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Abstract. We present Conchord, a system for real-time automatic generation of
musical harmony through navigation in a novel 12-dimensional Tonal Interval
Space. In this tonal space, angular and Euclidean distances among vectors
representing multi-level pitch configurations equate with music theory princi-
ples, and vector norms acts as an indicator of consonance. Building upon these
attributes, users can intuitively and dynamically define a collection of chords
based on their relation to a tonal center (or key) and their consonance level.
Furthermore, two algorithmic strategies grounded in principles from function
and root-motion harmonic theories allow the generation of chord progressions
characteristic of Western tonal music.
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1 Introduction

Historically, Western tonal music has been subject to rigorous formalization, com-
monly expressed in a mathematical fashion. These formal tonal music frameworks are
particularly adapted to computer modeling, which, in turn, can decisively contribute to
machine musicianship [1]. A branch of this research is concerned with the automatic
generation of harmony, which, within the Western tonal music context can be divided
into two main problems: the automatic generation of chord progressions and the
automatic harmonization of a given melody, of which the first concerns us here.

According to Wiggins [2], the automatic generation of musical harmony has been
approached by different strategies, including (i) grammar-based systems [3],
(ii) knowledge-based systems [4], (iii) biological-inspired algorithms [5, 6], (iv) con-
straint satisfaction systems [7] and (v) neural networks [8]. We extend Wiggins’ tax-
onomy with a new category: statistical learning, which includes systems that generate
harmony based on representations learned from musical examples [9, 10].

Central to this paper is the representation of the pitch configurations in generating
musical harmony, especially through navigation in geometric pitch spaces, where
neighborhood relations among the notes reflect perceptual or music theory properties.
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The Tonnetz [11] is a planar representation of tonal pitch relations and one of the
earliest examples of such geometrical spaces. Music theorists following the Riemann
tradition adopted the Tonnetz to explain significant tonal pitch relationships, which are
near one another in the space [12]. Chew’s Spiral Array is another example of a
geometric pitch space, which represents tonal pitch in a three-dimensional helix model
and has been successfully applied to problems such as key estimation [13] and pitch
spelling [14] from symbolic music data. Harte et al. [15] proposed the Tonal Centroid
Space to estimate harmonic changes from musical audio by mapping 12-bin chroma
vectors to the interior of a six-dimensional polytope. Recently, Bernardes et al. [16]
presented a Tonal Interval Space, a twelve-dimensional space computed as the discrete
Fourier transform of chroma vectors. While preserving the common-tone logic of the
Tonnetz, the Tonal Interval Space overcomes an important limitation of the former by
representing multi-level tonal pitch structures in the same space as unique vectors.
Additionally, two important indicators can be computed from the space: tonal pitch
relatedness and consonance.

Despite their intuitive and great explanatory potential, such spaces have yet to be
widely applied to generative music. To the best of our knowledge, the only generative
music systems built upon tonal pitch spaces were presented by: Behringer and Elliot
[17] and Bigo et al. [18], who designed manually-driven generative systems based on
the Tonnetz; Gatzsche et al. [19], who proposed a model for navigation on a
three-dimensional space derived from Krumhansl and Kessler’s [20] geometric rep-
resentation of tonal pitch relations; and Chuan and Chew’s [21] model for generating
musical harmony through navigation in the Spiral Array.

Our approach to the automatic generation of musical harmony differs from, and
extends previous research by proposing deterministic strategies for the real-time nav-
igation in the Tonal Interval Space. We devise strategies to define spatial trajectories in
the space for the generation of favorable chord progressions driven by principles from
tonal harmony theories and build upon two main attributes of the space: tonal pitch
relatedness and consonance. An important feature of our system is the possibility to
modulate between keys—barely addressed in related software, yet a fundamental
compositional strategy in tonal music.

Conchord, the prototype application of our model, was implemented for both Max
[22] and Pure Data [23]. It allows expert and novice users to creatively explore musical
harmony by assisting them in the automatic generation of ‘generic’ chord progressions
characteristic of Western tonal music, rather than a specific response to a particular
style or composer’s idiom.

The main contributions beyond those in our previous work [24] include: (i) the use
of a new set of weights in the Tonal Interval Space which better regulate the dimen-
sions of the space for consonance measurements and (ii) the adoption of an algorithmic
strategy to optimize the voice leading of selected chords given a user-defined pitch
range.

The remainder of this paper is structured as follows. In Sect. 2 we present the
architecture of Conchord, including the basic functioning of its component modules. In
Sect. 3, we summarize the computation of the Tonal Interval Space in terms of its
ability to measure tonal pitch relatedness among, and consonance level of, pitch
configurations, in addition to the transposition invariance of tonal pitch directly
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mapped in the space. In Sect. 4, we describe the definition of a population of chords
used during generation. In Sect. 5, we present the principles for optimal chord pro-
gression from two major harmony theories, which are then translated into spatial
trajectories for the automatic generation of chord progressions in the Tonal Interval
Space. In Sect. 6, we present an algorithmic strategy for unfolding selected chords
represented by their component pitch classes to a user-defined pitch range while
optimizing voice leading. In Sect. 7, we present the user interface of Conchord and the
interaction design behind the application. In Sect. 8, we discuss the output of the
system and finally, in Sect. 9, we state conclusions and future work.

2 Conchord: An Overview

Conchord is a system that automatically generates tonal harmony in real-time by
navigation in a Tonal Interval Space, which places related pitch configurations at close
distances. This property allows the definition of simple trajectories in the Tonal Interval
Space driven by principles from function [25] and root-motion harmonic theories [26].

To enable navigation in the Tonal Interval Space and the generation of harmonic
progressions, the system first populates the space with a collection of chords based on
user input. These two main tasks are distributed into the following four modules of the
system algorithmic chain: (i) initialization (ii) filtering, (iii) navigation/selection, and
(iv) voice-leading (see Fig. 1).

The first module of the system automatically populates the Tonal Interval Space
with a large set of chords based on user input specifying the chord quality and number
of notes per chord. The second module is responsible for further constraining the chord
dataset from the first module by filtering it according to two user-defined parameters:
relatedness to a tonal center (or key) and consonance level. The resulting subset of
chords is then stored into a database.

The third module comprises two generative algorithms for selecting favorable
progressions among the (filtered) subset of chords through navigation in the Tonal
Interval Space. The fourth and final module is responsible for organizing the voice
leading of selected chords by unfolding its pitch class components into several pitch
spacings and inversions over a user-defined pitch range. Then, a cost function ranks all
generated solutions and outputs the candidate with the minimum cost for playback.
Furthermore, this module allows the generation of chord progressions characteristic of

Fig. 1. Architecture of Conchord. The system modules are organized horizontally from left to
right according to the information flow along with their input and output data.

Conchord: An Application for Generating Musical Harmony 245



the harmonic minor scale whenever generating chord progressions in a minor key and
is responsible for formatting the internal pitch representation to MIDI note messages to
be sent to, and synthesized by an external MIDI synthesizer.

3 Tonal Interval Space

The backend of Conchord relies on a 12-dimensional (12-D) Tonal Interval Space [16].
It represents multi-level pitch configurations (i.e., pitch classes, chords, and keys) on a
geometric space where indicators of tonal pitch relatedness and consonance can be
computed.

In this space, pitch configurations are represented by Tonal Interval Vectors (TIVs),
T(k), computed as the DFT of 12-D chroma vectors c(n) as follows:

TðkÞ ¼ wðkÞ
XN�1

n¼0

�cðnÞe�j2pkn
N ; k 2 Z with �cðnÞ ¼ cðnÞPN�1

n¼0 cðnÞ : ð1Þ
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Fig. 2. Visualization of the Tonal Interval Space as six circles organized according to
complementary intervals. Shaded grey areas denote the regions which TIVs can occupy for each
circle. The plotted TIVs (square and star) correspond to the position of the C and C# major
chords (pitch classes 0, 4, 7 and 1, 5, 8, respectively) in the space. The dashed circular lines
indicate the angular rotation between C to C# major chords. The radii correspond to the weights
of each complementary interval, T(k), which for visualization purposes are all represented by
identical size.
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Here n is the chroma vector pitch class index up to N = 12, and wðkÞ ¼
f2ðm2=M7Þ; 11ðTTÞ; 17ðM3=m6Þ; 16ðm3=M6Þ; 19ðP4=P5Þ; 7ðM2=m7Þg are weights
derived from empirical ratings of dyads’ consonance used to adjust the contribution of
each dimension k of the space. TðkÞ uses �cðnÞ, which is cðnÞ normalized by the DC
component Tð0Þ ¼ PN�1

n¼0 cðnÞ to allow the representation and comparison of all levels
of tonal pitch represented by cðnÞ in the same space. In the standard DFT calculation,
we set k = 12 however, in practice, we only need to calculate T for coefficients 1 to 6,
thus excluding the DC component and symmetrical coefficients.

Following Harte et al. [15], we visualize the 12-D space as 6 circles, each repre-
senting one complex DFT coefficient (see Fig. 2), i.e. circle 1 has the real part of T(1)
on the x axis and the imaginary part of T(1) on the y axis and so on.

3.1 Chroma Vector Representation of Multi-level Tonal Pitch

For the purpose of this paper, we restrict musical notation to symbolic representations,
and hence we express the presence of input pitch classes in the chroma vector cðnÞ by
binary activations. Each of the 12 elements of the chroma vector corresponds to a pitch
class of the chromatic scale, assuming equal temperament and enharmonic equivalence.

For example, the C major chord (pitch classes 0, 4, and 7) gives the chroma vector
c = {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}. Major keys are represented by their diatonic set of
pitch classes (e.g., C major results in the chroma vector c = {1, 0, 1, 0, 1, 1, 0, 1, 0, 1,
0, 1}), and minor keys by the diatonic set of their natural minor scale (e.g., C minor
results in the chroma vector c = {1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0}).

A particularity of our approach is the use of the natural minor scale, which shares
the same pitch classes as its relative major scale, instead of the harmonic minor scale
commonly adopted to represent the minor region. In doing so, we systematize the
method behind the computation of chord sequences in the major and minor regions.
Therefore, for the remainder of this paper, we will primarily refer to the major mode;
moreover, in Sect. 6, we further detail a strategy for adopting the harmonic minor scale.

Please note that in the chroma vector cðnÞ, and consequently in the TIV TðkÞ, no
information about pitch height is encoded. Thus, the octave cannot be represented nor
suggested by cðnÞ with binary encoding because all the octaves are collapsed into one.
Additionally, the information relative to chord inversions and the effect of the relative
amplitude between pitch classes are lost.

3.2 Spatial Relations Among Multi-level Tonal Pitch Configurations

The TIVs, TðkÞ, of different chroma vectors are separated by some spatial distance in
the Tonal Interval Space. In this section, we discuss how these spatial distances can be
understood within the most salient hierarchical layers of the tonal system from lower to
higher levels of abstraction (i.e., pitch classes, then chords, and finally keys or regions),
as well as how the levels interconnect.

Similar to the pitch organization of the Tonnetz [11], the Tonal Interval Space
places pitch class intervals understood as related within the Western tonal music
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context at close distances, i.e., minimizing distances for unisons over perfect fifth over
major/minor thirds, etc.

For this work, the most relevant feature of the Tonal Interval Space’s chordal level
is how it minimizes distances among chords sharing common tones. The greater the
number of common tones between chords, the closer they are in the space, thus
favoring chord progressions with minimal displacement of moving voices (known as
voice-leading parsimony).

At the regional level, our space minimizes distances for closely related regions,
where each key is flanked by its relative, dominant and subdominant keys. Addition-
ally, the diatonic pitch class set of a given region is in the neighborhood of its key TIV.
In other words, in-key pitch classes are at a smaller distance to their respective key TIV
than outside-the-key pitch classes. Table 1 further demonstrates this property of the
Tonal Interval Space by showing the angular and Euclidean distances between C major
region TIVs and all 12 pitch classes.

3.3 Transposition

The geometry of our space allows us to explain and directly map transposition-related
pitch configurations by rotation of TIVs. Transposing a pitch configuration by p
semitones result in rotations of TðkÞ by uðpÞ ¼ �2pkp

N radians. In other words, the angle
of rotation of TIVs is systematic and different for each of the complex DFT coefficients
(i.e., each of the 6 circles shown in Fig. 2). For example, transposing a pitch config-
uration one semitone up is achieved by rotating the six coefficients of the TIV by −p/6,
−p/3, −p/2, −2p/3, −5p/6, and −p, respectively.

Denoting TpðkÞ as the transposed version of TðkÞ we have

TpðkÞ ¼ TðkÞj je�j2p kþ pð Þ
N : ð2Þ

Rotating a TIV through all 12 semitones of the chromatic scale creates a concentric
‘layer’ containing all of its 12 possible transpositions. Therefore, pitch configurations
sharing the same interval vector (e.g., chords with the same quality) are at the same
distance from the center.

3.4 Measuring Consonance

Two important design principles of the Tonal Interval Space allow the computation of a
tonal pitch consonance indicator from the space. They are the normalization by Tð0Þ

Table 1. Angular (h) and Euclidean (d) distances between C major regions TIVs and the entire
set of pitch classes. The diatonic pitch class set of each region are in bold.

C C# D D# E F F# G G# A A# B

h 1.22 2.12 1.09 2.12 1.22 1.40 2.02 1.15 1.97 1.15 2.01 1.40
d 30.9 39.63 29.50 39.63 30.91 32.79 30.80 30.07 38.41 30.07 38.80 32.79
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and the weights wðkÞ applied in Eq. (1). The former constrains the space to a limited
area where all multi-level pitch configurations a chroma vector can represent exist. In
the proposed visualization of the 12-D space shown in Fig. 2, this is equivalent to
saying that all pitch configurations lie inside the 6 circles. The latter distorts the DFT
coefficients to regulate the contribution of each interval according to empirical ratings
of consonance. These two elements combined create a space in which pitch classes at
the edge of the space and furthest from the center are considered the most consonant
configurations, and a configuration with all 12 active pitch classes in the center of space
is considered the most dissonant. These explicit design principles orders the norm of
TIV, TðKÞk k, for both dyads (i.e., P1 > P4/P5 > m3/M6 > M3/m6 > TT > M2/m7
> m2/M7) and common triads (i.e., major/minor > suspended fourth > dimin-
ished > augmented) according to empirical data derived from previous listening
experiments [27–31].

Hence, we extrapolate the consonance measure C(T) of the TðKÞk k by the norm
TðkÞ, which can also be calculated as the Euclidean distance from the centre as follows:

CðTÞ ¼ TðKÞk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðkÞ � TðkÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

TðkÞj j2
vuut : ð3Þ

4 Defining a Population of Chords

The first module of our algorithmic chain defines a population of chords to be used
during generation by a twofold strategy. First, the system populates the space with a
large set of chords with variable numbers of notes and qualities. Second, those chords
that correspond to a pre-defined tonal center and minimum consonance level are
retained and all others are discarded.

Conchord includes four options to initially populate the Tonal Interval Space with
chords: (i) all m-note chords combinations without repetition from the set of 12 pitch
classes; (ii) all major, minor, and augmented triads; (iii) all major, minor and
half-diminished seventh chords; and (iv) the manual specification of chords.

After creating an initial population of chords, Ti, these are reduced to a subset of
chords, Zi, by applying user-defined constraints that regulate the chords’ relation to a
key and the chords’ consonance. A maximal distance of the chords from a key TIV
defines the key-relatedness constraint, and a minimum norm of the chords TIV defines
the consonance constraint. In this way, the subset of chords, Zi, meets both conditions
simultaneously:

Zi ¼ Ti Di\Dmax &CðTiÞ[Cminf g; ð4Þ

where,

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

TkeyðkÞ � TchordðkÞ
�� ��� �2s

; ð5Þ
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Dmax is the maximum distance of chord TIVs, TchordðkÞ, from a key TIV, TkeyðkÞ, and
Cmin denotes the user-defined minimal chord consonance. Both constraints can be
assigned using Conchord’s interface as described in section. Typical ranges for these
parameters are 11\Dmax\33 and 15\Cmin\25. The TIVs and the component pitch
classes of the resulting subset of chords are then stored in a database.

The modulation between keys in the Tonal Interval Space combines the possibility
to transpose keys by TIV rotation with the constraint-based strategies stated in (5).
Given both the interval distance between a target and departure keys in semitones and
their TIVs, we can modulate between them by defining an angular trajectory in the
Tonal Interval Space that continuously discards and adds new chords to the chord
database. This angular trajectory corresponds to the interpolation between target and
departure key TIVs given by the smaller angular rotation (either clockwise or
anti-clockwise) on each individual circle calculated using (3). The resulting trajectory
enssures that overlapping and adjacent pitches and chords across regions favor a
smooth transition between keys.

5 Chord Candidate Selection

This section details two algorithmic strategies for defining ‘optimal’ motions in the
Tonal Interval Space among the database chords, Zi. Chord selection occurs once every
beat and is triggered by an internal clock adjusted to a user-defined tempo.

The algorithmic strategies for navigation in the Tonal Interval Space are driven by
formalized principles from two theories of tonal harmony: function and root-motion
harmonic theories (Sect. 5.1). The translation of formalized principles to trajectories in
the Tonal Interval Space for the generation of favorable chord progressions is detailed
in Sects. 5.2 and 5.3.

5.1 Theories of Tonal Harmony

Tonal harmony has been a frequently visited topic by music theorists since Rameau’s
original treatise [32]. Among the most widely accepted and popular theories of har-
mony we find: (i) scale-degree theories, which claim that each chord can resolve in its
own characteristic way; (ii) function theories, which group chords into larger cate-
gories; and (iii) root-motion theories, which emphasize the intervals formed between
successive chord-roots.

The principles for favorable chord progressions stated by the two latter theories will
be presented next, with the aim of inferring formalisms which can then be translated into
trajectories in the Tonal Interval Space. We do not address scale-degree theories because
their underlying principles cannot be modeled in our space due to their asymmetric
nature. For a comprehensive explanation of these theories please refer to [33].

Function Theories. Originated by Riemann [25], function theories examine and
explain musical harmony according to two fundamental components: chord categories
based on shared harmonic function and typical motions between these categories [34].
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In detail, the first component groups chords together into three categories:
(i) ‘tonic,’ (ii) ‘subdominant,’ and (iii) ‘dominant’ [25]. The tonic category comprises
the tonic, mediant, and submediant degrees (the I, iii, and vi degrees); the subdominant
category comprises the subdominant, supertonic, and submediant degrees (the IV, ii,
and vi degrees); and the dominant category comprises the dominant, leading-tone, and
mediant degrees (the V, vii°, and iii degrees). The second component of the function
theory postulates normative patterns of functional progressions. According to Riemann
[25], usual motions depart from the tonic to the subdominant to the dominant and then
back to the tonic.

Root-Motion Theories. Following the seminal work of Rameau [32], root-motion
theories have been extended by Schoenberg [26] and Meeus [35]. Root-motion theories
claim that standard and common tonal progressions can be defined in terms of the
intervals formed by the root of consecutive chords, emphasizing a set of ‘optimal’ or
common chord root progressions, compared to ‘atypical’ sequences.

The guidelines for optimal chord progressions in terms of the type of root motion
adopted here are based on Schoenberg [26], who distinguishes three root progression
cases: ‘ascending,’ ‘descending’ and ‘super-strong’ progressions. In an ascending
progression, the chord root moves a fourth up or a third down (e.g., I–IV and I–vi,
respectively). In a descending progression the chord root moves up a fifth or a third
(e.g., I–V and I–iii, respectively). Finally, in a super-strong progression a chord root
moves a second up or down (e.g., V–vi and V–IV, respectively).

While encouraging the unreserved use of ascending root progressions, Schoenberg
discourages the use of descending progressions—which should be treated as passing
chords between ascending progressions—and the sparse use of super-strong
progressions.

5.2 Angular Trajectories Driven by Harmonic Function Theory
Principles

To define angular trajectories in the Tonal Interval Space that convey the harmonic
function theory principles stated above, we first define three harmonic function
regions—tonic, subdominant, and dominant—in the 12-D space. These harmonic
function regions are represented by three vectors departing from the key TIV, TkeyðkÞ,
to the tonic, subdominant, and dominant TIVs, TiðkÞ; respectively (represented in
Fig. 3 as ~TI, ~TIV, and ~TV), such that

Ti
* ðkÞ ¼ TiðkÞ � TkeyðkÞ: ð6Þ
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For the purpose of visualization of the harmonic function categories regions we use
a 2-D representation of the 12-D Tonal Interval space obtained by nonmetric multi-
dimensional scaling1 (MDS) as shown in Fig. 3.

Relying on the vector representations for the three harmonic function regions, we
then define in the 12-D space favorable motions between them following Riemann
[25]. To this end, we sequentially alternate between the target vectors ~Ttarget (i.e., ~TI,
~TIV, and ~TV) and randomly select a chord from the database within a p=2 angular
distance, computed by the angle #i in Eq. (7). To perform this operation, all database
chord candidates, TiðkÞ, are first converted to vectors departing from the key TIV using
Eq. (6).

#i ¼ cos�1
~Ttarget �~Ti

k ~Ttarget k � k ~Tik
: ð7Þ

Fig. 3. 2-D visualisation of the 12-D representation of the C major key and its common
component diatonic triads using nonmetric multidimensional scaling—Roman numerals label the
harmonic function of each triad. The pattern regions denote three harmonic function categories
(i.e., Tonic, Subdominant, and Dominant) and ~TI, ~TIV, and ~TV their representative vectors.
Dashed circular lines represent typical motions between harmonic function categories (i.e., Tonic
to Subdominant to Dominant and back to Tonic).

1 Sheppard [36] and Kruskal [37] first used this method, which has been extensively applied to
visualise representations of multidimensional pitch structures [38, 39]. Briefly, nonmetric MDS
attempts to transform a set of n-dimensional vectors, expressed by their distance in the item-item
matrix, into a spatial representation that exposes the interrelationships among a set of input cases. We
use the smacof library [40] from the statistical analysis package ‘R’ to compute dimensionality
reduction using a nonmetric MDS algorithm. More specifically, we use the function smacofSym,
with ‘ordinal’ type and ‘primary’ ties.
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5.3 Angular Trajectories Driven by Root-Motion Harmonic Theory
Principles

We define root-motion motion between successive chords in a stochastic manner based
on angular distances. Prior to selection, the system calculates the vectors departing
from an assigned key TIV, TkeyðkÞ, to the chord database TIVs, TiðkÞ, and to an
additional set of seven diatonic triads TIVs for each scale degree—referred hereafter as
the target vector, ~TI − ~Tvii� , where the chord database and target vectors are computed
using (6).

At each new chord selection, a stochastic algorithm decides the next chord root
following Schoenberg’s suggestions for favorable chord-root progressions, i.e. favoring
ascending progressions, over super-strong progressions, over descending progres-
sions—according to heuristically assigned probabilities of 60 % (ascending), 20 %
(super-strong), 10 % (descending) and 10 % (remaining in the same chord root).

Figure 4 shows the organization of the diatonic triad TIVs and their representative
(target) vectors around the key TIV, as well as the probabilities of transition between
them departing from the root of the tonic (left) and subdominant (right) degrees.

Then, given a chord root for the next progressions, the system identifies the cor-
responding triad with such a root and retrieves its representative target vector. Finally,
the system computes in the 12-D space the angle #i between the target vector and the
chord database vectors using (7), and randomly selects a chord from the set of database
chord within the range p=6 around the target angle.

Fig. 4. 2-D visualisation of the 12-D representation of the C major key and its common
component diatonic triads using nonmetric multidimensional scaling—Roman numerals label the
harmonic function of each triad. The pattern regions organize and highlight the three root-motion
progressions proposed by Schoenberg [26], departing from the tonic (left) and subdominant
(right). Bold lines correspond to the vectors ~TI − ~Tvii� of common diatonic triads from their key
TIV and dashed lines the probability of transitioning between root-motion cases.
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6 Voice Leading and Playback

Voice leading is the term used to denote the horizontal motion of the individual parts
(or voices) in harmony writing. The rules for voice leading together with the rules for
harmonic progression establish the ground for successful musical harmony writing. Its
importance is highlighted by Schonbrun [41, p. 174], who claims that ‘good voice
leading can take a simple chord sequence and transform it into a masterpiece’.

A vast amount of literature detailing objective rules for optimal voice leading exists
[42]. The most common rules for voice leading found in music theory textbooks are
drawn from, and meant for, four-part vocal music. Even though these rules can be
applied to music outside this category, we should bear in mind that voice leading is
highly linked and commonly adapted to the context of the piece, including style,
orchestration, composer idiosyncrasies, etc.

We follow a strategy first detailed in [16] to enhance the voice leading of selected
chords given their pitch class sets and a user-defined pitch range. The rules adopted
here were selected from a large collection of voice leading rules framed for four-part
vocal music in [42]. The selection criteria were based on the adaptability of the rules to
general tonal music contexts other than vocal music, resulting in the following five
rules:

1. Vertical (chord) spacings—intervals between parts should not exceed one octave,
with the exception of the interval formed by the two lowest parts, in which no
restriction is applied;

2. Avoid large horizontal (or melodic) leaps—adjacent chords should minimize the
intervallic distance in each voice;

3. Avoid parallel octaves and fifths—intervals of the octave and fifth should not
happen consecutively in the same parts;

4. Avoid hidden octaves and fifths—intervals of the octave and fifth should not
happen consecutively in different parts;

5. Outer parts contrary motion—contrary motion between outer parts is encouraged.

Based on the above-stated rules, we devised an algorithmic strategy that finds the
best voice leading for selected chords from a large set of chord candidates generated
from unpacking the set of pitch classes to all possible inversions and vertical spacings
within a user-defined pitch range. For example, a 3-note chord will result in a set of
chord candidates which include the fundamental state as well as its two inversions (i.e.
with the third and fifth on the bass). Additionally, for each of the three sets all possible
chord spacings within the user-defined pitch range are instantiated.

All candidate chords generated are evaluated in relation to the previously played
chord and are ranked using the set of points shown in Table 2. An algorithm assigns a
cost for each of the five voice leading rules per chord candidate. Then, an overall cost
per chord is computed by summing the five rule condition costs. Finally, the algorithm
outputs the chord with the minimum (i.e., best) voice leading cost.

After a chord has been selected it is converted to MIDI note messages for playback
using a synthesizer. For simplicity, we assign an arbitrary MIDI note velocity of 100
for all notes and set the duration to be equal to the length of each beat.
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Prior to the definition of the chord candidate that best fits the voice leading rules
while in a minor key, a parallel operation shifts the seventh degree of the natural minor
scale a semitone higher (e.g. on a minor scale, shifting the G natural to G sharp). While
the use of the natural minor scale simplifies the generations and database construction,
this additional processing allows the generation of chords characteristic of the harmonic
minor scale, the most common scale for chord construction in minor keys.

7 User Interface

To allow users to interact with Conchord, we have created an interface for both Max
[22] and Pure Data [23], of which a screenshot of the latter is shown in Fig. 5.
Conchord’s interface was designed to provide a simple, intuitive, and flexible expe-
rience for both expert and novice users. Despite minor cosmetic differences, the Max
and Pure Data versions have identical functionality.

The interface is composed of three modules stacked vertically. The two upper
modules are responsible for (i) setting the parameters for initializing and filtering out

Table 2. Point assignments for voice leading rule conditions.

1. Chord
spacing

2. Melodic
leap

3. Contrary
motion

4. Parallel
5th/8th

6. Hidden
5th/8th

Cost 5 – – – true true
2 >12 >8 – – –

1 >3 >4 false – –

0 ¼0 ¼0 true false false

Fig. 5. Conchord interface developed for the PD programming environment.
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the population of chords as detailed in Sect. 4 and for (ii) defining the generative
strategy behind chord selection between function and root-motion harmonic theory
principles. The lower module is responsible for controlling the playback as well as
specifying the pitch range chords can occupy.

To initialize the Tonal Interval Space with a population of chords, the user must
first define on the top-left menu of the uppermost module the type of chord aggregates
initially generated by selecting one of following four predefined options: (i) ‘Diatonic
triads,’ (ii) ‘Diatonic tetrads,’ (iii) ‘Comb 3’—which stand for all 3-note chords
combinations without repetition from the 12 pitch classes, and (iv) ‘Comb 4’—which
stands for all 4-note chords combinations without repetition from the 12 pitch classes.
Then, the user should specify in the middle module a key among the 24 minor and
major keys represented on a double circle of fifths, which mirrors the key organization
of the Tonal Interval Space. The selected key will be then used to calculate the chord
relatedness to a tonal center.

The first two top-left menu entries automatically initialize the Tonal Interval Space
with the common diatonic triads and tetrads of a given key by populating the space
with all major, minor and diminished chords and further filtering them according to
pre-defined key-relatedness and consonance parameter values. Top-left menu entries
three and four offer a greater degree of freedom and allow users to initialize the space
with all combinations of 3- and 4-note chords, as well as the possibility to manually
specify both filtering parameters. Furthermore, the space can also be populated by a set
of chords manually chosen via a standard Max and Pure Data message format speci-
fying their pitch class components. In the bottom-left menu of the top interface module,
the user can define one of two ‘Function and ‘Root-motion’ generative modes.

Finally, the bottom module of the interface includes parameters that regulate the
pitch range chords can occupy, the tempo (in beats-per-minute), as well as start/stop
and recording commands. The output format of the recoding is in the standard MIDI
format, which can be further edited in traditional MIDI sequencers.

8 Results

This section discusses musical results generated by the two strategies implemented in
Conchord, of which a transcription along with its function and root-motion harmonic
analysis is shown in Fig. 6.

Figure 6 includes two staves, resulting from each generative strategy: the upper one
corresponding to the harmonic function theory and the lower to the root-motion har-
monic theory. Additionally, each stave is split into two parts, which differ according to
the chord database. The first part only adopts common (major, minor and diminished)
diatonic triads of the C major key. The second part remains in the key of C major, but
adopts an extended degree of dissonance in relation to the core diatonic triads.

In the particular case of the harmonic function theory (upper stave of Fig. 6) the
chord sequence follows the functional category motions proposed by Riemann [25], i.e.
the normative patterns of functional progressions from the tonic (T) to the subdominant
(SD) to the dominant (D) and back to the tonic. Additionally, the sequences of func-
tional harmonic categories are not disturbed in the second part of the stave when
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decreasing the level of consonance (which results in a higher degree of tonal
ambiguity).

In the lower stave of Fig. 6, the chord progressions obey Schoenberg’s [26]
guidelines for favorable chord-root motions. Note that in the generated excerpt,
ascending progressions occur 76 % of the time, super-strong progressions were
explicitly restricted to 12 % and descending progressions or remaining in the same
chord root to 6 % each. As in the function harmonic theory, decreasing the level of
dissonance didn’t disturb the expected the probability of occurrence of chord-root
motions.

To summarize, the generated chord sequences demonstrate the efficiency of the
algorithms, which convey the principles of the function and root-motion harmonic
theories, as well as the behavior of the generative music algorithms under more dis-
sonant and less representative chord aggregates of a tonal center. Several more musical
examples generated by the system along with supplementary harmonic analysis and
expanded use of generated chord progressions via arpeggiation and orchestration are
available at: http://smc.inesctec.pt/technologies/conchord.

9 Conclusions and Future Work

In this paper we presented strategies for navigating in the Tonal Interval Space, a novel
12-D representation for the automatic generation of chord progressions based on
harmonic theory principles. The primary contributions of our Tonal Interval Space in
comparison to existing methods, notably those by Chew [13] and Harte et al. [15], are
the possibility to explain the relations among pitch configurations at the three

Fig. 6. Chord progressions generated with Conchord. The upper stave was generated using the
harmonic function theory principles and includes an analysis of the chord’s functional category
(i.e., Tonic, SubDominant, and Dominant). The lower stave was generated according to
root-motion theory principles and includes an analysis of the root-motion cases (i.e., Ascending,
Descending, and Super-Strong). The bold square circumscribes the use of common diatonic
triads of the C major key, and the dashed square remain in the key of C major but extends the
database while adopting an extended degree of dissonance. To facilitate reading, chords were
rearranged to their root position.
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fundamental pitch, chord and key levels of Western tonal music in a single space, and
to provide an indicator of the consonance of pitch configurations.

The algorithm and applications presented establish a novel approach to the
real-time automatic generation of harmony driven by the tonal pitch organization of the
Tonal Interval Space in combination with principles derived from function and
root-motion harmonic theories. The algorithms convey the principles established by
both theories, which have been modeled in existing generative music applications. The
novelty of our approach relies on the highly flexible and dynamic specification of a
chord database prior to generation based on user-defined chord parameters including:
the number of notes, chord quality, relatedness to a key, and level of consonance,
which in itself expands upon existing systems for the automatic generation of chord
progression beyond the common four-voice setting and conventional use of simple
triads.

While we only formalized principles for favorable chord progressions in this paper,
many musical aspects such as rhythmic structure are not modeled currently. A more
refined model will be addressed in future work by incorporating additional musical
components, including the integration of the current algorithmic strategies within a
metrical template. By doing so, we will also be able to more efficiently define strategies
for selecting chords within the large chord categories considered by our system.
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