
Citation: Araújo, J.H.; Tavares, J.S.;

Marques, V.M.; Salgado, H.M.;

Pessoa, L.M. Misalignment-Resilient

Propagation Model for Underwater

Optical Wireless Links. Sensors 2023,

23, 359. https://doi.org/10.3390/

s23010359

Academic Editor: Rubén

Boluda-Ruiz

Received: 1 November 2022

Revised: 22 December 2022

Accepted: 23 December 2022

Published: 29 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Misalignment-Resilient Propagation Model for Underwater
Optical Wireless Links †

João H. Araújo 1,2 , Joana S. Tavares 1 , Veridiano M. Marques 1, Henrique M. Salgado 1,2

and Luís M. Pessoa 1,2,*

1 INESC TEC—Institute for Systems and Computer Engineering, Technology and Science,
4200-465 Porto, Portugal; joao.h.araujo@inesctec.pt (J.H.A.); joana.s.tavares@inesctec.pt (J.S.T.);
up201605620@edu.fc.up.pt (V.M.M.); henrique.salgado@inesctec.pt (H.M.S.)

2 Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
* Correspondence: luis.m.pessoa@inesctec.pt
† This paper is an extended version of the conference proceedings contribution “Modelling of an Underwater

Optical Wireless Communication System With Misalignment Tolerance” Published in: 2021 IEEE 32nd
Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

Abstract: This paper proposes a multiple-lens receiver scheme to increase the misalignment tolerance
of an underwater optical wireless communications link between an autonomous underwater vehicle
(AUV) and a sensor plane. An accurate model of photon propagation based on the Monte Carlo
simulation is presented which accounts for the lens(es) photon refraction at the sensor interface and
angular misalignment between the emitter and receiver. The results show that the ideal divergence of
the beam of the emitter is around 15° for a 1 m transmission length, increasing to 22° for a shorter
distance of 0.5 m but being independent of the water turbidity. In addition, it is concluded that a
seven-lense scheme is approximately three times more tolerant to offset than a single lens. A random
forest machine learning algorithm is also assessed for its suitability to estimate the offset and angle of
the AUV in relation to the fixed sensor, based on the power distribution of each lens, in real time.
The algorithm is able to estimate the offset and angular misalignment with a mean square error of
5 mm (6 mm) and 0.157 rad (0.174 rad) for a distance between the transmitter and receiver of 1 m and
0.5 m, respectively.

Keywords: underwater; optical; wireless, propagation; misalignment tolerance; Monte Carlo
simulation; multiple-lens receiver; random forest

1. Introduction

Exploration of the sea, either for monitoring and data collection or for industrial
exploitation of sea resources, including sea mining, is an important area of application
with a potentially strong impact on society, in line with the United Nations Sustainable
Development Goals [1]. This interest is essentially motivated by the fact that existing
natural resources are becoming increasingly scarce, with it being of paramount importance
to guarantee access to and use of marine resources. This is especially relevant to countries
with large coastal areas, such as Portugal, which is the 5th European country and 20th in
the world with the largest exclusive economic zone, detaining a maritime area of more than
1.7 million km2 [2].

To effectively achieve this purpose, undersea communications are of paramount
importance for different applications, such as the transference of data from the underwater
sensors integrated into underwater wireless sensor networks (UWSNs) to autonomous
underwater vehicles (AUVs), as represented in Figure 1a, or the download of large amounts
of data from the AUVs to the docking stations, which are collected from the UWSN after a
mission, as illustrated in Figure 1b.
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(a)

(b)

Figure 1. (a) Underwater wireless energy and communications enabling a long-term deep-sea
presence. (b) Underwater wireless data transfer from the AUV to the docking station.

In this scenario, underwater optical wireless communication (UOWC) in the blue
and green region of wavelengths plays a vital role in pursuing this objective, albeit while
supporting relatively short distances, allowing for the development of low-cost, low-
latency, high-bandwidth, and high-robustness transmission systems, which find relevant
applications [3]. Other concurrent wireless technologies for use underwater are acoustic
and radio-frequency communications. The former one, despite providing long-distance
transmission, suffers from low bandwidth and signal distortion due to the Doppler effect,
and it is also affected by multi-path propagation that leads to inter-symbol interference. The
latter is limited in bandwidth due to the scarcely available spectrum and also severely
degraded by the attenuation resulting from the high conductivity and permittivity of saline
water [3]. Hence, these two technologies fall short of accommodating applications that
require high-speed communications.

Nevertheless, UOWC is very challenging since optical signals are affected by misalign-
ment [4,5], ocean turbulence [6,7] and the absorption existing in the underwater channel,
aside from scattering due to the presence of suspended particles, especially in turbid wa-
ters [8,9]. Even though UOWC is the most suitable model for the scenarios depicted in
Figure 1, practical systems still need to be improved with increasingly innovative tools
and techniques. For example, the UOWC system must be misalignment-tolerant (i.e.,
a sub-system capable of adjusting the emitter’s divergence (to one which the system is most
tolerant to the offset) is required to maintain a stable and reliable communication link).

In this light, it is imperative to design sophisticated models increasingly capable of
simulating a real underwater system. The development of these models is of extreme im-
portance, as they can provide comprehensive knowledge of underwater channel operation,
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namely photon propagation in different water types, the effect of misalignment caused by
water turbulence or the difficulty of maintaining the position of the transmitter or receiver,
allowing one to obtain relevant guidelines such as the ideal link geometry and divergence
of the emitter, contributing actively with valuable insights to the practical implementation
of these systems.

To simulate the underwater channel, simple models generally do not capture the full
underlying phenomena, such as the Beer–Lambert law, and hence they are not accurate,
as they may not account for the real detected power. For example, this model assumes
absolute alignment between the transmitter and receiver (which clearly does not match the
scenario depicted in Figure 1, as it is challenging to maintain the AUV’s position due to
the presence of currents and tides) and also does not account for the photons that undergo
scattering but are still detected by the receiver (which greatly underestimates the detected
power, especially in turbid waters). Contrarily, an accurate model for simulating underwater
environments is the radiative transfer equation (RTE) [10]. Yet, as this involves nonlinear
integro-differential equations (such as the scattering phase function), it is very difficult
to solve analytically, and thus numerical procedures such as Monte Carlo simulations
are preferred.

In our previous work [11,12], the RTE was numerically solved through a Monte Carlo
simulation which accurately predicted the detected power and performed an estimation of
the channel bandwidth for four water types and different beam divergences. In this work,
our primary focus is to design a model that can account and compensate for a misalignment
between the transmitter and receiver. To increase the misalignment tolerance, we simulated
a multi-sensor-lens pair scheme in a model based on a Monte Carlo simulation of photon
propagation underwater. This system, which additionally models the photon refraction
at the lenses’ interface, allowed us to obtain novel results for angular misalignments and
different sensor configurations based on the circle packing in a circle algorithm.

It is pertinent to understand how lateral or angular offsets will impact the signal
strength, which needs to be foreseen in an actual system design. The maximum deviation
in the Rx or Tx position to avoid misalignment can be assessed by calculation of the
maximum allowed lateral offset (MALO). The MALO of the emitter or sensor has been
previously analyzed in the literature [4,5,13,14], as the maximum offset complies with a
minimum required received optical power. Here, we obtain the MALO even when the
transmitter or receiver may be angularly misaligned. These works considered emitter
beams with divergence, treating the sensor as a simple aperture. However, to the best of the
authors’ knowledge, Monte Carlo-based simulation for accurate treatment of lens behavior
does not appear in the literature. Moreover, we consider each sensor as a lens and sensor
pair located at the lens focal distance from each other to improve the light collected by
the sensor. We present several sensor architectures with a variable number of sensor-lens
pairs and evaluate the performance in terms of position and rotation misalignment of
the sensor with the emitter beam. Moreover, based on this multiple-sensor configuration
and specifically the light power distribution at the receiver, defined by the power at each
lens-sensor pair, we propose a random forest machine learning method to predict the lateral
offset and angle of the AUV in relation to a fixed sensor configuration.

The remainder of this paper is organized as follows. Section 2 presents the imple-
mented Monte Carlo simulation model, with a thorough description of the features added
and the photon propagation conditions leading to the ulterior validation of the algorithm
based on experimental results from the literature. Moreover, several sensor architectures are
studied, and proper treatment of the lens behavior is developed, leading to identification
of the optimal sensor scheme, and the parameters considered in the simulations are shown.
The simulation results for different sensor schemes, water types, propagation distances,
and angular misalignment, which are described in Section 3, where several communication
scenarios are assessed, and some analysis of the system limitations that permit communica-
tions engineers to build their systems more efficiently are shown. Section 4 addresses the
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live misalignment offset prediction system based on the random forest machine learning
technique. The final conclusions and remarks are given in Section 5.

2. Underwater Photon Propagation Model

The propagation of photons underwater is modeled by the RTE, which is based on the
law of conservation of energy of an underwater beam of light and takes into account all
losses and gains of the initial beam. Its formalism is based on the definitions of the water
properties and the radiance of the beam. In its standard form, this model yields [11]

cos(θ) · dL(θ, φ)

cdz
= −L(θ, φ) + ω0

∫
4π

β̃
(
θ′, φ′ → θ, φ

)
· L
(
θ′, φ′

)
dΩ
(
θ′, φ′

)
+ S(θ, φ), (1)

where c is the beam attenuation coefficient (from the Beer–Lambert law), ω0 is the single
scattering albedo, β̃ is the scattering phase function, S represents the combined path
function for inelastic scattering and spontaneous emission and the radiance of the beam, L,
is given in units of W m−2 sr−1 nm−1 by

L(θ, φ) =
P(θ, φ)

∆A · ∆Ω · ∆λ
, (2)

where P is the spectral radiant power, ∆A represents the cross-sectional area of the detector,
∆Ω is the solid angle in the direction of (θ, φ) and z is the distance along the beam propaga-
tion direction. Note that L, c and β̃ also depend on z and λ, and these dependencies are not
represented here for the sake of simplicity.

The simulation of UOWC systems using the Monte Carlo algorithm is the simplest
method for solving the photon propagation phenomena since, due to the complexity of
the RTE equation and the problem configuration, analytical solutions only exist for very
simple cases [15]. This statistical method based on the Monte Carlo algorithm mimics the
physical behavior of individual photons underwater and is far more accurate than the
Beer–Lambert law, which underestimates the received optical power due to assuming that
scattered photons are completely lost. In this algorithm, photons are viewed as particles
that move through the underwater medium with a given path length between events. These
events are absorption of or collision with suspended particles in the water that scatters the
photon. These are the two major inherent optical properties (IOPs) identified by Mobley
for light propagation [10].

2.1. Monte Carlo Algorithm

In this sense, two different probability density functions provide the photon path
length between events and the scattering angle after a given collision. In developing
this statistical algorithm, some assumptions were made: (1) the underwater medium
was homogeneous (i.e., the optical medium had a uniform composition throughout it,
and the scattering and absorption effects did not have a spatial dependency); (2) only elastic
scattering existed (i.e., when the scattering occurred, there were no shifts in wavelength and
consequently no change in photon energy); (3) the photon generator was perfectly random;
(4) no triple backscattering occurred (i.e., a scattered photon was not backscattered to its
initial position); and (5) the simulation boundaries were perfectly absorbing (i.e., no photon
propagated backward after passing the sensor plane). The first two assumptions were a
result of the RTE equation used, which expresses the conservation of energy as the beam
propagates underwater and accounts for the losses in the received beam due to scattering
and absorption. The other three assumptions were associated with (1) the limitations of
numerical methods, which are never truly random, and (2) the actual implementation of
the numerical model itself, which sets some limits on the scattering phenomena, neglecting
third-order scattering and less likely events. The assumptions were shown to be valid
since it was shown previously by Cox that its results were in good agreement with the
experiment [4].
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There are several Monte Carlo approaches to solving the RTE, and their difference lies
in what happens to the photon at each event (absorption, scattering or both) and how to
quantify the absorption. Four equivalent methods capable of solving this problem are the
albedo weight (AW) method, albedo rejection (AR) method, microscopic Beer–Lambert law
(mBLL) method, and absorption-scattering path length rejection (ASPL) method [16].

In the first method, a weight factor given by the albedo coefficient is assigned at the
interaction point to the traveling photon propagated through the free path length along the
initial direction of propagation in order to propagate to the next one. The weight accounts
for the loss of photons by absorption, and after the interaction, it continues propagating in
the scattered direction with a reduced weight.

In the AR method, the path length of the photon is affected by the extraction of a
random number uniformly distributed between 0 and 1. Thus, whether this number is
lower or higher than the albedo coefficient, the photon is propagated again, or its trajectory
is terminated, respectively. In this case, the weight applied to the photon trajectory is one.

In the mBLL method, the detected photons will favor the same trajectories indepen-
dent of the absorption coefficient distribution, and the weight factor assigned to those
trajectories is calculated through the exponential of the absorption coefficient integral along
the whole trajectory.

The latter consists of extracting two random numbers uniformly distributed between
0 and 1, which allows us to obtain the scattering and absorption coefficients. With these,
the individual path lengths are obtained and compared for the two situations. If the path
length associated with the scattering event is less than or equal to the path length associated
with the absorption event, then the photon is propagated, and if it is greater, then the
photon is terminated. Note that for the AW, AR and ASPL methods, the actual trajectories
chosen by the detected photons depend on the distributions of both the scattering and
absorption coefficients [16].

In this work, the AW method was adopted since it exhibits superior convergence
performance when compared with the AR and ASPL methods [16]. As referred to earlier,
in this approach, each photon has a given amplitude starting at one, and each time it is
absorbed, its amplitude is multiplied by a weight given by the water albedo coefficient.
This approach was preferred for several research papers [13,17–21], although they are all
equivalent [16].

2.1.1. Coordinate System and Initial Conditions

In the algorithm geometry, a Cartesian coordinate system is considered where the
receiver plane is situated on a fixed point in the x/y plane. The emitter is pointed in the
direction z, which is referred to here as the optical axis. To start propagating photons
through the medium, they must be given a position and a vector of propagation that
properly simulates a laser beam. Photons start to propagate in the plane z = 0, and their
initial positions (x0, y0, z0) are determined from a sampled Gaussian distribution, which is
more realistic than a flat distribution, with a standard deviation equal to the laser beam’s
waist radius w0 [22]:

ρ(r) = exp
(
−r2

2w0

)
. (3)

Given a sampled radius, the (x, y) positions are easily calculated as follows:

x0 = r cos(φ),

y0 = r sin(φ).
(4)

After obtaining the photon’s initial position, one needs to simulate the emitter’s
divergence to calculate the initial direction for each photon. A hypothetical lens located at
the emitter side next to the laser provides the mathematical basis for defining the beam
divergence. The focal distance fl of this lens will depend on the desired half-angle beam
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divergence ψdiv (represented in Figure 2) and on the laser beam waist radius w0, and it is
given by

fl =
w0

ψdiv
. (5)

The initial polar angle of each photon is obtained through the ray transfer matrix
analysis using the paraxial approximation. The optical ray coordinates are defined as (h, β),
where h is the height and β is the slope angle relative to the optical axis. The effect of the
lens on the initial ray coordinates is obtained by multiplication with the optical element
matrix of the lens, given by [4] h1

β1

 =

 1 0

−1
fl

1


h0

β0

. (6)

O

Optical ray

h0y

x

Gaussian beam

f

Diverging lens

h1
z

β1

Figure 2. Scheme of the opening of the optical beam passing through a lens.

For each photon, the initial azimuthal angle φ0 is taken randomly from [0, 2π] since
the beam is radially symmetric, which is accomplished by taking a random number q
uniformly distributed between [0, 1] and multiplying it by 2π. Given a certain point P in
space with an origin O, the azimuthal angle is defined as the angle between the positive x
axis and the projection of the line segment OP on the x/y plane, as illustrated in Figure 3.

The photon direction vector is divided into its projections on the three axes in order to
avoid complex and time-consuming running trigonometric functions. These projections µx,
µy and µz are called the direction cosines, being defined by

µx = cos(θx),

µy = cos
(
θy
)
,

µz = cos(θz),

(7)

where
(
θx, θy, θz

)
are the angles between the propagation vector and the Cartesian axes,

which must comply with the normalization µ2
x + µ2

y + µ2
z = 1.
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ϕ

μx

μy

μz

x

y

z

θx
θy

θz

P

P'

O

Figure 3. Scheme of direction cosines. The blue vector depicts the photon’s direction vector, and the
red vectors (µx, µy, µz) are the projections of the photon’s direction vector onto the x, y, and z axes.

2.1.2. Photon Propagation

The photon path length is the distance the photons travel in the homogeneous medium
between interactions, which can be absorption, scattering, or both. The probability of a
photon traveling over an optical scattering path of a length l is given by [10]

Pl(l) = 1− e−l . (8)

A typical method to obtain a sample from a given probability distribution function is
the inverse transform sampling [23]. Since Equation (8) is an invertible function, to obtain a
sample, one simply needs to invert it:

l = − ln(1− Pl(l)). (9)

Then, we add a random, uniformly distributed number between [0, 1], represented
here as Pl(l). Hence, the optical path length is then defined as

l = c · r, (10)

where c is the attenuation coefficient and r is the geometric distance between optical events.
Finally, it comes naturally that r yields

r = −1
c

ln(1− Pl(l)). (11)

Regarding the scattering, each successive scattering event causes the trajectory to
rotate its local coordinate frame by (θ, φ). Given a volume scattering function β̃, the new
angle θ′ is given by solving the following equation:

q =
∫ θ′

0
β̃(θ) sin(θ)dθ, (12)

where q is another random, uniformly distributed number between [0, 1]. The new az-
imuthal angle φ′ is independent of any probability density function and therefore is sampled
uniformly between [0, 2π].
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2.1.3. Validation of the Algorithm

The photon propagation algorithm validity was confirmed by comparing it with
experimental results for on-axis laser beam propagation through a closed 3.6 m water tank
taken by Cox and Muth [4].

The communication system was composed of an emitter, a 532 nm diode-pumped
solid-state laser with a 2 mm beam diameter and divergence of 1.5 mrad and a receiver
composed of a 25.4 mm achromatic biconvex lens at a 75 mm focal distance of a photomul-
tiplier tube (PMT) unit with an 8 mm active area. The laser was considered collimated in
the simulation, and the different levels of water attenuation coefficients (water types) were
obtained by adding Maalox as a scattering agent.

This simulated scenario is the same one in which Cox and Muth’s code was vali-
dated experimentally. The average power was measured as a function of the attenuation
coefficient. The normalized intensity power was plotted versus the attenuation coeffi-
cient in Figure 4. Good agreement can be seen for all the points at which the simulation
was performed.

5 10 15 20 25 30
10

-7

10
-6

10
-5

10
-4

10
-3

Figure 4. Comparison of simulation results for the normalized received power with Cox and Muth’s
experimental data for a 3.6 m water tank, with different attenuation coefficients made by adding
different quantities of scattering agent Maalox.

2.2. Emitter and Sensor Rotation

The emitter was frequently pointed along the z axis in the literature [13]. Yet, in this
work, the ability to rotate the emitter along any direction when given a direction vector w,
as represented in Figure 5, was introduced.

An efficient routine with no square roots or trigonometric functions to speed up the
running time was implemented to generate a three-dimensional rotational matrix that
rotated any unit vector f into w at an angle α [24]. Here, we considered f to be the unit
vector on the z axis, which was defined as ẑ. The vector product of ẑ and w was defined as
s with vector components

(
sx, sy, sz

)
:

s = ẑ×w, (13)

In addition, the dot product of ẑ and w is expressed as

q = ẑ ·w. (14)

An auxiliary variable m is defined as

m =
1− q
1− q2 =

1− q
s · s , (15)
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Then, after considerable algebra, the rotation matrix can be simplified to [24]

R( f , w) =

 q + ms2
x msxsy − sz msxsz + sy

msxsy + sz q + ms2
y msysz − sx

msxsz − sy msysz + sx q + ms2
z

. (16)

Figure 6 shows a diagram of the complete system, including the AUV, diverging beam,
propagation channel and receiver, composed of N lenses and detectors. The figure shows
an example of angularly misaligned communication, in which the rotation angle of the
emitter and the plane of the sensors are given by γe and γs, respectively.

Optical beam

Emitter

α
z

w

Figure 5. Rotation of the emitter direction from the default ẑ direction to any desired vector w.

Sensor plane

Underwater
channel

PD1

PD2

PDN N=5

ψdiv
γe
w

Radial offset

y

zx

O

O'

O'

pn
γs

pn

Figure 6. AUV communicating with fixed receiver. Both emitter and receiver are rotated in relation
to the z axis by the angles γe and γs, respectively.

2.3. Channel Propagator

The photons were propagated using the Monte Carlo algorithm presented in Section 2.1.
To be able to simulate an architecture of sensors in a plane rotated with regard to the emitter,
the condition of termination of each photon had to be changed. Instead of finishing the
photons in a given finished plane z = z f , they were finished in a general plane given by its
normal vector pn

(
pnx, pny, pnz

)
. Thus, the photons’ new position (x′, y′, z′) was evaluated
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after every displacement. In the case where the photon was past the plane, the following
condition

pnxx′ + pnyy′ + pnzz′ > cz f , (17)

would be verified. Then, the intersection with the plane was calculated, and the photons’
data (i.e., the position in the last plane, the vector of propagation, and the weight) would
be saved in a file for later analysis.

2.4. Sensor Architecture

In this work, different sensor architectures are studied, and all are composed of a
different number of lens-sensor pairs located at different positions inside a circle. The
total output signal power is obtained by adding the powers at each detector. Aside from
providing additional sensitivity, this architecture gives additional information about the
lateral offset between the transmitter and receiver (see Figure 6), which will be explored
later in Section 4, for prediction of the misalignment.

2.4.1. Accurate Lens Behavior

An innovative feature was added to the Monte Carlo algorithm: the ability to simulate
accurately the refraction of photons when these pass through the lens. As the photons
are treated individually in this method, one accurate method is to calculate the refraction
at each surface of the lens for each photon. Mathematically, the biconvex lens used was
treated as two parts of spheres with a thick section in between.

After calculating the intersection of the photons with the first interface of the sphere,
the vector form of Snell’s law is applied. If one considers θ1 to be the angle of incidence with
the normal of the sphere gi and cos(θ1) = −gi · vi, where vi is the vector of propagation of
the photon, then the vector of propagation after the first refraction vr1 is given by [25]

vr1 =
n1

n2
vi +

(
n1

n2
cos θ1 − cos θ2

)
, (18)

where the following definition is used:

sin θ2 =
n1

n2
sin θ1. (19)

After the first refraction, on the interface defined as ξ1 which separates n1 from n2,
the photon is propagated through the glass until the next lens surface. Here, the photon
meets another interface between n2 and n3, ξ2, where the same refraction calculation is
made with the new vector and refractive indexes as illustrated in Figure 7.

The Fresnel reflection or photon loss at the water–glass interface was about 0.2%,
and the reflection at the glass–air interface was 3.2%, assuming normal incidence. This
power loss could be compensated by increasing the transmitted power since only the ratio
between the received power and the transmitted power was relevant for the calculation of
the MALO and did not affect the main conclusions.
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Biconvex lens

Sensor

x

z
y

n1(water) n2(glass) n3(air)

vr1
θ1 θ2

ξ2ξ1

vr2

gi

vi

Figure 7. Photon as ray vector being refracted at both medium interfaces. The lens directs the photons
to the sensor.

2.4.2. Packing

The positions of the lenses were chosen from known results of a proven algorithm,
known as “circle packing in a circle” [26], using a non-congruent approach to maximize the
area occupied by the lenses. After defining a number of lenses N and finding their packing
positions, another lens in the center was added with the maximum possible radius.

A diagram of the positions of the various lenses for a number of lenses from 3 to
8 is portrayed in Figure 8. The optimal scheme will be analyzed and discussed later in
Section 3.2. A multi-lens-sensor pair configuration is discussed instead of a single lens
and one sensor since it has the added advantage of providing spatial information on the
transmitter and receiver misalignment, which will be explored later in Section 4.

-2 -1 0 1 2

-2

-1

0

1

2

(a)

-2 -1 0 1 2

-2

-1

0

1

2

(b)

-2 0 2

-2

-1

0

1

2

(c)

-2 0 2

-2

-1

0

1

2

(d)

-2 0 2

-2

-1

0

1

2

(e)

-4 -2 0 2 4

-3

-2

-1

0

1

2

3

(f)

Figure 8. Scheme of N sensors given by the “circle packing in a circle” algorithm. (a) N = 3; (b) N = 4;
(c) N = 5; (d) N = 6; (e) N = 7; (f) N = 8.

2.5. Simulation Parameters

Inasmuch as this work’s purpose is to study short-range communication scenarios
(such as those illustrated in Figure 1), the simulated distances between the emitter and
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receiver considered were 0.5 m and 1 m, respectively. The typical distances for UWOC
systems used were within a range of a few tenths of meters to dozens of meters [8]. We
restricted the simulation to a low range for the sake of the computing time.

Moreover, all the parameters used in the simulations are given in Table 1, and the
attenuation and albedo coefficients for the different water types are presented in Table 2.

Table 1. Simulation parameters.

Parameters Value

Number of photons 1 × 106

Wavelength (λ) 520 nm
Refractive index of water (n1) 1.33
Refractive index of lens (n2) 1.46

Emitter (Tx) beam waist radius 1 mm
Emitter (Tx) divergence from 0◦ to 60◦

Sensor (Rx) radius 10 mm
Lens thickness 15.6 mm

Lens curvature radius 52.6 mm
Lens diameter 101.6 mm

Lens focal distance 60 mm
Number of lenses (N) 1; from 4 to 7

Distance between Tx and Rx (z f ) from 0.5 m to 1 m
Misalignment angle between Tx and Rx from 0◦ to 20◦

Table 2. Attenuation coefficient and albedo considered for different water types [10].

Water Type c(λ) ω0

Clear waters 0.15 m−1 0.25
Coastal waters 0.10 m−1 0.55

Harbor I waters 1.10 m−1 0.83
Harbor II waters 2.19 m−1 0.83

3. Simulation Results

In this section, we describe the simulation scenarios and present the performance
assessment of each sensor architecture. The MALO is the maximum offset misalignment
permitted between the transmitter and receiver that complies with a minimum ratio of
received power to transmitted power. For the calculation of the MALO, the lens and sensor
schemes were displaced from the central position on the x/y plane both angularly and
laterally. In the following analyses, the angular misalignment is not taken into account,
except in the last subsection.

3.1. Evaluation Algorithm

The evaluated scenarios encompassed the water type, total distance, divergence, and
vector of propagation of the emitter and plane of the final sensor.

Initially, the photons were propagated using the algorithm described in Section 2.3,
and the final parameters were stored in a data file, as mentioned previously. For each
scenario, the received power was obtained after the receiver architecture was simulated.
The algorithm is general enough to consider the case where both the transmitter and
receiver are misaligned at a certain angle and simultaneously are offset between each other.

Then, we computed the received power at the sensors in each of the positions of the
lenses’ scheme. Even though the receiver plane was tilted due to angular misalignment,
the lens positions were shifted in the x/y plane, which made this analysis pertinent.

Afterward, another simple routine calculated the maximum radius the AUV could
move for the receiver to have a minimal amount of relative received power. The minimum
accepted ratio of received power to transmitted power was 1× 10−3, which is equivalent
to considering an emitter with a typical power of 0 dBm and a minimum received optical
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power of −30 dBm (suitable to achieve a forward error correction (FEC) limited bit error
rate (BER) of 3.8× 10−3 for a data rate of 100 Mbit/s) [27].

Figure 9 shows the scheme with seven lenses, where the blue dots mark the various
positions in which the set of lenses was displaced for the calculation of the MALO. The
lenses’ scheme is centered in all the blue dots’ positions for calculating the received power.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
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-0.2

-0.1

0
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0.2

0.3

0.4

Figure 9. Moving scheme of sensors for MALO calculation. The sensor scheme was offset through
the 2D plane radially from 0 m to 0.4 m and at angles from 0° to 360° in steps of 45°.

3.2. Sensor Scheme

Initially, the sensor architecture was analyzed, with the sensors’ positions given by
a “circles inside a circle” packing algorithm, as a means to increase the tolerance to the
position and angular misalignment problem. The analysis of the number of sensors of this
scheme was performed for clear waters and a propagation distance of 1 m.

The results shown in Figure 10 reveal a distinct improvement in the tolerance to
misalignment for a higher number of sensors, mainly due to the higher total receiver area.

The seven sensors in a packing disposition, as depicted in Figure 8e, increased the
MALO by approximately a factor of three compared with the one-lens-only case. In addition,
the seven-sensor case was trivially optimal and conveniently required seven equally sized
lenses, and thus the case corresponding to eight lenses was not simulated.
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Figure 10. MALO calculation as a function of the divergence of the emitter for a different number of
sensors in the sensor scheme, considering a clear water type and a Tx-Rx distance of 1 m.
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3.3. Water Types

The next analysis consisted of the calculation of the MALO parameter for different
water types using the parameters from Table 1. The distance between the emitter and
receiver was 1 m, and a seven-lens scheme was used.

The results are presented in Figure 11, showing a characteristic curve for each of them.
These curves show the optimal divergence that maximized the tolerance to the position
misalignment of the system. While this work is a comprehensive analysis of the sensor-
lens pair, these results confirm the conclusions of a previously published work [14]. An
evident difference between different water types was that the MALO was non-zero at a
beam divergence of zero for more turbid waters and increased with the water turbidity.
This outcome was expected due to increased scattering, which acted as a diverging factor,
maximizing the MALO.
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Figure 11. MALO calculation as a function of the divergence of the emitter for different water types,
considering a seven-lens scheme and a Tx–Rx distance of 1 m.

3.4. Propagation Distance

The MALO calculation was performed while sweeping the divergence using the
parameters from Table 1 and a seven-lens scheme for different lengths between the emitter
and receiver and for the two extremes of water turbidity: clear and harbor II waters.

The obtained results are plotted in Figure 12, showing similar curves that exhibit an
optimum divergence that depends on the distance. For a distance of 1 m, there was a larger
tolerance to misalignment (higher MALO) than for 0.5 m. This can be attributed to the
higher number of scattering events and the opening of the beam due to propagation. The
consequence was that the maximum was obtained at a lower value of divergence and
required a more accurate configuration (lower range of divergence angles) due to the rapid
decay of the MALO.

On the other hand, above the ideal divergence, the MALO degraded rapidly at 1 m.
Here, the increased scattering and propagation distance made the beam spread so much that
the minimum amount of power did not reach the sensors. The same behavior was observed
for both the clear and harbor II waters, from which we concluded that the geometry of the
link and the distance, in particular, was the limiting performance factor, which could be
somewhat overcome by adjusting the divergence angle. For instance, in clear waters and at
a distance of 0.5 m, the MALO was 0.37 m, whereas when the distance was increased to 1 m,
the MALO was actually increased to 0.45 m by adjusting the divergence angle from 22° to
17°. If the divergence was maintained at 22°, then the MALO actually decreased to 0.4 m.
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Figure 12. MALO calculation for different water types at different Tx–Rx distances and for varying
divergence angles, considering a seven-lens scheme.

3.5. Angular Misalignment

Lastly, the angular alignment capacity of the emitter-receiver system in highly turbid
harbor II waters was assessed using a propagation distance of 0.5 m and a seven-lens
scheme configuration. Three different configurations were simulated: (1) an aligned
system, (2) only the emitter rotated in a given direction, and (3) only the emitter rotated in
the same direction.

Figure 13 shows the results for a rotation of 10°. This analysis was performed for
angles of 0◦, 5◦, 10◦, 15◦, and 20◦. As expected, we observed a worse performance when
either the emitter or the plane of the sensors was rotated, as shown in Figure 14. When the
emitter was rotated to compensate for fewer photons arriving at the sensors, an increase in
the optimal divergence was seen. The opposite behavior was observed when the plane of
sensors was rotated. The optimal divergence as a function of the angular misalignment is
plotted in Figure 15 for both cases.
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Figure 13. The MALO as a function of the divergence of the emitter for rotated communication links,
considering a harbor II water type, a Tx–Rx distance of 0.5 m and a 7-lens scheme.
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Figure 14. The maximum MALO as a function of the rotation angle, considering a harbor II water
type, a Tx–Rx distance of 0.5 m and a 7-lens scheme.
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Figure 15. Divergence for the maximum MALO as a function of the rotation angle, considering a
harbor II water type, a Tx–Rx distance of 0.5 m and a 7-lens scheme.

4. Live Misalignment Offset Prediction

As seen in Section 3, in a real communication scenario between an AUV and a fixed
sensor, as illustrated in Figure 16, an optimum divergence of the emitter exists at which the
system is most tolerant to the offset misalignment, and the MALO takes its maximum value.
To maintain a stable and reliable communication link in a live communication scenario in
the presence of ocean currents, the AUV needs to adapt to the divergence of the emitter by
changing the distance of the laser to the diverging lens, based on how much the present
average offset is. However, the transmitter does not have this information unless it is
estimated by the receiver and sent to the transmitter. Assuming that a low data rate link is
established in the reverse direction, one can hypothesize that the distribution of power over
the arrangement of lenses at the receiver, namely the use of seven lenses, might provide
sufficient information to extract the critical misalignment data.

Based on this supposition, a random forest machine learning method was assessed
for its suitability to identify the offset of the AUV in relation to the fixed sensor at each
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moment. With this aim, using a seven-lens scheme, a random forest algorithm was trained
based on a 64 × 7 matrix containing the power received by each lens at each point of a
8 × 8-point grid in the AUV receiver plane (r, θ), which constituted the training labels for a
specific transmission length and divergence angle and are presented in Table 3.

Table 3. Grid of 8 × 8 points in space used for training.

r (cm) 1.0000 3.1428 5.2857 7.4286 9.5714 11.7143 13.8571 16.0000
θ (rad) 0.6283 1.3614 2.0944 2.8274 3.5605 4.2935 5.0265 5.7596

The received power at each lens was obtained from the numerical simulation by
propagating 109 photons. Having a trained algorithm with optimized parameters, its ability
to estimate the offset was then tested on a different matrix holding the power received at
each lens but at another set of random points in space, given in Table 4.

Table 4. Grid of 8 × 8 points in space used for testing the algorithm, estimating the offset between
the transmitter and receiver.

r (cm) 2.0000 3.8571 5.7143 7.5714 9.4286 11.2857 13.1428 15.0000
θ (rad) 0.6283 1.3614 2.0944 2.8274 3.5605 4.2935 5.0265 5.7596

Optical beam

x

z

z

y

Sensor plane

ψdiv

pn

AUV

^

Figure 16. Diagram of AUV communicating with a fixed receiver using a divergent optical beam.

The optimal random forest parameters were found to be the following:

• N estimators: 400;
• Minimum samples per split: 2;
• Minimum samples per leaf: 1;
• Maximum features: square root;
• Maximum tree depth: none;
• Bootstrap: false.

For a propagation distance of 1 m and a clear water type, the half-angle divergence
was set to 8.5°. A comparison between the estimated results and the actual test data can be
seen in Figures 17 and 18. The deviation or error from the expected values was assessed
by calculating the root mean squared (RMS) error of the two sets of values (predicted and
estimated). The RMS error for the estimation of the radius was 6 mm, and it was 0.174 rad
(10°) for the angular offset.

For a propagation distance of 0.5 m and clear waters, the optimum half-angle diver-
gence obtained from the simulations was 10°. The RMS value for the estimation of the
offset (r, θ), which in this case was 5 mm, was 0.157 rad (9°).
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Figure 17. Comparison between the predicted and expected offset radius for a Tx–Rx distance of 1 m.
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Figure 18. Comparison between the predicted and expected offset angle for a Tx–Rx distance of 1 m.

The results showed good agreement, confirming the initial hypothesis and that ma-
chine learning methods may be used to estimate the offset successfully. When comparing
these results with the MALO calculations in Figure 10, we may conclude that an error
of 5–6 mm on the lateral offset was sufficiently accurate to provide relevant information
to the transmitter so that an optimum divergence was chosen, hence leading to better
performance for the optical link.

5. Conclusions

This paper presented a simple yet powerful tool based on the Monte Carlo algorithm
for modeling the propagation of photons in the underwater medium. Several novel contri-
butions to the area of underwater optical wireless communications were reported, and new
features were added to the already existing simulation algorithms. An accurate model of
the beam divergence was described, supported by the analysis of lateral offset and angular
misalignment between the transmitter and receiver. A receiver configuration with multiple
sensors and lenses laid out on a “circle packing in a circle”, including a precise treatment of
photon refraction at the lens interface, was proposed, which showed increased tolerance to
misalignment. The assessment of system performance was conducted based on the maximum
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lateral offset for different sensor schemes, water types, propagation distances, and angular
misalignments, which proved the existence of an optimal divergence in agreement with
previous results.

Some relevant results were achieved: (1) the ideal divergence of the emitter’s beam
was shown to be around 15°, independent of the water turbidity for a 1 m Tx–Rx distance
and considering a 7-lense scheme; (2) the ideal divergence for clear waters was found to
be around 17° for a distance between the Tx and Rx of 1 m, while for a length of 0.5 m,
the optimum divergence was 21°; (3) the architecture of the receiver with multiple sensors
arranged in a compact geometry was proven to exhibit an increase in the MALO by
approximately a factor of 3; and (4) the analysis of the Tx–Rx rotation revealed that rotating
the emitter increased the optimal divergence, whereas turning the plane of the sensors
decreased it. Moreover, a supervised learning algorithm successfully predicted the lateral
offset and angle of the AUV based on the received light power distribution of each lens
in a fixed sensor configuration. There was good agreement between the results predicted
by the algorithm and the simulation, with a maximum RMS error of 6 mm and 10° for the
predicted values of the lateral and angle offset parameters, respectively.

The assessment of the limitations of the optical wireless underwater communication
link under misalignment conditions in application scenarios involving AUVs and the iden-
tification of optimum operating conditions might be of interest to the research community
and design engineers, particularly those looking to implement wireless sensor networks
and the transfer of data between nodes and autonomous underwater vehicles.

Future work will include obtaining simulation results for longer distances between
the transmitter and receiver and the corresponding MALO results, allowing one to assess
the performance of medium-range links as well as the feasibility of the offset prediction
algorithm in a real AUV scenario application.
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