. 6 was used in 4 tests of the

dataset presented in [39] in order to test the 3 DoF DRL system in a
challenging environment (industrial hall). It is a small lightweight
robot equipped with a SICK LMS-200 laser (mounted about 48 cm
from the floor) and a Kinect (mounted about 78 cm from the
floor). It uses a two-wheel two-motor differential drive locomotion
system and can reach a linear speed of 1.2m/s and angular velocity
of 300°/s.

The 3 DoF ground truth was provided by 8 Raptor-E cameras5
and according to [39] it had less than 1 cm in translation error and
less than 0.5° in rotation error.

3.1.3. Guardian platform
The Gazebo simulation of the Guardian platform was used to

create 8 tests in 4 different environments within a structured
environment in order to test the 3 DoF DRL system with perfect
ground truth. The Guardian platform is an autonomous mobile
manipulator equipped with a Hokuyo URG-04LX laser in the front
and a Hokuyo URG-04LX_UG01 laser in the back (both mounted
about 0.37 m from the ground). The front laser had a tilting

5 http://www.motionanalysis.com/html/movement/raptore.html.
Fig. 6. Pioneer 3-DX testing platform [39].

Fig. 7. Guardian testing platform.

Fig. 8. Guardian Gazebo simulation.

platform which allows 3D mapping of the environment. The arm
is a SCHUNK Powerball LWA 4P and in Fig. 7 it is attached to a stud
weldingmachine (in simulation it is attached to a video projector).
It uses a differential drive locomotion system and can be moved
with wheels or with tracks. This platform did not have a certified
ground truth and as such, the results could not be quantified with
an external localization system (the results performed with the
Gazebo simulator will be presented instead—robot model shown
in Fig. 8).

3.2. Testing environments

The localization system was tested in 4 different environments
and used the Jarvis platform in a large room with a RoboCup field,
the Pioneer 3-DX in a large industrial hall, the Guardian platform
in a simulated indoor environment and a Kinect in a flying arena.

http://www.motionanalysis.com/html/movement/raptore.html
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Fig. 9. Jarvis testing environment.

3.2.1. Jarvis in RoboCup field
The RoboCup field (shown in Fig. 9) occupies half of a large

room (with 20.5 m of length and 7.7 m of depth). It has two
doors, several small windows and two large glass openings into
the hallway. Several tests were performedwith the robot at speeds
ranging from 5 to 50 cm/s in this environment. These tests were
performedwith twodifferentmovement paths. The first is a simple
rounded path that aimed to test the robot in the region of space
that had better ground truth (due to its position in relation to
the laser reflectors). The second path was more complex and
contained several sub paths with different velocities and shapes
(it was intended to evaluate the localization system with typical
movements that mobile manipulators require, such as moving
forward and backwards with or without angular velocity and
stopping at the desired destination).

3.2.2. Guardian in structured environment
The structured environment simulated in Gazebo is a large

room with 12.4 m of length and 8.4 m of depth. It has 4 doors,
several small windows and the walls have small ledges at regular
intervals.

Given that the Guardian mobile manipulator is expected to
work on the walls of this environment, several tests were devised
with a path following the lower and right wall of the environment.

The first testwas done in a static environment clear of unknown
objects (shown in Fig. 10) and was meant to evaluate the best
precision that the localization system could achieve.

The second test was done in a cluttered environment (top of
Fig. 11) and was designed to test the robustness of the localization
system against static unknown objects that were placed in the
middle of the environment and close to the walls (to block sensor
data from reaching known positions and analyze the robustness of
matching unknown points).

In the third test (middle of Fig. 11) it was added a large block
wall (6.5 m of width, 1.2 m of height and 0.1 m of thickness) very
close (0.3m) to the CAD referencewall to evaluate the impact of the
kd-tree search radius in the robustness of thematching algorithms.
Fig. 10. Guardian testing environment.

In the last test (bottom of Fig. 11) it was added a moving car
to the second test environment with the objective of assessing
the impact of dynamic objects on the point cloud registration
algorithms.

3.2.3. Pioneer in industrial hall
One of the environments of the dataset presented in [39] is an

industrial hall consisting of a large room with 20 m of length and
12 m of depth. Four tests were performed with a Pioneer 3-DX in
this environment. The first test was a 360° path with a few camera
supports in the middle of the room, while the remaining 3 tests
were done with several tables and objects spread around in the
middle of the room, that significantly reduced the field of view of
the robot laser (as can be seen in Fig. 12).

3.2.4. Kinect in flying arena
The flying arena dataset introduced in [40] and shown in Fig. 13

is a large room in which several objects were added in order to
test 6 DoF pose tracking. In these tests, the Kinect was moved by
the operator in three different paths. The first was a smooth fly
movement over the testing scene,while the other two aimed to test
paths with mainly translations and rotations. This environment
had a ground truth provided by Vicon cameras6 and according to
the authors of the dataset [40], it had sub-centimeter accuracy.

4. 3 DoF localization system tests

4.1. Overview

The main results of the 3 DoF tests performed with the DRL
system (performing localization only with a given initial pose) are
presented in Tables 2 and 3. They summarize each test by fitting a

6 http://www.vicon.com/.

http://www.vicon.com/
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Fig. 11. Guardian cluttered (top), cluttered with occluded wall (middle) and
dynamic (bottom) testing environments.

normal distribution to each evaluationmetric. Theywere retrieved
with a known initial pose and used ICP point-to-point as tracking
algorithm. The Jarvis and Pioneer tests had a map built using the
localization system inmappingmode andweremanually corrected
to achieve a resolution of 10 and 25 mm respectively (shown in
Figs. 41 and 32 respectively). The Guardian tests relied on a map
built from the CAD model with resolution of 2 mm (shown in
Fig. 37).

Sensor data preprocessing relied on a voxel grid of 50 mm in
order to reduce the impact of sensor measurement noise and also
control the level of detail of the live point clouds.

The tests with the initial pose estimation subsystem used SIFT
for keypoint selection, FPFH for keypoint description and the
feature matching algorithm described in Section 2.5.1 to estimate
the initial position and orientation of the robot (Figs. 25 and 26
show the accepted initial poses computed by the DRL systemwhen
it received as initial pose the large red arrow).

The next sections will provide a brief analysis of the main
3 DoF results achieved with the DRL system. They will start
by explaining how laser spherical interpolation can improve
localization by mitigating point cloud deformation. Later on it will
be analyzed the point cloud preprocessing stage and why it should
be carefully tuned to the sensors and ambient geometry. Next it
will be presented a global analysis of the test results, in which
the pose estimation accuracy achieved by the DRL system will
be compared with the ground truth, odometry and the Adaptive
Fig. 12. Industrial hall with (bottom) and without (top) objects in the center [39].

Fig. 13. Flying arena environment [40].

Monte Carlo Localization (AMCL) ROS package. Finally it will be
analyzed the mapping results and why it is necessary to have
accurate environment representations in order to achieve precise
localization.

4.2. Laser assembly with spherical linear interpolation

The localization system was designed to operate with any kind
of point cloud sensors. For the particular case of data retrieved
using LIDARs, there is a very significant problem of point cloud
deformation when the robot is moving or rotating at high speeds.
This is due to the fact that a typical LIDAR outputs laser scans at
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Fig. 14. Large laser deformation on oppositewalls (top and bottom)when the robot
was rotating (grid with 1 m spacing).

Fig. 15. Correction of the large laser deformation on opposite walls (top and
bottom) with spherical linear interpolation (grid with 1 m spacing).

Fig. 16. Laser deformation on the top right corner when the robot was rotating
(grid with 1 m spacing).

Fig. 17. Correction of the laser deformation on the top right corner with spherical
linear interpolation (grid with 1 m spacing).

a very low rate (8–10 Hz), and as such, assuming that the robot is
not moving when capturing an entire scan will result in deformed
point clouds.

Given that ROS outputs laser scans (an entire slice of laser
measurements from the start to the end of its field of view),
and the localization system does not have access to individual
measurements as they arrive, then one way to mitigate this scan
deformation is by using odometry and/or Inertial Measurement
Unit (IMU) information to update the robot pose between the pose
corrections performed by the localization system. This allows to
use spherical linear interpolation when converting from the raw
Fig. 18. ICP point to point cloud registration performed by the DRL system with a
15 cm kd-tree search radius (grid with 1 m spacing).

measurements in polar coordinates into the required Cartesian
coordinates in the map frame.

The laser scan deformation is negligible when the robot is
moving very slowly. However, when traveling at higher speeds, the
point cloud deformation poses a serious issue for map matching
algorithms, and the usage of spherical linear interpolation is very
important to mitigate it.

Figs. 14 and 16 were retrieved using the Jarvis robot with
velocities of 50-30-50-10 cm/s and without using the spherical
linear interpolation module. Figs. 15 and 17 were taken from the
same test but now using the spherical linear interpolationmodule.
In the top and bottom of Fig. 14 it can be seen that the laser
measurements in front of the robot were deformed outwards,
causing the points to be projected outside both walls. On the top
right corner of Fig. 16 there is also a very large deformation, which
is now very noticeable, because the first laser measurement is not
close to the last one. These deformationswere severely diminished
when the laser spherical linear interpolation module was used (as
can be seen in Fig. 15 and Fig. 17 respectively).

Analyzing the tests in Table 2 associated to the Figs. 14 to 17 it
can be seen that using the spherical linear interpolation module
allowed to reduce the mean (from 8.88 mm to 6.42 mm) and
standard deviation (from 8.74 mm to 3.99 mm) of the translation
error and also reduced themean (from0.42° to 0.39°) and standard
deviation (from 0.14° to 0.10°) of the rotation error. Moreover,
given that the correction of deformation gives a point cloud more
similar to the map, the usage of the spherical linear interpolation
module also allowed to reduced the global computation time
(mean from 14.83 ms to 13.38 ms and standard deviation from
23.09 ms to 13.32 ms).

The laser assembly parameters present in Tables 2 and 3 as
‘‘N° scans/N° lasers’’ have the meaning of how many laser scans
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Fig. 19. ICP point to point cloud registration performed by the DRL system with a
50 cm kd-tree search radius (grid with 1 m spacing).

Fig. 20. Poses estimated by the ground truth (green arrows), DRL system (blue
arrows), AMCL (brown arrows) and odometry (red arrows) in the occludedwall test
with the robot moving at 30 cm/s and using a kdtree search radius of 15 cm.

were being merged into each published sensor_msgs::PointCloud2
and from how many sensors those lasers scans were being
generated. As such, a configuration of ‘‘2–4/2’’ means that the laser
assembler was merging between 2 (moving fast) and 4 (moving
slow) lasers scans depending on the velocity of the robot, and these
laser scanswere being generated by two LIDARs sensors (one in the
front and another in the back of the robot).
Fig. 21. Poses estimated by the ground truth (green arrows), DRL system (blue
arrows) and odometry (red arrows) in the occludedwall test with the robotmoving
at 30 cm/s and using a kdtree search radius of 50 cm.

Fig. 22. Poses estimated by the ground truth (green arrows), DRL system (blue
arrows), AMCL (brown arrows) and odometry (red arrows) in the Jarvis test at
50-30-50-10 cm/s movement velocities.

Fig. 23. Laser scans assembled on top of the map using the DRL system poses in
the Jarvis test at 50-30-50-10 cm/s movement velocities (grid with 1 m spacing).

Fig. 24. Laser scans assembled on top of themap using the AMCL poses in the Jarvis
test at 50-30-50-10 cm/s movement velocities (grid with 1 m spacing).
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Fig. 25. Overview of initial pose estimation using featurematching in the Guardian
static environment (grid with 1 m spacing).

Fig. 26. Overview of initial pose estimation using feature matching in the Jarvis
environment (grid with 1 m spacing).

4.3. Point cloud preprocessing

The statistical error of the lasers can be mitigated by merging
several laser scans before performing a point cloud registration.
This is based on the fact that a considerable amount of laser noise
results in measurements oscillating around the true distance to
the obstacles, and as such, the effective measurement error can
be significantly reduced by retrieving the centroids of a voxel grid
applied over the laser data. However, assembling too much laser
scans can lead to worse pose tracking if the robot is moving at high
speeds, because the lasers would be projected into the map frame
with a high position error (because odometry accuracy decreases
when the robot speed increases and the localization system will
not correct it, since the sensor data is still being assembled and not
being used to estimate the robot pose). As such, the implemented
laser assembler supports dynamic reconfiguration of the number
of laser scans to assemble (or the period of assembly time) based
on the robot estimated velocity. This feature besides improving the
pose tracking, it also allows a navigation supervisor to regulate
the rate at which the localization system operates. This can be
very useful for mobile robot manipulators because the localization
system can have a high update rate when the robot is moving
fast and a low update rate when it is moving slower or when
it is stopped. This allows a more efficient usage of the platform
hardware resources while also improving the localization system
accuracy.

Besides reducing the sensor measurement errors, this process-
ing stage also allows the removal of laser shadow points caused by
veiling, or small cluster of points that may be associated with tem-
porary objects/people. However these filters can take some time to
compute (given the intensive usage of point neighbors searches).

For typical usage scenarios of a mobile robot manipulator, the
voxel grid and random sampling filters are usually enough to
control the computational resources that will be required by the
registration algorithms while also improving robustness against
sensor noise.

4.4. Point cloud registration

Looking at the results from Tables 2 and 3, the poses from
Fig. 22, the laser assembly figures shown in Figs. 23 and 24 and
the translation/rotation error graphs presented from Figs. 27 to
30 (from the Jarvis test in the complex path at high velocities), it
can be seen that the localization system can register point clouds
with much more accuracy than the AMCL ROS package (AMCL
was using at most 5000 particles). For the test shown in Fig. 22,
the DRL system was 13.12 times more accurate than the AMCL
package in computing the robot position (achieved 6.422 mm of
mean translation error while AMCL had 84.23 mm) and was also
1.5 times more accurate than the AMCL package in computing the
robot orientation (achieved 0.397° of mean rotation error while
AMCL had 0.595°).

The most common problems that seemed to affect the
registration algorithms of the DRL system were the point
cloud deformation (usually when there is unreliable odometry
information, which typically occurs when the robot is moving
with high velocities/accelerations), laser measurements errors,
unknownobjects close to the known reference point cloud and also
low resolution maps. The localization system can tolerate these
problems by having a default pipeline configuration for the normal
operation of the robot, another for temporary tracking recovery
and yet another for initial pose estimation.

The switch between the localization system operation modes
using the point cloud registration analysis proved to be a very
intuitive and fast process to setup and the overall system
configurations seemed to be generic enough to be reused in
several types of environments,with different robots equippedwith
varying types of sensors. Such ease of configuration allows the fast
deployment of robots and gives a high confidence that the DRL
system will remain accurate even in challenging environments.
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Fig. 27. Probability distributions for the AMCL translation errors in the Jarvis test at 50-30-50-10 cm/s movement velocities.
Fig. 28. Probability distributions for the AMCL rotation errors in the Jarvis test at 50-30-50-10 cm/s movement velocities.
Fig. 29. Probability distributions for the DRL system translation errors in the Jarvis test at 50-30-50-10 cm/s movement velocities.
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Fig. 30. Probability distributions for the DRL system rotation errors in the Jarvis test at 50-30-50-10 cm/s movement velocities.
Fig. 31. Probability distributions for the DRL system global computation time in the Jarvis test at 50-30-50-10 cm/s movement velocities.
Fig. 32. Map manually corrected with 25 mm cell resolution (based on Fig. 33).

Fig. 33. Map made with the DRL system using full integration in conjunction with
OctoMap (playing the rosbag in real time).
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Fig. 34. Mapmade using the ground truth poses provided by the Raptor-E cameras.

Fig. 35. Map made with the GMapping package (playing the rosbag at 10% speed).

Fig. 36. Map made with the GMapping package (playing the rosbag in real time).

This is not the case with systems such as AMCL, given that they are
very dependent on the odometry and laser models, and as such,
require constant retuning when one of these models change.

The ability to switch registration algorithms at runtime based
on the quality of the estimated pose proved to be an efficient
Fig. 37. Map of the structured environment generated using a CAD model.

Fig. 38. Updated map of the structured environment using the DRL system with
partial integration (only points that were not close to the walls of Fig. 37 were
integrated).

Fig. 39. Updated map of structured environment using the DRL system with full
integration (all registered points were integrated into the map of Fig. 37).

and flexible architecture choice, since it allowed high precision
pose tracking with fast registration algorithms and occasional
pose tracking recovery with more robust methods/configurations
(which happened more often in the tests at higher velocities, in
which the odometry was significantly worse).

The recovery configuration is also very useful to adjust the
search radius of the ICP algorithms. This parameter can be tuned
to avoidwrong correspondences of points from objects close to the
reference map, (such as the newwall in front of the reference CAD
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Fig. 40. Mapping of the structured environment using the DRL system with full
integration (all registered points were integrated).

Fig. 41. RoboCup field map (manually corrected).

Fig. 42. Updated map of the RoboCup field using the DRL system with full
integration (starting with the map from Fig. 41).

Fig. 43. Registered point clouds assembled on top of themap using the DRL system
poses (for the top part of the figure: green arrows→ ground truth poses, red arrows
→ DRL poses).

walls in the middle of Fig. 11). Fig. 18 is an example of correctly
registered point clouds done by the DRL system even when there
was a large wall close to the reference map (shown in Fig. 37). This
was achieved with the ICP point-to-point registration algorithm
with a kd-tree search radius of 15 cm, which rejected the point
correspondences between the new wall and the reference wall.
Fig. 44. Registered point clouds assembled on top of the map using the
ethzasl_icp_mapper system poses (for the top part of the figure: green arrows →

ground truth poses, red arrows → ethzasl_icp_mapper poses).

Fig. 45. Full Kinect point clouds assembled on top of the map using the ground
truth poses.

Fig. 46. XY 2D plot of poses estimated in the 6 DoF fly test by the ground truth
(green), DRL (blue) and ethzasl_icp_mapper (red).
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Fig. 47. XZ 2D plot of poses estimated in the 6 DoF fly test by the ground truth
(green), DRL (blue) and ethzasl_icp_mapper (red).

Fig. 48. XYZ 3D plot of poses estimated in the 6 DoF fly test by the ground truth
(green), DRL (blue) and ethzasl_icp_mapper (red).

As can be seen in Fig. 20 and Table 2, the DRL system was much
more accurate than the AMCL package in this challenging test
(achieved a mean translation error of 19.47 mm while AMCL had
218.53 mm). Fig. 19 shows the same test but now with a kd-tree
search radius of 50 cm. This larger search radius caused the large
wall to distort the cloud registration (green dots are considered
correctly registered points and red dots are incorrectly registered
points) and introduce an offset in the pose estimation (as can be
seen in Fig. 21). These tests show that a small kd-tree search radius
is ideal to track the robot pose in environments with objects close
to the reference map. However by restricting the point neighbors
search radius, the matching algorithms become much less robust
against large errors in odometry, since the initial guess given to
the ICP algorithms may cause the correct point correspondences
to be rejected since the distance between the live points and the
corresponding reference points might be larger than the limited
kd-tree search radius, causing the point cloud registration to fail. As
such, the ability to have a recovery algorithmwith a larger kd-tree
search radius allows the DRL system to recover from temporary
tracking problems while the main registration algorithm achieves
high accuracy tracking even when there are objects close to the
known reference points of the map.
Fig. 49. XY 2D plot of poses estimated in the 6 DoF rotations test by the ground
truth (green), DRL (blue) and ethzasl_icp_mapper (red).

Fig. 50. XZ 2D plot of poses estimated in the 6 DoF rotations test by the ground
truth (green), DRL (blue) and ethzasl_icp_mapper (red).

The initial pose estimation using feature matching was very
reliable and successfully found the robot location even in low
feature surroundings (as can be seen in Figs. 25 and 26). Moreover,
the output of the accepted initial pose estimations allows the
detection of similar map locations by a navigation supervisor,
which can then plot a path to disambiguate the initial pose guess
and avoid dangerous operations at a wrong position.

Figs. 25 and 26 show the accepted initial pose estimations using
the global localization subsystem presented in Section 2.5.1. The
blue dots presented in Figs. 25 and 26 represent the keypoints of
the live point cloud in the robot start up position, while the violet
dots are the reference point cloud keypoints. The green dots are
the live point cloud lasermeasurements after performing the initial
pose estimation and registration refinement.

4.5. Translation and rotation errors

By analyzing Tables 2 and 3 it can be seen that the 3 DoF
DRL system can achieve pose tracking with less than 10 mm in
translation error and less than 1° in rotation error when using a
detailed map (10 mm cell resolution) and a sensor with good field
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Fig. 51. XYZ 3D plot poses estimated in the 6 DoF rotations test by the ground truth
(green), DRL (blue) and ethzasl_icp_mapper (red).

Fig. 52. XY 2D plot poses estimated in the 6 DoF translations test by the ground
truth (green), DRL (blue) and ethzasl_icp_mapper (red).

of view (360°) and low sensor noise (15mm).When using a sensor
with low field of view (180°) and high sensor noise (35 mm), the
DRL system still managed to achieve localization accuracy below
themap resolution (translation error less than 20mm and rotation
error close to 5° in a map with 25 mm cell resolution).

As expected, the tests at lower velocities had less mean error
than the ones at higher speeds while requiring slightly less
computation time. Also, the simulator tests had less mean error
Fig. 53. XZ 2D plot of poses estimated in the 6 DoF translations test by the ground
truth (green), DRL (blue) and ethzasl_icp_mapper (red).

Fig. 54. XYZ 3D plot of poses estimated in the 6 DoF translations test by the ground
truth (green), DRL (blue) and ethzasl_icp_mapper (red).

than the ones performed on the physical platforms. This is due
to laser scan deformation that could not be simulated and also
because the Gazebo simulator was only able to add Gaussian noise
to the laser measurements. To compensate these limitations, the
error in odometry and laser measurements in simulation was
deliberately higher than the expected values for the physical
platforms. This explains why the localization system needed more
time to perform the pose estimations in the simulator tests. It can
also be seen that adding unknownobjects increased themean error
and required computation time while adding dynamic objects
increased these values even further (given that a moving object
appears in a laser scan as a deformed version of its static shape).

These results show that the localization system can reliably
achieve high accuracy pose tracking even in dynamic and challeng-
ing environments.
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4.6. Computation time

Looking at the computation time graphs in Table 2 and to Fig. 31,
it can be seen that the localization system can register the point
clouds very fast (between 5 and 30 ms), which is low enough
to process all the incoming laser scans in real time (typically
LIDARs generate scans every 100 ms). Moreover, the computation
time seems to be very stable, with occasional peaks due to laser
deformation or varying percentage of outliers.

The global computation time is mostly associated with the
point cloud registration stage, while the rest of it is due to normal
estimation and point cloud preprocessing algorithms.

4.7. Mapping

Any self-localization system requires a map to estimate the
pose of the robot when using exteroceptive information. If such
map does not exist, then the first live point cloud can be considered
as the initial map, and then it can be updated dynamically as new
sensor data is processed.

The dynamic and incremental map update capability of the DRL
system can be used to register the full sensor point clouds or only
the inliers/outliers. Full integration is useful when starting a map
from scratch (example in Figs. 33 and 40). Partial integration can be
useful when there is a highly detailed map (for example generated
from a CAD model or with other highly accurate mapping system)
and we only want to add or remove information from it, such
as integrating new large objects and opening doors in the map
(example in Fig. 38). Partial integration besides reducing the
computational resources required, it also allows to keep the detail
of the original map (by avoiding deformations due to sensor
measurement noise). This can be clearly seen in Figs. 39 and 42
in which the sensor noise polluted the walls of the original map
(given that the map cell resolution was much smaller than the
mean sensor noise). By performing selectivemapping this problem
was avoided in the map present in Fig. 38 (by inserting on the map
only unknown zones while keeping the walls generated from the
CAD model untouched).

Looking at planar structures from Figs. 33 to 36 it can be seen
that the DRL system was able to achieve equal or even better
mapping results than the GMapping7 Simultaneous Localization
And Mapping (SLAM) system and even the ground truth provided
by theRaptor-E cameras (that seems to be less suitable formapping
than both the DRL system and the GMapping ROS package).

5. 6 DoF localization system tests

5.1. Overview

The main 6 DoF results retrieved with the DRL system
(performing localization only with a given initial pose) are shown
in Table 4. The first two experiments (fly and translations
movements) were performed to evaluate the accuracy of the point
cloud registration algorithms while the last one (mainly rotation
movements) aimed to test the robustness against temporary
absence of valid sensor data (in this test the Kinect had periods in
which most of its field of view was outside the map).

These tests were retrieved with a known initial pose and used
ICP point-to-point as tracking algorithm and ICP point-to-plane as
tracking recovery method. The tests with the ethzasl_icp_mapper
used the ICP point-to-plane since the implementation of the ICP
point-to-point was consistently losing tracking (the authors of
this systems also point out in [41] that their ICP point-to-plane
implementation was more robust and achieved better tracking).

7 http://wiki.ros.org/gmapping.
The 3D map was done with the localization system in mapping
mode (using the fly test sensor data) and used continuous surface
reconstruction in order to create an accurate representation of the
environment and reduce the impact of themeasurements noise (no
manual correction was needed). This map was later downsampled
using a voxel grid with 20 mm cells in order to allow real-time
processing when performing pose estimation (localization only) of
the Kinect sensor.

The next sections will provide an analysis of the 6 DoF results
achieved with the DRL system. They will start by explaining the
importance of point cloud processing and how it helps reduce the
cloud registration time. Then it will be given an analysis of the
translation and rotation errors along with the computation time
and lastly it will be presented the 3D map building capabilities.

5.2. Point cloud preprocessing

Point cloud preprocessing can have a very significant role when
performing 6 DoF cloud registration for self-localization. This is
due to real-time requirements and also because the computation
time increases substantially when registering large point clouds.
One way to control this problem is by preprocessing the point
cloud with a voxel grid to adjust the level of detail and also assign
a limit to the number of points that come from sensors. This
can be achieved with random sampling or similar point selection
techniques. Moreover, depending on the sensor used, it may be
wise to restrict the points to a given range, and discard the rest that
are too far way (given that these measurements will have more
errors).

In the tests performed by the DRL system and presented in
Table 4, it was applied a voxel grid of 20 mm while keeping only
the points from the kinect sensor that were at most at 3 m in the
rotations tests and 2.15 m in the remaining two tests. Moreover it
was applied a random sampling filter in order to limit the number
of points to 750 in the rotations tests and to 425 in the remaining
two tests. In order to allow a fair comparison in terms of processing
time, the tests performed with the ethzasl_icp_mapper also used a
random sampling filter with the same limits as the DRL tests.

5.3. Point cloud registration

Looking at Table 4 and Figs. 43 to 54, it is clear that the
DRL system is able to register point clouds with high accuracy,
even when they are severely down-sampled (due to real-time
processing constraints). Moreover, the localization system is
robust against temporary absence of sensor data (when the field
of view of the Kinect was outside the known map in the rotations
tests) and was able to quickly recover to accurate tracking when
valid sensor data was given (analyzing Figs. 49 to 54 it can be
seen that the ethzasl_icp_mapper was less successful in detecting
unreliable pose estimations and recovering from then). In these
situations the recovery algorithms were activated, switching the
registration algorithm from ICP point-to-point to ICP point-to-
plane (89 times in 968 Kinect point clouds in the case of the
rotations test and 0 on the remaining two tests). Given that these
sensor data outages were temporary, the initial pose algorithms
were not necessary. Nevertheless, if the Kinect remained outside
the map for a longer period of time, the localization system would
alert that the tracking was lost and it would try to find its current
pose using feature matching.

5.4. Translation and rotation errors

The results presented in Table 4 and in Figs. 55 and 56, shown
that the DRL system can maintain high accuracy pose tracking,
with translation error below two centimeters and rotation error

http://wiki.ros.org/gmapping
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Fig. 55. Probability distributions for the DRL translation errors in the 6 DoF fly test.
Fig. 56. Probability distributions for the DRL rotation errors in the 6 DoF fly test.
Fig. 57. Probability distributions for the ethzasl_icp_mapper translation errors in the 6 DoF fly test.
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Fig. 58. Probability distributions for the ethzasl_icp_mapper rotation errors in the 6 DoF fly test.
Fig. 59. Probability distributions for the DRL global computation time in the 6 DoF fly test.
around 3° when good sensor data is available. Moreover it can
quickly recover from temporary registration problems caused by
occlusions or accelerations.

Analyzing the results in Table 4 and from Figs. 46 to 58, it
can also be concluded that the DRL system achieved better pose
tracking than the ethzasl_icp_mapper ROS package (17.9 mm vs
22.8 mm of mean translation error and 3.0° vs 3.5° of mean
rotation error in the 6 DoF fly test), while achieving more than
double of the refresh rate in the fly test. For the translations
and rotations tests, the DRL system achieved much better mean
tracking than the ethzasl_icp_mapper systemgiven that itwas able
to detect much better when the estimated poses were unreliable
(Kinect sensor starting to point at unknown map areas). This can
be seen in Figs. 51 and 54 by the large amount of red arrows
(ethzasl_icp_mapper poses) far away from the ground truth poses
(unreliable estimated poses by the ethzasl_icp_mapper).

5.5. Computation time

The localization system was able to achieve a mean computa-
tion time low enough to allow real time processing of the Kinect
point cloud sensor data (shown in Fig. 59). Depending on the accu-
racy requirements, the computation time can be lowered even fur-
ther by tuning the preprocessing filters (of both the reference and
live point clouds), in order to reduce the number of points used in
the cloud registration.

Comparing Fig. 59 with Fig. 60 it can also be seen that the
DRL system required about ten times less processing time in
relation to the ethzasl_icp_mapper system (the DRL achieved a
mean processing time of 30.71 ms while the ethzasl_icp_mapper
required 324.71 ms in the 6 DoF fly test).

5.6. Mapping

TheDRL systemcanperformmapping of the environment and is
able to build very detailed point clouds. These point clouds can be
continuously re-sampledwith theMoving Least Squares algorithm
(example in Fig. 62) in order to reconstruct the surfaces of the
environment and attenuate the double wall effects due to high
sensor noise (comparing Fig. 61 to Fig. 62 it can be seen that the
DRL systemmanaged to build amapwithmoredetail and less noise
than the map made with the ground truth poses).
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Fig. 60. Probability distributions for the ethzasl_icp_mapper global computation time in the 6 DoF fly test.
Fig. 61. 3D mapping using the ground truth poses.

Besides the internal mapping capabilities of the DRL system,
it can also be paired with the OctoMap [38] library in order to
Fig. 62. 3D mapping using the DRL system with surface reconstruction.

perform probabilistic integration of sensor data and be able to
remove missing objects from the reference point cloud.
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6. Conclusions

The proposed localization system is able to maintain pose
tracking with less than 1–2 cm of translation error and less than
a 1–3 degrees of rotation error (in 3 and 6 DoF respectively) with
the robot/sensors moving at several velocities even in cluttered
and dynamic environments. Moreover, when tracking is lost or no
initial pose is given, the system is able to find a valid global pose
estimate by switching to more robust registration algorithms that
use feature matching. This approach achieved fast and accurate
pose estimation with robust tracking recovery and reliable initial
pose estimation while also providing the set of the accepted initial
poses before registration refinement, which can be very valuable
information for a navigation supervisor when the robot is in an
ambiguous region that can be registered in similar zones of the
known map. The system also allows dynamic reconfiguration of
the number of laser scans to assemble in order to mitigate laser
measurement errors and can adapt its rate of operation according
to the robot estimated velocity.

The sub-centimeter accuracy achieved by the proposed local-
ization system along with the selective map update capability
(using partial or full sensor data integration) and the need of no
artificial landmarks/ambient modifications will allow the fast de-
ployment ofmobile robots capable to operate safely and accurately
in cluttered environments.
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