
A Portable Prolog Predicate

for Printing Rational Terms

Theofrastos Mantadelis and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{theo.mantadelis,ricroc}@dcc.fc.up.pt

Abstract. Rational terms or rational trees are terms with one or more
in�nite sub-terms but with a �nite representation. Rational terms ap-
peared as a side e�ect of omitting the occurs check in the uni�cation
of terms, but their support across Prolog systems varies and often fails
to provide the expected functionality. A common problem is the lack of
support for printing query bindings with rational terms. In this paper, we
present a survey discussing the support of rational terms among di�er-
ent Prolog systems and we propose the integration of a Prolog predicate,
that works in several existing Prolog systems, in order to overcome the
technical problem of printing rational terms. Our rational term printing
predicate could be easily adapted to work for the top query printouts,
for user printing and for debugging purposes.

Keywords: Rational Terms, Implementation, Portability.

1 Introduction

From as early as [3, 8], Prolog implementers have chosen to omit the occurs

check in uni�cation. This has resulted in generating cyclic terms known as ratio-
nal terms or rational trees. Rational terms are in�nite terms that can be �nitely
represented, i.e., they can include any �nite sub-term but have at least one in�-
nite sub-term. A simple example is L=[1|L], where the variable L is instantiated
to an in�nite list of ones. Prolog implementers started omitting the occurs check
in order to reduce the uni�cation complexity from O(SizeTerm1 +SizeTerm2) to
O(min(SizeTerm1, SizeTerm2)).

While the introduction of cyclic terms in Prolog was a side e�ect of omitting
the occurs check, soon after applications for cyclic terms emerged in �elds such
as de�nite clause grammars [3, 5], constraint programming [10, 2], coinduction [6,
1, 11, 12] or in�nite automata [7]. But support for rational terms across Prolog
systems varies and often fails to provide the functionality required by most ap-
plications. A common problem is the lack of support for printing query bindings
with rational terms [11]. Furthermore, several Prolog features are not designed
for compatibility with rational terms and can make programming using rational
terms challenging and cumbersome.

In this paper, we address the problem of printing rational terms for a large
number of Prolog systems. We thus propose a compliant with ISO Prolog predi-
cate that can be used in several Prolog systems in order to print rational terms.
The predicate functions properly in the Ciao, SICStus, SWI, XSB and YAP Pro-
log systems. The predicate was also tested with the BProlog, ECLiPSe, GNU
Prolog, Jekejeke and Strawberry Prolog systems but for di�erent reasons it failed
to work (details about the Prolog versions tested are presented next).

The remainder of the paper is organized as follows. First, we discuss how
rational terms are supported across a set of well-known Prolog systems. Next,
we present our compliant with ISO Prolog predicate and discuss how it can be
used to improve the printing of rational terms in several Prolog systems. We end
by outlining some conclusions.

2 Rational Term Support in Prolog Systems

We tested several Prolog systems to �gure out their available support for rational
terms. Table 1 presents in brief our results. Initially, we performed ten di�erent
tests that we consider to be the very minimal required support for rational
terms. First, we tested the ability of Prolog systems to create rational terms via
the =/2 operator (uni�cation without occurs check). Second, and most critical
test, was for the systems to be able to perform uni�cation among two rational
terms. Third, we checked whether the Prolog systems can infer the equality of
two rational terms by using ==/2 operator. Our fourth test was to see whether
a Prolog system can de-construct/construct rational terms through the =../2

operator, we also investigated whether the Prolog system supports any form of
build-in printing predicates for rational terms. The results of the above �ve tests
are presented in Table 1(a).

Furthermore, we checked the support of the acyclic_term/1 ISO predicate [4],
we tested whether assertz/1 supports asserting rational terms, checked if the
copy_term/2 and ground/1 predicates work with rational terms and �nally, we
checked recordz/3 and recorded/3 functions with rational terms as an alternative
for assert/1. The results of these tests appear in Table 1(b).

Finally, we performed a few more compatibility tests as we present in Ta-
ble 1(c). We want to point out that the results of this table are expected and are
sub covered by the test for ==/2 operator. We have the strong conviction that
the same reason that forbids the ==/2 operator to function with rational terms in
some Prolog systems is the same reason for the failure of the comparison support
tests.

Currently, only three Prolog systems appear to be suitable for programming
and handling rational terms, namely SICStus, SWI and YAP. The rest of the
systems do not provide enough support for rational terms, which makes pro-
gramming with rational terms in such systems challenging and cumbersome, if

1 At the time of the publication the current stable version of Yap presented a prob-
lem with recorded/3, but the development version (6.3.4) already had the problem
solved.

Create Compare Compare De-compose/ Build-in
Prolog System =/2 =/2 ==/2 compose =../2 Printing

BProlog (8.1) 3 7 7 3 7

Ciao (1.14.2) 3 3 3 3 7

toplevel query 3 3 7 7 7

ECLiPSe (6.1) 3 7 7 3 3

GNU (1.4.4) 3 7 7 3 7

Jekejeke (1.0.1) 3 7 7 3 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 3 3 3 3

XSB (3.4.0) 3 3 7 3 7

YAP (6.2.3) 3 3 3 3 3

(a) Operator Support

Prolog System acyclic_term/1 assert/1 copy_term/2 ground/1 recordz/3

BProlog (8.1) 3 7 7 7 7

Ciao (1.14.12) 3 7 7 7 7

toplevel query 3 7 7 7 7

ECLiPSe (6.1) 3 3 7 7 3

GNU (1.4.4) 3 7 7 7 7

Jekejeke (1.0.1) 7 7 7 7 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 7 3 3 3

XSB (3.4.0) 3 7 7 7 7

YAP (6.2.3) 3 7 3 3 31

(b) Predicate Support

Compare Compare Compare Compare compare/3

Prolog System @>/2 @</2 @>=/2 @=</2

BProlog (8.1) 7 7 7 7 7

Ciao (1.14.2) 3 3 3 3 3

toplevel query 7 7 7 7 7

ECLiPSe (6.1) 7 7 7 7 7

GNU (1.4.4) 7 7 7 7 7

Jekejeke (1.0.1) 7 7 7 7 7

SICStus (4.2.3) 3 3 3 3 3

Strawberry (1.6) 7 7 7 7 7

SWI (6.4.1) 3 3 3 3 3

XSB (3.4.0) 7 7 7 7 7

YAP (6.2.3) 3 3 3 3 3

(c) Comparison Operator Support

Table 1. Rational term support by Prolog systems

not impossible. All Prolog systems we tested appear to support the creation
through uni�cation of rational terms. For Jekejeke and Strawberry Prolog, we
where not able to verify the correctness of the created rational term but the
system appeared to accept the� instruction. SICStus, SWI and YAP Prolog sys-
tems also provide built-in predicate implementations capable of handling rational
terms without falling into in�nite computations making them the most suitable
systems to work with rational terms.

For printing purposes, Table 1 shows us that only a few Prolog systems are
able to print rational terms without problems. The best printing is o�ered by
SWI as illustrated on the following examples:

?- A = [1|A].
A = [1|A].

?- B = [2|B], A = [1|B].
B = [2|B],
A = [1|B].

?- A = [1|B], B = [2|B].
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1].

YAP o�ers an alternative printing which is ambiguous:

?- A = [1|A].
A = [1|**].

?- B = [2|B], A = [1|B].
A = [1,2|**],
B = [2|**].

?- A = [1|B], B = [2|B].
A = [1,2|**],
B = [2|**].

ECLiPSe and SICStus print rational terms in the following way:

?- A = [1|A].
A = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...]

?- B = [2|B], A = [1|B].
B = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
A = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

?- A = [1|B], B = [2|B].
A = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]
B = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

The printed . . . from ECLiPSe and SICStus is a result of printing a higher
depth term than what the system permits. Both ECLiPSe and SICStus have a
depth limit option for their printing which terminates printing resulting to the

partially printed rational terms. Disabling the depth limit, traps those systems
in in�nite cycles2.

SICStus and SWI also provides the option cycles(true) for write_term/2 in
order to print terms using the �nite @/2 notation. This option returns similar
printing output with SWI as the following examples illustrate:

?- _A = [1|_A], write_term(_A, [cycles(true)]).
@(_906,[_906=[1|_906]])

?- _A = [1|_B], _B = [2|_B], write_term(_A, [cycles(true)]).
@([1|_1055],[_1055=[2|_1055]])

?- _B = [2|_B], _A = [1|_B], write_term(_A, [cycles(true)]).
@([1|_1055],[_1055=[2|_1055]])

One can use this option in SICStus toplevel query printing, by setting appropri-
atly the Prolog �ag toplevel_print_options.

GNU Prolog, identi�es the term as a rational term and instead prints a
message:

?- A = [1|A].
cannot display cyclic term for A

The rest of the systems get trapped in in�nite calculation when printing
rational terms. Speci�cally in the case of Ciao Prolog, we want to point out
that the toplevel queries automatically print out unnamed variables making any
query we tried to fall in in�nite calculation. For that reason the Ciao toplevel
is completely unsuitable for rational terms. On the other hand Ciao can run
programs with a rather good support of rational terms making it the fourth in
the row system to support rational terms.

3 Printing Rational Terms

The predicate canonical_term/3 presented next at Algorithm 1 was originally
designed to transform a rational term to its canonical form [9]. Here, we extended
it in order to be able to compute a suitable to print term as its third argument.
The predicate does not follow the optimal printing for rational terms but that
was not our goal. We present a solution that can with minimal e�ort be used by
several Prolog systems to print rational terms and for that we use the minimum
amount of needed facilities.

Before explaining the canonical_term/3 predicate, let's see some examples by
using canonical_term/3 with the XSB system:

?- _A = [a|_A], canonical_term(_A, _, Print).
Print = [a|cycle_at_depth(0)]

2 We where unable to disable the depth limit for ECLiPSe toplevel query printing,
but we could do it for non toplevel queries.

?- _A = [a|_B], _B = [b|_B], canonical_term(_A, _, Print).
Print = [a,b|cycle_at_depth(1)]

?- _A = [a|_B], _B = [b|_B], _F = f(foo, _A, _B, _F),
canonical_term(_F, _, Print).

Print = f(foo, [a,b|cycle_at_depth(2)], [b|cycle_at_depth(1)],
cycle_at_depth(0))

Notice that our rational term printing is similar with YAP's printing but
instead of printing an ambiguous **, we print a special term cycle_at_depth/1

that indicates at which tree depth of the speci�c tree branch the cyclic sub-
term points at. Figure 1, illustrates the term f(foo, [a,b|cycle_at_depth(2)],

[b|cycle_at_depth(1)], cycle_at_depth(0)) using a tree notation. For illustra-
tive purposes, we replaced cycle_at_depth/1 with '**'/1 and we use numbered
superscripts to mark the respective tree node that each cyclic sub-term points
at.

f/4 3

foo/0 '.'/2 '.'/22

a b

4

'.'/21 '**'/1

'**'/1

12'**'/1b

03

21

0

1

2

3

Fig. 1. Rational term: f(foo, [a,b|cycle_at_depth(2)], [b|cycle_at_depth(1)],

cycle_at_depth(0)) in tree notation

While our algorithm is not ambiguous when printing a rational term, it can
become ambiguous if the term to be printed also contains cycle_at_depth/1 terms
and the reader of the printed term might falsely think that a cycle exists.

The idea behind the original algorithm as presented at Algorithm 1 is to �rst
fragment the term to its cyclic sub-terms, continue by reconstructing each cyclic
sub-term (now acyclic) and, �nally, reintroduce the cycle to the reconstructed

sub-terms. To reconstruct each cyclic sub-term as acyclic, the algorithm copies
the unique parts of the term and introduces an unbound variable instead of
the cyclic references. Then, the algorithm binds the unbound variable to the
reconstructed sub-term, recreating the cycle.

Take for example the rational term L=[1,2,1,2|L]. Term L is being frag-
mented in the following sub-terms: L0=[1|L1], L1=[2|L3] and L3=[1,2|L0]. We
do not need to fragment the term L3 as, at that point, our algorithm detects
a cycle and replaces term L3 with an unbound variable OpenEnd. Thus we get
the following sub-terms: L0=[1|L1] and L1=[2|OpenEnd]. Binding OpenEnd=L0 re-
sults to the canonical rational term L0=[1,2|L0]. One might notice that instead
of recreating the cycles, if we bind the OpenEnd variables with the special term
cycle_at_depth/1 we get the desirable printout. Furthermore, we keep a counter
for each decomposition we do in order to keep track of the tree depth of the
term.

The bulk of the algorithm is at the fourth clause of decompose_cyclic_term/7.
At that part we have detected a cyclic sub-term that we have to treat recur-
sively. In particular, lines 31�37 implement an important step. Returning to our
example when the cycle is detected, the algorithm returns the unbound variable
to each fragmented sub-term. First, the sub-term L1=[2|OpenEnd] appears and
the algorithm needs to resolve whether it must unify OpenEnd with L1 or whether
OpenEnd must be uni�ed with a parent sub-term. In order to verify that, lines
31�37 of the algorithm unify the sub-term with the unbound variable and af-
ter attempt to unify the created rational term with the original rational term.
For our example the algorithm generates L1=[2|L1] and attempt to unify with
L=[1,2,1,2|L], as the uni�cation fails the algorithm propagates the unbound
variable to be uni�ed with the parent sub-term L0=[1|L1].

The �fth clause of decompose_cyclic_term/7 is the location where a cycle is
actually found. At that point we can drop the original cyclic sub-term and place
an unbound variable within the newly constructed term. The third clause of
decompose_cyclic_term/7 could be omitted; it operates as a shortcut for simpli-
fying rational terms of the form F=f(a,f(a,F,b),b). The rest of the algorithm is
pretty much straightforward, the �rst clause of decompose_cyclic_term/7 is the
termination condition and the second clause copies the non-rational parts of the
term to the new term.

Our algorithm ensures termination by reaching an empty list on the second
clause of decompose_cyclic_term/7. This happens as at each iteration of the algo-
rithm the second argument list will be reduced by one element. Cyclic elements
are detected and removed and while the list might contain cyclic elements it is
not cyclic as it is the decomposed list derived by the =../2 operator that con-
structs the originally cyclic term. Finally, the call of in_stack/2 at line 24 ensures
that a cyclic term is not been processed more than once.

Complexity wise, our algorithm behaves linearly to the size of the term in
all cases but one. Terms of the form L = [1,2,3,...|L] cause the algorithm to
have a quadratic complexity (O(N2)). The cause of the worst case complexity
is the fourth clause of decompose_cyclic_term/7. We are currently considering an

Input: a rational term Term

Output: a rational term Canonical in canonical representation and Print an acyclic
term that can be used for printing.

1 canonical_term(Term, Canonical, Print) :-
2 Term =.. InList,
3 decompose_cyclic_term(Term, InList, OutList, OpenEnd, [Term],
4 PrintList-Cycle_mark, 0),
5 Canonical =.. OutList,
6 Canonical = OpenEnd,
7 Print =.. PrintList,
8 Cycle_mark = cycle_at_depth(0).
9

10 decompose_cyclic_term(_CyclicTerm, [], [], _OpenEnd, _Stack, []-_, _).
11 decompose_cyclic_term(CyclicTerm, [Term|Tail], [Term|NewTail], OpenEnd,
12 Stack, [Term|NewPrintTail]-Cycle_mark, DepthCount) :-
13 acyclic_term(Term), !,
14 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
15 NewPrintTail-Cycle_mark, DepthCount).
16 decompose_cyclic_term(CyclicTerm, [Term|Tail], [OpenEnd|NewTail], OpenEnd,
17 Stack, [Cycle_mark|NewPrintTail]-Cycle_mark, DepthCount) :-
18 CyclicTerm == Term, !,
19 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
20 NewPrintTail-Cycle_mark, DepthCount).
21

22 decompose_cyclic_term(CyclicTerm, [Term|Tail], [Canonical|NewTail],
23 OpenEnd, Stack, [Print|NewPrintTail]-Cycle_mark, DepthCount) :-
24 \+ instack(Term, Stack), !,
25 Term =.. InList,
26 NewDepthCount is DepthCount + 1,
27 decompose_cyclic_term(Term, InList, OutList, OpenEnd2, [Term|Stack],
28 PrintList-Cycle_mark_2, NewDepthCount),
29 Canonical =.. OutList,
30 Print =.. PrintList,
31 (Canonical = OpenEnd2,
32 Canonical == Term,
33 Cycle_mark_2 = cycle_at_depth(NewDepthCount),
34 !
35 ; OpenEnd2 = OpenEnd,
36 Cycle_mark_2 = Cycle_mark
37),
38 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
39 NewPrintTail-Cycle_mark, DepthCount).
40

41 decompose_cyclic_term(CyclicTerm, [_Term|Tail], [OpenEnd|NewTail], OpenEnd,
42 Stack, [Cycle_mark|NewPrintTail]-Cycle_mark, DepthCount) :-
43 decompose_cyclic_term(CyclicTerm, Tail, NewTail, OpenEnd, Stack,
44 NewPrintTail-Cycle_mark, DepthCount).
45

46 instack(E, [H|_T]) :- E == H, !.
47 instack(E, [_H|T]) :- instack(E, T).

Alg. 1: Predicate canonical_term/3

improvement for this, one improvement would be to use a sorted binary tree
instead of a list to store and recall the seen cyclic subterms. This improvement
would improve the complexity to (O(N ·log(N))) but would increase the required
build-in support from the Prolog System.

As our target is to print out rational terms at di�erent systems, we had to do
a few modi�cations in order for the predicate to work in other systems. For SWI
and YAP, the predicate canonical_term/3 works as is. For Ciao and SICStus, we
only needed to import the appropriate library that contains acyclic_term/1 and,
for XSB, we needed to bypass the lack of support for rational terms of the ==/2

operator by introducing the compare_rational_terms/2 predicate and replacing
the ==/2 operator at lines 1, 21 and 35.

% Needed in Ciao to import acyclic_term/1
:- use_module(library(cyclic_terms)).

% Needed in SICStus to import acyclic_term/1
:- use_module(library(terms)).

% Needed in XSB in order to replace ==/2 operator
compare_rational_terms(A, B) :-
acyclic_term(A),
acyclic_term(B), !,
A == B.

compare_rational_terms(A, B) :-
\+ var(A), \+ var(B),
\+ acyclic_term(A),
\+ acyclic_term(B),
A = B.

We want to point out that compare_rational_terms/2 predicate is not the
same with ==/2 predicate and comparisons among terms like: A = [1,_,2|A],
B = [1,a,2|B] would give wrong results. But for our purpose, where the terms
being compared are sub-terms, this problem does not appear as it compares the
sub-terms after decomposing them to their smallest units.

4 Towards Optimal Printing of Rational Terms

4.1 SWI

As we earlier pointed out, SWI is the closest to the desirable printing system.
However, SWI printing of rational terms su�ers from two problems. First, SWI
does not print the canonical form of rational terms, as the following example
illustrates:

?- A = [1,2|B], B = [1,2,1,2|B].
A = B, B = [1, 2, 1, 2|B].

This could be easily corrected by using our predicate to process the rational
term before printing it.

The second problem is that SWI can insert auxiliary terms that are not
always necessary. For example:

?- A = [1|B], B = [2|B].
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1].

This problem could be addressed with SWI's built-in term_factorized/3 pred-
icate. Using the same example:

?- A = [1|B], B = [2|B], term_factorized((A, B), Y, S).
A = [1|_S1], % where

_S1 = [2|_S1],
B = [2|_S1],
Y = ([1|_G34], _G34),
S = [_G34=[2|_G34]].

Notice that Y and S contain the desirable printouts. We also want to point out
that term_factorized/3 appears to compute also the canonical form of rational
terms which would solve both printing issues. Using again the initial example:

?- A = [1,2|B], B = [1,2,1,2|B], term_factorized((A, B), Y, S).
A = B, B = [1, 2, 1, 2|B],
Y = (_G46, _G46),
S = [_G46=[1, 2|_G46]].

4.2 YAP

Similarly with SWI, YAP's development version implements a term_factorized/3

predicate. Future printing of the Yap Prolog system should take advantage of
the predicate in order to printout rational terms better.

?- A = [1|B], B = [2|B], term_factorized((A, B), Y, S).
A = [1,2|**],
B = [2|**],
S = [_A=[2|_A]],
Y = ([1|_A],_A).

?- A = [1,2|B], B = [1,2,1,2|B], term_factorized((A, B), Y, S).
A = B = [1,2,1,2,1,2,1,2,1,2|**],
S = [_A=[1,2,1,2|_A]],
Y = ([1,2|_A],_A).

Notice that YAP's current term_factorized/3 predicate does not work exactly
like SWI's and, currently, it still does not ensure canonical form for rational
terms.

4.3 SICStus

SICStus should use the build-in write_term/2 predicate in order to improve the
printing of rational terms. The write_term/2 predicate appears to both compute
the canonical form of the rational term and to generate the minimal needed
sub-terms for printing, as the following examples illustrate:

?- A = [1|B], B = [2|B], write_term((A, B), [cycles(true)]).
@(([1|_1092],_1092),[_1092=[2|_1092]])
A = [1,2,2,2,2,2,2,2,2,2|...],
B = [2,2,2,2,2,2,2,2,2,2|...] ?

?- A = [1,2|B], B = [1,2,1,2|B], write_term((A, B), [cycles(true)]).
@((_1171,_1171),[_1171=[1,2|_1171]])
A = [1,2,1,2,1,2,1,2,1,2|...],
B = [1,2,1,2,1,2,1,2,1,2|...] ?

4.4 Ciao

Ciao provides a rather good support of rational terms in comparison with other
Prolog systems. However, it has the most problematic toplevel query interface.
All queries that would contain rational terms are trapped on an in�nite compu-
tation and using unnamed variables does not override the problem. The authors
believe that this problem is directly related with the printing of rational terms
and if Ciao would use a di�erent printing strategy the problem would be solved.
Our proposed solution would be an easy way for Ciao to support printing for
rational terms. Similarly, printing should be improved also for debugging pur-
poses.

4.5 XSB

XSB imposes several challenges to the programmer to use rational terms. Fur-
ther than being trapped on in�nite computations when trying to print rational
terms, it also does not support comparison operators like ==/2. Regardless of the
limitations of the system, we believe that XSB would signi�cantly bene�t by
using a better printing strategy for rational terms. Similarly, printing should be
improved also for debugging purposes.

4.6 Other Prolog Systems

The other Prolog systems that we tried are further away from achieving even the
basic rational term support. Even if we were able to print simple rational terms
in BProlog, ECLiPSe and GNU Prolog, the lack of support for uni�cation among
two rational terms makes it impossible to work with. These systems still treat
rational terms as a known bug of uni�cation rather than a usable feature. GNU
Prolog in that respect behaved rather well as it identi�es rational terms and
gives warning messages both when compiling and at runtime. Also, ECLiPSe
is not caught in in�nite computation and is able to print a representation of
rational terms even if the programmer is unable to work with them.

4.7 About term_factorized/3

The predicate term_factorized(+Term, -Skeleton, -Substitution) is true when:
(i) Skeleton is the skeleton term of Term, this means that all subterms of Term that
appear multiple times are replaced by variables; and (ii) Substitution is a list of
terms in the form of VAR = SubTerm that provides the necessary substitutions to
recreate Term from Skeleton by unifying VAR = SubTerm.

The term_factorized/3 predicate in SWI Prolog is implemented using the
red-black tree Prolog library by Vítor Santos Costa. The red-black tree library
originally appears in Yap Prolog and is an easy to port in other Prolog systems
library. Using term_factorized/3 for printing rational terms would increase the
operators that require to support rational terms to at least: ==/2, @</2, @>/2,
compare/3. For these reasons migrating term_factorized/3 would be more work
than using our canonical_term/3 predicate.

5 Conclusions

Rational terms, while not being very popular, they have found applications in
�elds such as de�nite clause grammars, constraint programming, coinduction
or in�nite automata. With this paper, we try to motivate Prolog developers to
support rational terms better and to provide a minimal support for researchers
and programmers to work with. We have presented a short survey of the existing
support for rational terms in several well-know Prolog systems and we proposed
a printing predicate that Prolog systems could use in order to improve their
printing of rational terms.

In particular, Ciao and XSB Prolog systems would bene�t the most from
our predicate. As we explained, Ciao and XSB fall on in�nite computations
when they need to print a rational term. Our predicate gives them an easy to
integrate solution that will allow printing of rational terms and debugging of
code that contains rational terms. Our canonical_term/3 predicate could also
be used in YAP to improve the current ambiguous printing format of rational
terms and to present rational terms in their canonical form. SWI could also
use our predicate in order to bene�t by printing rational terms in canonical
form. Still, we believe that both YAP and SWI should do an integration of
their term_factorized/3 predicate with their printing of rational terms. Finally,
SICStus can use our predicate to provide an alternative printing, but integrating
write_term/2 predicate on the default printing of terms would be more bene�cial.

Acknowledgments

The authors want to thank Paulo Moura and Vítor Santos Costa for their sugges-
tions and technical support. We also want to thank the anonymous reviewers for
their constructive and supportive comments that helped us improve this paper.
This work is partially funded by the ERDF (European Regional Development
Fund) through the COMPETE Programme and by FCT (Portuguese Foundation

for Science and Technology) within project SIBILA (NORTE-07-0124-FEDER-
000059) and PEst (FCOMP-01-0124-FEDER-037281).

References

1. Ancona, D.: Regular Corecursion in Prolog. Computer Languages, Systems &
Structures 39(4), 142�162 (2013), Special issue on the Programming Languages
track at the 27th ACM Symposium on Applied Computing

2. Bagnara, R., Gori, R., Hill, P.M., Za�anella, E.: Finite-Tree Analysis for Constraint
Logic-Based Languages: The Complete Unabridged Version (2001)

3. Colmerauer, A.: Prolog and In�nite Trees. In: Clark, K.L., Tärnlund, S.A. (eds.)
Logic Programming, pp. 231�251. Academic Press (1982)

4. Committee ISO/IEC JTC 1/SC 22: ISO/IEC 13211-1:1995/Cor.2:2012(en): Infor-
mation technology � Programming languages � Prolog � Part 1: General core
TECHNICAL CORRIGENDUM 2 (2012)

5. Giannesini, F., Cohen, J.: Parser generation and grammar manipulation using pro-
log's in�nite trees. The Journal of Logic Programming 1(3), 253 � 265 (1984)

6. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Logic Programming, LNCS, vol. 4670, pp. 27�44.
Springer-Verlag (2007)

7. J. E. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of �nite
automata. Tech. rep., Cornell University (1971)

8. Ja�ar, J., Stuckey, P.J.: Semantics of In�nite Tree Logic Programming. Theoretical
Computer Science 46(0), 141�158 (1986)

9. Mantadelis, T., Rocha, R., Moura, P.: Tabling, Rational Terms, and Coinduction
Finally Together! Journal of Theory and Practice of Logic Programming, Interna-
tional Conference on Logic Programming, Special Issue (2014 to appear)

10. Meister, M., Frühwirth, T.: Complexity of the CHR rational tree equation solver.
In: Constraint Handling Rules. vol. 452, pp. 77�92 (2006)

11. Moura, P.: A Portable and E�cient Implementation of Coinductive Logic Program-
ming. In: International Symposium on Practical Aspects of Declarative Languages,
LNCS, vol. 7752, pp. 77�92. Springer-Verlag (2013)

12. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending
Logic Programming with Coinduction. In: Automata, Languages and Program-
ming, Lecture Notes in Computer Science, vol. 4596, pp. 472�483. Springer-Verlag
(2007)

