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Abstract—In this paper, a novel hybrid single-objective meta-
heuristic, the so called C-DEEPSO (Canonical Differential Evo-
lutionary Particle Swarm Optimization), is proposed and tested.
C-DEEPSO can be viewed as an evolutionary algorithm with re-
combination rules borrowed from PSO, or a swarm optimization
method with selection and self-adaptiveness properties proper
from DE. A study case of the problem of optimal control for reac-
tive sources in energy production by Wind Power Plants (WPP),
solved by means of Optimal Power Flow (OPF-like), is used to
test the new hybrid algorithm and to evaluate its performance.
C-DEEPSO is compared to the baseline algorithm, DEEPSO, and
to a reference algorithm, Mean-Variance Mapping Optimization
(MVMO). The experiments indicate that the proposed algorithm
is efficient and competitive, capable to tackle this large-scale
problem. The results also show that the new approach exhibits
better results, when compared to MVMO.

I. INTRODUCTION

A wide variety of algorithms and metaheuristics have been
successfully applied to many optimization problems, such
as: Genetic Algorithms (GA) [1], Ant Colony Optimization
(ACO) [2], Particle Swarm Optimization (PSO) [3], Simulated
Annealing [4], Differential Evolution (DE) [5], [6], Evolu-
tionary Multiobjective Algorithms [7], just to name a few.
However, those algorithms and metaheuristics suffer from the
curse of dimensionality, implying that the performance of these
methods tends to deteriorate rapidly as the dimensionality of
the problem is increased [8].

Large-scale optimization problems can be found in countless
practical applications such as industrial control, biomedicine,
aerospace, logistics, etc. They are affected by the curse of
dimensionality in many ways: the larger the dimension of the
problem, the larger the search space; the larger the dimension
of the problem, the greater the risk of some characteristics of
the problem to be altered with the scale.

Typically, these problems are hard to solve due to the
inherent difficulty of finding optima in high-dimensional
spaces. Hence, new optimization methods, which are mostly
metaheuristic-based, are being proposed to overcome the
dreadful curse of dimensionality [9]. In recent years, hy-
bridization emerged as an important alternative in optimization
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and operational research, as it has become clear that a smart
combination of two or more techniques resulting on a new
method, so called a hybrid metaheuristic, can overcome spe-
cific limitations of the underlying algorithms and offer more
efficient behavior, less sensitivity to dimensionality and better
performances.

Namely, Zhang and Xie, in 2003 [10], and Hao and others,
in 2007 [11], proposed two different DEPSO hybrids, mixing
together features of DE and PSO algorithms. Later, on 2013,
Miranda and Alves [12] incorporated DE and EPSO algo-
rithms together in a new hybrid, called DEEPSO, and showed
that it could be efficient to solve some energy-related opti-
mization problems. This work advances more in this direction,
proposing a new hybrid algorithm, C-DEEPSO (Canonical
Differential Evolutionary Particle Swarm Optimization), as
an extension of DEEPSO. It was created with the aim of
improving the DE inspiration, as proposed by DE creators
back in 1995 [6]. C-DEEPSO can be viewed as an evolutionary
algorithm with recombination rules borrowed from PSO, or a
swarm optimization method with selection and self-adaptive
properties, proper from DE.

In the energy production and management environment, the
active power dispatch is a common problem, frequently solved
by using an Optimal Power Flow (OPF) model [13]. The study
of OPF plays an important role in the energy field. Usually,
OPF are considered as large scale optimization problems,
due to their large dimension, non-linearity, non-convexity and
multimodality features [14]. OPF consists of an assessment of
the best settings for control variables: active power and volt-
ages of generators, discrete variables like transformers taps,
continuous variables like shunt reactors and capacitors values
and other variables, so as to attain a common objective such
as, for example, minimization the operating cost [15]. Greater
reliance electricity refers to a situation where the consumer
does not depend only on the availability of electricity, but also
on a reliable and safe supply, which guarantees high quality
and uninterrupted power.

In this context, this paper addresses an OPF problem in
wind power generation, a technology which takes advantage



of the kinetic energy of the wind to produce electricity. Wind
power generation has been used for centuries, although, in the
past, its use was restricted to mechanical applications such as
the windmill. In the last century, wind energy started being
used to produce electricity.

In recent decades, this usage, especially in some European
countries, has undergone a major development coming to
what we know as major power applications, or wind farms.
Recently, some countries are making great efforts to develop
onshore and offshore wind farms [16]. Wind energy production
can be represented in a simplified manner as in Figure 1.
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Fig. 1: Wind power generation representation.

Basically, wind energy production happens as three main

steps, accordingly:

1) Blades turn shaft inside wind unit - a box on top of the
turbine. An enclosed generator uses magnetic fields to
convert rotational energy into electric energy;

2) Transformer (in this case, offshore) converts the energy
for distribution and sends it to power substation;

3) Grid distributes power to consumers.

To explore ways for optimizing the power flow in Wind
Power Plants (WPP) is highly justifiable, since environmental
concerns and energy shortages have led countries to invest in
several renewable energy sources [17]. Nowadays in Brazil,
there is a desperate need for cheap and clean energy. The
country undergoes an energy crisis, since its main source
coming from hydroelectric plants has been reduced because
of severe droughts over the last years [18].

According to the Energy Research Enterprise (EPE), the
percentage share of all renewable energy sources will increase
in Brazil over the next years. The presence of those resources,
which totaled 44.8% in 2010, will reach 46.3% in 2020,
according to the most recent cycle of Ten Year Plan for Ex-
pansion of Energy (PDE). Wind energy is the fastest growing
source of power generation in Brazil. Over the next few years,
wind energy will contribute to the generation of thousands
jobs, billions in investments and million homes supplied. In
2015, 113 wind farms are under construction, with a total
capacity of 2.7 GW. To join OPF research with wind power
generation may lead to a more efficient energy planning for
Brazil, helping to achieve its clean production goals in the
near future.

Several approaches and methods for OPF problem solution
can be found in literature. According to [13], [19] and [20],

it is possible to describe, in a simple manner, the main
advantages and disadvantages of the principal methods used
for solving this problem:
1) Linear Programming: usage of linear or piecewise linear
cost functions and usage of DC power flow instead of
AC power flow, which provides a linear relation between
injections and line flows [21], [22];

2) Quadratic Programming: usage of a quadratic objective
function, all constraints are linear [23], [24];

3) Metaheuristics: GA, PSO, DE, ACO, Evolutionary Com-
putation [25], [26], [27], [28], [29].

Social and environmental concerns related to global warn-
ing, emission of greenhouse gases, sustainable development,
and the rise of fuel costs have motivated many countries to
invest in renewable energy sources, such as wind generation
[30]. Several research approaches addressing OPF for wind
power can be found in literature.

Jabr and Pal proposed in [16] a stochastic model of wind
generation with OPF, aiming to minimize costs of managing
wind intermittency based on probability/relative frequency his-
tograms of forecasting error. Results showed that the proposed
model could quantify the effects of shape/skewness of the
forecast error distribution. In the work of Shi et. al. [31],
the minimization of wind power generation costs, using an
algorithm known as Self-Adaptive Evolutionary Programming
(SAEP) is proposed [32]. Simulation results demonstrated the
effectiveness and validity of the proposed model and method.

Joseph et. al. [33] proposed to maximize the system load-
ability within stability margins with the use of a PSO method.
Simulation results showed that PSO improved the load carry-
ing capacity, when compared to the usual control of the plant.
Artificial Bee Colony (ABC) was applied in [34] to minimize
the total costs of production on a wind OPF model. When
compared to PSO, GA, among other methods, ABC showed
better average results. An approach for the problem of optimal
control of reactive power in WPP was proposed by [35]. In that
work, the Mean-Variance Mapping Optimization (MVMO)
algorithm was proposed for online optimal controller of WPP.
Results indicated that MVMO in some test scenarios was
effective for solving the problem.

Recently, new approaches for OPF problem have been made
through the usage of hybrid optimization methods. According
to Frank et. al. [19], the most promising developments in
the OPF field have been in hybrid methods, recently. In
many cases, hybrid methods have been shown to be more
robust and to converge more quickly to optimal solutions
than their individual component methods operating alone. The
main objectives of this paper are to propose C-DEEPSO as a
new hybrid method, and then, to evaluate its performance for
solving an OPF problem. In this case, the OPF is an adapted
version of the reactive power optimization of wind farms. And,
which, in this work, is denoted by OPF-like problem.

The paper is organized as follows. Section 2 presents and
describes mechanisms of C-DEEPSO algorithm. Section 3
presents the OPF-like problem for the reactive power opti-
mization in wind farms. Section 4 presents the experimental



setup. Finally, Section 5 includes an overall discussion on the
results obtained and presents a brief conclusion to the research
work reported in this paper.

II. THE C-DEEPSO ALGORITHM

C-DEEPSO, which stands for Canonical Differential Evo-
lutionary Particle Swarm Optimization, is a hybrid single-
objective metaheuristic that incorporates distinct features
of Evolutionary Computation, Particle Swarm Optimization
(PSO), and Differential Evolution (DE). This algorithm, which
is an enhancement over EPSO (Evolutionary Particle Swarm
Optimization) [36] and Differential Evolutionary Particle
Swarm Optimization (DEEPSO) [12], can be viewed as an
evolutionary algorithm with recombination rules borrowed
from PSO, or a swarm optimization method with selection
and self-adaptiveness properties proper from DE.

Like every population-based metaheuristic, C-DEEPSO re-
lies on the repeated application of mutation, recombination,
and selection operators over a population of solutions (individ-
uals), to create new solutions such that the overall fitness of the
population is gradually improved until a desired convergence
criterion is met. Generation of new solutions in C-DEEPSO
is based on successive recombination operations applied on
current and past solutions, in the same way as in DEEPSO.
Recombination is governed by the so called Movement Rule,
which in DEEPSO [12] is given by Eq. (1) and Eq. (2):

Vi =w] x Viog +wiy x (X — Xio1) + (D
we x O x (Xg, — Xi-1),

X=X 1+ 1V, 2)

in which ¢ represents the current DEEPSO generation, X, is an
individual different from X;_; and can be obtained according
to one of the following four options [12]:

1) sampled from all individuals in current generation: S;

2) sampled from a Memory B of the best individual found
so far: Py;

3) sampled as an uniform recombination from the individu-
als of the current generation: Sy-rnd;

4) sampled as an uniform recombination within Memory B:
Py-rnd.

Analyzing Eq. (1), it is possible to see that this algorithm
is best described as an optimization method for particle
swarm with selection and self-adaptation. This characteristic
is supported by the fact that in original DEEPSO there is
no inspiration strongly linked to the classical DE algorithm,
regarding its search space conducted by the mutation operator,
which uses three vectors (see [5], [6]). For the sake of clarity
to the reader, the DE/rand/1 mutation operator is shown:

Vii =21 + F(@p o — 2o p3);7r1,7m2,m3 € {1,...,N}, (3)

in which parameters x¢ 1, x; 2 and z; .3 are different vectors
obtained in the population and F' is a number, which generally
belongs to the interval [0, 2] aiming to control the amplification
of differential variation. Comparing the DE mutation operator

given by Eq. (3) and the DEEPSO movement rule given by
Eq. (1), it is easy to see that three vectors are used in the
mutation process, while in DEEPSO movement rule, only two
vectors, represented by X, and X;_1, are used in the process.
On the other hand, C-DEEPSO uses the original DE mutation
operator, as described by Eq. (3).

Regarding DEEPSO, the distinguishing feature of
C-DEEPSO consists on using an improved assimilation
of the optimization landscape. Similarly to some general
evolutionary algorithms, this assimilation can be roughly
obtained by comparing different solutions, i.e., by computing
macro-gradients. To take advantage of the information
collected by the population throughout the search, C-DEEPSO
relies on a collective memory instead of multiple and
independent memories that encompass the search experience
of each individual. For the best landscape of assimilation,
C-DEEPSO proposes a new movement equation inspired on
Eq. (1). In C-DEEPSO, the movement equation is described
by Eq. (4) and Eq. (5) as:

Vi=wy x Vg +wi X (Xpest + F x (X — X 1)) + (D)
we X C x (X, — Xi-1),

in which the DE/best/I strategy by DE algorithm is applied
when X, is better than X;_;.

Vi =wj x Vim1 +wy X (Xpest + F X (Xe—1 — X)) + (5)
we x O x (Xg, — Xi-1),

in which the DE/best/] strategy of DE algorithm is applied
when X;_; is better than X,.

In Eq. (4) and (5), t denotes the current generation, X
the current position or solution, Xp.,; the best solution ever
found by the individual, X, the best solution ever found by
the population, V; is the velocity of the individual, and C
represents a n X n diagonal matrix of random variables that is
sampled at every iteration and follows a Bernoulli distribution.
The variables wy, wyq and we are the weights relating to
inertia, assimilation and communication, respectively. The su-
perscript * indicates that the corresponding parameter/quantity
undergoes evolution under a mutation process.

C-DEEPSO also has a memory mechanism, called Memory
B, which must enclose not only the position of the individual
but also its fitness. Aiming to ensure a great assimilation of
the search space, a new way to generate X, is proposed. The
new strategy, named Sy P,-rnd, is a combination of Sg-rnd
and P,-rnd strategies. In this case, when using S, P,-rnd,
an uniform recombination from different solutions is used to
obtain X,., and the reversion of the position of X, and X;_;
in Equations (4) and (5) is done for every dimension of the
search space.

Hence, after randomly selecting a position from the mem-
ory, that provides the dimension 7 of X,, the fitness of the
selected position is compared to the fitness of X;_; to decide
whether the individual will be attracted or repelled to that
particular dimension of the search space. This procedure is
repeated for all dimensions of X..



Typically, the mutation of a generic weight w of an indi-
vidual follows a simple additive rule as described by (6),

w* =w+7 x N(0,1), (6)

in which 7 is the mutation rate that must be set by the user.
N(0,1) is a number sampled from the standard Gaussian
Distribution.

Observe that the mutated weight must not become negative
or greater than 1. Moreover, not only the weights presented in
Eq. (1) are mutated but also is X,. This attracting position
is slightly moved in the search space using a Gaussian Dis-
tribution to prevent the population to be trapped in a given
area, which is especially evident in those cases when the
cooperation term becomes more dominating than the other
terms. Mutation of X, which is done for every particle, is
performed according to the following equation:

X% = X[l +7 x N(0,1)].

g9

)

C-DEEPSO can, therefore, be viewed as a hybrid evolution-
ary algorithm, based on the DE mutation operator, that borrows
the recombination rules from PSO algorithm. Algorithm 1
shows the pseudo-code for C-DEEPSO, in which MaxIT is
maximum number of iterations, N P is Population size, M B
is Memory B size, P is communication probability rate and
T is mutation rate.

Algorithm 1: Pseudo-code of C-DEEPSO

begin

INITIALIZE MaxIT, NP, MB, P and T;

EVALUATE N P

UPDATE X and M B;

1 while stopping criterion is not satisfied do

2 for all individuals in the population do

COMPUTE X,. using Sy Py-rnd;

COPY Xy;

MUTATE weights using Eq. (6) ;

MOVE X, and its copy using Eq. (4) or Eq. (5);

EVALUATE X and its copy;

SELECT Xpest to be part of the new N P
(by stochastic tournament e.g.);

| UPDATE X4 and M B;

IIT. REAL-WORLD APPLICATION

This section presents an application of C-DEEPSO algo-
rithm in a well-studied real world large-scale problem of
OPF. Generally, an OPF problem can be expressed as the
minimization of the cost of production of a power plant or
system. However, many other OPF objectives are also possible,
such as the minimization of changes in controls (in case of N-
1 contingencies for example), minimization of system losses,
minimization of pollutant emission or minimization of power
not supplied. Besides, a multiobjective function can also be
used by integration and combination of two or more simple
objective functions [37].

Regardless of the objective function, an OPF must also
verify the entire set of constraints that stem from the power
flow equations. The equality constraints are associated with
power balance at each node and power flow equations. In

the inequality constraints, the operational limits are included,
as well as the limits of the control variables, line flows and
voltages (magnitude and angle) and security constraints.

C-DEEPSO algorithm is applied to to an optimal reactive
power dispatch (ORPD) inside a WPP. Subsections (III-A) and
(ITI-B) include the characterization of the Bus System 41 and
the mathematical model for this problem.

A. IEEE 41 Bus System - Offshore Wind Power Plant (WPP)

A version of IEEE 41 bus system [38] is considered to
investigate the effectiveness of the proposed methodology in
ORPD problems. Figure 2 shows the layout of a WPP system.
The presented scheme corresponds to a typical topology of a
WPP, that is connected to the main grid through an AC cables.
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Fig. 2: Layout of an offshore WPP control scheme [38].

As can be seen in the layout details on Figure 2, two factors,
Xsn1 and Xgpo, that can be continuously adjusted, and the
capacitor C1, provide support to auxiliary reactive power. L1
represents a load which indicates the active power generated
by the WPP. The system control mode considers that the WPP
will provide the necessary reactive power (g, ¢) until it reaches
the power of common coupling (¢pc ). The schematic shown
in Table I characterizes the IEEE 41 bus system.

TABLE I: IEEE 41 bus test system features

IEEE 41-bus

System
5 Genetarions 18
.§ ; Submarine cable 1
g= T1 (fixed tap) 33
g 8 Transfomers
@) T2 (fixed tap) 13
2 g Cont}nuous 13
£33 variables
© 2
g = Optimization Discrete
€ = . . 2
= 2 variables variables
zZz
&g Continuous and
£ E Stepwise variables 2
S g tepwise variables

Constrains 123




B. Problem formulation

In this problem, the objective function is given by the
minimization of total losses of the wind energy system:

Np

min Pioss = Y Gi[U7 + UF = 2|Ui||U; | cos(; — 6;)],
K=1

®)

in which, Ny, is the total number of lines in the system; G i is
the conductance of the line K, U; and U; are the magnitudes
of the sending end and receiving end voltages of the line; J;
and J; are angles of the bus voltages.

This ORPD problem must also satisfy some constraints.
Constraints can be either hard constraints, which set conditions
for the variables that are required to be satisfied, or soft
constraints, which have some variable values that are penalized
in the objective function if the conditions on the variables are
not satisfied. The following defines the constraints of ORPD:

« Active and Reactive power balance constraints:

P, = Plfqen _ Piload _ (9)

Z UlUJ [Glj COS(@i — HJ) + Bij sin(@i — 0j)7
=1 en oa

’ Qi = Q" — Q! =

Z UZU] [Gz] sin(@i - Hj) - Bij COS(QZ‘ — 9j)7
j=1

in which P; refers to the active power injected, @); to the
reactive power, U; to the voltage magnitude and 6; to the
voltage angle;

« Bus voltage constraints:

Ut < U; < U (10)
o Active and reactive power generation constraints:

Pin < Py < PP, an

Qp" < Qy < Q)

o Branch apparent power flow constraint:

S < Siy < ST (12)
o Transformer tap constraints:

T < Ty < T, (13)
o Shunt var constraints:

Q™ < Qu < Q1 (14)

in which T} and Q)j are a discrete variables.
In this particular case there is also a constraint that is the
difference between ¢,y and gpcc for normal conditions, the
gpcc is the actual reactive power injection at the PCC.

IV. EXPERIMENTS AND RESULTS

C-DEEPSO algorithm is going to be tested for solving the
described WPP/ORDP problem. Experiments are performed
in order to highlight the importance of reactive power control
problem, which is defined by progressive changes g,y in one

day period (24 hours). The variability of this period is defined
by 15-minute intervals, totalizing 96 intervals, to which the
ORDP problem must be solved. Figure 3 is an example of the
characteristic behavior of output power in a WPP.
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Fig. 3: WPP output power profile (behavior e. g.) [38].

While operating under ideal conditions, to guarantee the
system availability, normal data acquisition and to continu-
ously meet ¢, a control strategy is needed. The experimental
design is carried out to check if C-DEEPSO algorithm matches
the control premises for the treatment of OPF-like on the WPP.
C-DEEPSO is executed 31 times for each benchmark problem,
using an Intel Xeon 2.4 Ghz and 12 GB RAM in Matlab.

There are many studies addressing the fine-tuning parame-
ters in evolutionary algorithms. It is known that such procedure
can ensure a better algorithm performance. However, the fine-
tuning of C-DEEPSO parameters is out of scope of this work.
That said, the parameters were empirically defined during the
experiments, resulting on the values shown at Table II.

TABLE II: C-DEEPSO parameters setting.

Max Fit. Eval. | Pop. Size | Memory Size [ Com. P | Mut. T
10000 | 30 | 6 [ 05 | 09

In order to validate the efficiency of C-DEEPSO solution to
the problem, the obtained results are compared with the results
of DEEPSO and MVMO algorithms. The results of these two
algorithms were extracted from the database of Competition
on Application of Modern Heuristic optimization algorithms
for solving Optimal Power Flow problems [38].

The other algorithms participating of that competition were
not considered in this comparison, because they violated the
restrictions of the problem or failed to generate a characteristic
power curve. According to the assumptions imposed by the
competition, each algorithm must run for 31 times. The com-
parative graph of the mean result obtained by each algorithm
is shown in Figure 4.

Figure 4 does not allow an effective comparative analysis.
Figure 5 shows an expansion of this graphic in the range
of scenarios 14-31. It can be seen that, in this interval,
C-DEEPSO presents a better performance when compared to
the other algorithms.
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Table III provides another way to verify the algorithms
results in each of 96 experimental test scenarios. In this
table, the mean and standard deviation (std) values for each
algorithm are listed.

Results indicate that, in terms of mean and std, C-DEEPSO
performs better in 97% of experimental scenarios. However,
an analysis based only on the mean and std represents a poor
approach to compare results. In spite of the fact that mean and
std values of C-DEEPSO are smaller than those of DEEPSO
and MVMQO, it is not possible to determine if these differences
are statistically significant.

One-way analysis of variance, ANOVA [39], is a statistical
technique used to verify whether there are any significant
differences among the means of three or more samples. A
hypothesis test is be used in the context of this experiment
to verify the equality of means. Such test can be expressed
formally as:

Ho ' pi=py,Y1,7;
Hy : p; # pj,for any 7.

TABLE III: Results by C-DEEPSO, DEEPSO and MVMO

ALGORITHMS
Sc C-DEEPSO DEEPSO MVMO
Mean STD Mean STD Mean STD

1 1.296709 0.0011 1.300416 0.006464 1.299471 0.002149
2 1.2674 0.001079 1.27365 0.006849 1.270922 0.002452
3 1.013952 0.000889 1.018528 0.009137 1.017974 0.00618
4 1.206103 0.001241 1.210449 0.006677 1.214193 0.012536
5 1.274215 0.001054 1.277351 0.004858 1.277518 0.00302
6 1.58931 0.001891 1.590727 0.002382 1.595016 0.002961
7 1.427447 0.001014 1.430635 0.003885 1.431654 0.003422
8 1.486853 0.001425 1.490068 0.002738 1.491214 0.001765
9 1.890275 0.004331 1.920608 0.025138 1.912675 0.017726
10 2.036265 0.006961 2.059875 0.021007 2.068124 0.024814
11 1.448917 0.001581 1.460489 0.019159 1.466775 0.028831
12 1.676151 0.003887 1.687921 0.00919 1.696736 0.020164
13 1.740549 0.004298 1.75454 0.009227 1.765304 0.019683
14 2.105806 0.007327 2.138487 0.02316 2.131292 0.015799
15 2.553849 0.007303 2.576392 0.015664 2.583475 0.017772
16 2.492254 0.00333 2.52295 0.022583 2.526806 0.015743
17 2.622195 0.011828 2.763067 0.063241 2.752978 0.049748
18 2.698968 0.01222 2.837714 0.049846 2.832812 0.065309
19 2.701435 0.012939 2.838913 0.054696 2.832115 0.05962
20 2.703978 0.014009 2.829544 0.062866 2.836847 0.037857
21 2.7048 0.013638 2.826354 0.054087 2.824264 0.052248
22 2.701397 0.011375 2.840033 0.041991 2.8105 0.043337
23 2.702657 0.011834 2.84924 0.052075 2.813017 0.060382
24 2.698104 0.010336 2.824618 0.060398 2.830624 0.038445
25 2291002 0.004759 2.320457 0.026687 2.328435 0.025966
26 2.238042 0.006057 2.279125 0.018528 2.273852 0.022695
27 2.301127 0.007693 2.332162 0.019854 2.326763 0.016357
28 2.554652 0.008919 2.584022 0.024599 2.588382 0.025195
29 2.404226 0.004125 2.434756 0.025572 2.435477 0.016747
30 2.472276 0.002946 2.504222 0.019501 2.510542 0.021636
31 1.818557 0.004294 1.837128 0.013342 1.845527 0.031906
32 1.619751 0.003618 1.632586 0.012615 1.638392 0.024243
33 1.61713 0.000828 1.620574 0.005501 1.621487 0.002227
34 1.686769 0.000694 1.688831 0.003948 1.690077 0.002368
35 1.356638 0.001714 1.35859 0.003192 1.359256 0.00347
36 1.393209 0.001513 1.396066 0.003154 1.397859 0.003853
37 0.984658 0.000513 0.989143 0.008027 0.986252 0.002255
38 0.759614 0.00117 0.765184 0.015427 0.761642 0.002352
39 0.75597 0.001058 0.760265 0.012586 0.757799 0.003082
40 0.838926 0.000668 0.840169 0.007057 0.84189 0.005286
41 0.924513 0.000716 0.927213 0.007331 0.92718 0.003881
42 1.153131 0.001052 1.155496 0.005161 1.155485 0.002304
43 1.217101 0.001165 1.220947 0.006493 1.221542 0.004354
44 1.196428 0.001065 1.201751 0.009862 1.199745 0.002207
45 2.033573 0.004264 2.06253 0.018563 2.07081 0.025702
46 1.633785 0.002592 1.644981 0.009954 1.655683 0.025572
47 1.524769 0.001657 1.535093 0.010909 1.552997 0.033933
48 1.449359 0.0015 1.464665 0.021088 1.466773 0.021983
49 1.554853 0.000269 1.573228 0.014294 1.593472 0.038212
50 1.419097 0.000124 1.42171 0.004049 1.429751 0.015539
51 1.372646 0.000169 1.37299 0.000638 1.379473 0.009745
52 1.280405 4.42E-05 1.280345 3.92E-05 1.280361 5.04E-05
53 1.21604 4.49E-05 1.216045 5.26E-05 1.216075 7.43E-05
54 1.257865 1.97E-05 1.257835 2.25E-05 1.257843 2.72E-05
55 1.261093 3.11E-05 1.261064 4.58E-05 1.261064 4.53E-05
56 1.425905 0.000193 1.427878 0.002874 1.435186 0.016387
57 1.090003 0.000897 1.100627 0.019237 6.477143 29.84215
58 1.091811 0.000938 1.107108 0.024072 1.12865 0.037902
59 1.149323 0.000986 1.162567 0.025166 1.18516 0.032974
60 0.942244 0.001247 0.967602 0.041148 485.9867 2700.31
61 0.759047 0.000937 0.768336 0.019544 0.764196 0.009798
62 0.78431 0.017395 0.785943 0.010336 0.788255 0.01326
63 0.7726 0.00102 0.781982 0.018497 0.779951 0.012635
64 0.919392 0.00066 0.924948 0.016801 0.923803 0.0095
65 1.11818 0.000359 1.12153 0.004301 1.12021 0.002402
66 1.342056 0.001249 1.344351 0.002214 1.344502 0.001449
67 1.236404 0.001176 1.23958 0.004837 1.239307 0.001269
68 0.83218 0.000808 0.838725 0.014454 0.834139 0.003636
69 0.864326 0.000728 0.868957 0.010561 0.865998 0.002148
70 1.074571 0.000791 1.076649 0.004521 1.075708 0.001544
71 1.132337 0.000823 1.13391 0.003072 1.134448 0.004129
72 1.130509 0.00048 1.132922 0.003447 1.132384 0.002756
73 1.421856 0.001654 1.424401 0.00346 1.42228 0.002085
74 1.783861 0.017107 1.789148 0.02496 1.783307 0.003791
75 2.020105 0.02545 75.50458 409.1587 2.022251 0.002981
76 55954.25 273071.8 1269600 5761404 2.637258 3.74E-08
77 147776.7 416206.1 923281.7 5118422 2.637258 2.50E-08
78 148703.8 488445.5 646388.5 3598924 7085.962 39438.28
79 2.637259 4.08E-07 20074.95 111757.9 2.637258 3.01E-08
80 2.637258 1.83E-07 2.637258 7.48E-08 2.637258 3.01E-08
81 2.463194 0.004594 2.47379 0.03726 2.463748 0.006993
82 1.520329 0.001776 1.522664 0.003022 1.524768 0.00223
83 1.544186 0.001679 1.546459 0.002979 1.549251 0.001964
84 1.407015 0.00195 1.409471 0.002567 1.409581 0.001261
85 1.279572 0.001034 1.282229 0.003461 1.281927 0.001248
86 1.320585 0.001055 1.323782 0.003268 1.322905 0.00182
87 1.558975 0.001598 1.560763 0.002548 1.563525 0.00138
88 1.552458 0.001414 1.554608 0.002166 1.557436 0.002001
89 1.472436 0.00126 1.47573 0.003377 1.476867 0.001657
90 2.007656 0.001314 2.011905 0.006837 2.022072 0.006272
91 2.181026 0.000514 2.192417 0.012609 2.198064 0.005255
92 1.615984 0.001982 1.617162 0.002416 1.622292 0.003239
93 2.056128 0.001679 2.064203 0.010235 2.071865 0.00516
94 2.492259 0.004349 2.516119 0.023582 2.512312 0.007086
95 1.782919 0.001653 1.784854 0.003648 1.79233 0.005024
96 1.49785 0.001625 1.500072 0.002245 1.502958 0.002782




The null hypothesis, Hy, assumes the equality of the means TABLE IV: Results of ANOVA and Tukey tests.

and the alternative hypothesis, H;, indicates that there are Se | Povalue CLASSIFICATION

First Second Third

at least one mean which is not equal to the others. P-value T | 120805 | C-DEEPSO DEEPSO; MVMO

. . . 2 5.93E-07 C-DEEPSO DEEEPSO -

is defined as the lowest level of significance that leads to 3 [ LUE0: | C-DEEPSO DEEPSO: MVMO -
. . . . . 4 1.00E-04 C-DEEPSO DEEPSO -

rejection of Hy, with the provided data. It is useful for 5[ 2.00E04 | CDEEPSO DEEPSO; MVMO |-

. . . . . 6 2.15E-14 C-DEEPSO; DEEPSO MVMO -
reporting results of a hypothesis test, since it carries out more T T06E06 | C-DEEFSO DEEFSO.MVMND -

: : : : : : : 8 1.36E-12 C-DEEPSO DEEPSO; MVMO

information than simply the rejection or the failure to reject o 23eE0— C-DEERSO DEEPSO NIV -

1 1 3 10 8.54E-09 C-DEEPSO DEEPSO; MVMO -

Hy. When One-Way ANOVA shows a significant result, this s T -
indicates that at least one group is different from the others. 12 | SGUEOS | CDEEPSO DEEPSO MVMO
. . . 13 1.70E-10 C-DEEPSO DEEPSO MVMO

The significance level adopted to verify whether there [ 2T6E-TT | CDEEPSO DEEPSO; MVMO |~

.o . 15 2.88E-12 C-DEEPSO DEEPSO; MVMO -

are statistical differences among C-DEEPSO, DEEPSO and 16 | 649614 | CDEEPSO DEEPSO; MVMO -

. . . . . 7 9.87E-22 C-DEEPSO DEEPSO; MVMO B

MVMO algorithms is set to 5%. Considering each scenario, 18 | 307621 | C-DEEPSO DEEPSO: MVMO -

. . . . . 19 3.50E-21 C-DEEPSO DEEPSO; MVMO -

if the P-value in the ANOVA is less than 0.05, then it is 20 | 128E22 | C-DEEPSO DEEPSO; MVMO -

. . . . . . 2 3.12E-20 C-DEEPSO DEEPSO; MVMO -
possible to say that there is sufficient statistical evidence to 57| CDFFSO FVMO DEEPSO
reject H, meaning that there is a statistical difference between N B AR e P

1 3 1 25 1.52E-09 C-DEEPSO DEEPSO; MVMO -
the means. Otherwise, the null hypothesis can not be rejected. R T o MvMO -
Although One-Way ANOVA can determine whether there are T ipel | Coueso DEEFSO VMO
significant differences among the means of three or more 29| S3SEIT_| C-DEEPSO DEEPSO; MVMO -

. L. . . . 30 | 2.05E-14 | C-DEEPSO DEEPSO; MVMO -
samples, it does not have an indication of which group is 31 | 326806 | CDEEPSO DEEPSO; MVMO
. . . . . 32 4.77E-05 C-DEEPSO DEEPSO; MVMO -
different. A simple paired comparison technique, known as 33 | 649506 | C-DEEPSO DEEPSO: MVMO -
. . . 34 2.44E-05 C-DEEPSO DEEPSO; MVMO -
Tukey Test or Honestly Significant Difference (HSD), can be 35 | 170505 | CDEEPSO DEEPSO. MVMO -
used to find means that are different from the others [40]. B T R —
Table IV shows the obtained P-values for each scenarios e - -
using One-Way ANOVA and a classification given by the Gl R - -
Tukey Test, when necessary. The results show that, in 17 out of @2 1 7ae0 | Corerso DEPPSO. MvMO 1=
96 scenarios, or in 17.7% of the cases. Since P-value is higher 44 | 230803 | CDEEPSO DEEPSO; MVMO -
. . . 45 6.59E-12 C-DEEPSO DEEPSO; MVMO -
than 0.05, it can be said that the algorithms have the same 96 | 304606 | CDEEPSO DEEPSO MVMO
. . 47 2.57E-06 C-DEEPSO; DEEPSO MVMO -
performance for solvmg the problem. HOWCVG]‘, in 79 out of 48| 3.00E-04 | C-DEEPSO DEEPSO; MVMO -
. . . 49 3.63E-08 C-DEEPSO DEEPSO MVMO
96 scenarios, or in 82.3% of the scenarios, One-Way ANOVA 50 | 484505 | C-DEEPSO; DEEPSO | MVMO -
. . . g . 5 3.69E-06 C-DEEPSO; DEEPSO MVMO -
is able to identify that there are statistical differences among e B K C-DEEPSO
the algorithm means. In those cases, Tukey test is performed e — S -
1 55 7.20E-03 DEEPSO; MVMO C-DEEPSO
to rank the algorlthms 56 6.00E-04 C-DEEPSO; DEEPSO MVMO -
icati - 57 | 03689% | - B -
As a final resultj after the application of .One Way ANOVA B -
and Tukey Test, in 60.4% of the scenarios C-DEEPSO is 59 | 530E07 | CDEEPSO DEEFSO | MVMO
classified into the first position when compared to DEEPSO o | L7E05 | CDREPSO; MVMO | DEEPSO -
. . [ .. + - - _
and MVMO. In 18.8 % of the scenarios, C-DEEPSO is 6 | 136502 | CDEEPSO; MVMO | DEEPSO -
. . . . 64 0.1229* - - -
tied at first position with other algorithm. In 3.1% of the 65 | 398505 | C-DEEPSO DEEPSO; MVMO | -

. . . . ., . 66 4.89E-08 C-DEEPSO DEEPSO; MVMO -
scenarios, C-DEEPSO is classified at the third position, being & 570505 | C-DEEFSO DEEPSO- MVMO =
worst than the other algorithms. It is worthwhile to notice T -

3 H 70 1.66E-02 C-DEEPSO; MVMO DEEPSO -
that in 79.2% of the scenarios, C-DEEPSO has performed Tt DEErSO- DEEPST— B0 -

- _ 1 72 9.00E-04 C-DEEPSO DEEPSO; MVMO -
better than or equal to the state of-art algop?hm, MYMO. e VRO | rso
It can be seen that C-DEEPSO is a competitive algorithm, LA IR - -
which is able to perform optimal control of the operation of 76 | 0206+ | - - -
. L. .. . . 77 0.5235% - - -
a WPP for a 24h period, minimizing transmission losses and 78 | 0ssar | - - -
. . . . 79 0.3719* - - -
ensuring adjustment of all variables to meet the reactive power 50 | 07205
requirements at PCC A : ;
. 82 8.56E-10 C-DEEPSO DEEPSO MVMO
83 8.35E-13 C-DEEPSO DEEPSO MVMO
84 8.83E-07 C-DEEPSO DEEPSO; MVMO -
V. CONCLUSION 85 | 7.61E-06 | C-DEEPSO DEEPSO; MVMO B
86 6.33E-70 C-DEEPSO DEEPSO; MVMO -
The problem, known as Optimal Power Flow (OPF-like) for §7 | 340614 [ CDEEPSO DEEPSO MVMO
. . .. . . 88 3.56E-16 C-DEEPSO DEEPSO MVMO
wind power generation, can be expressed as the minimization 89| AWEIT_| C-DEEPSO DEEPSO; MVMO -
. . 90 6.21E-17 C-DEEPSO DEEPSO MVMO
of the cost of production of a power plant, a Wind Power Plant. ST | I144E12 | CDEEPSO DEEPSO MVMO
. . . . 92 1.15E-15 C-DEEPSO; DEEPSO MVMO -
In order to maintain a clean and sustainable electric energy 53 | S.I6E-14 | C-DEEPSO DEEPSO VMO
. . . 94 3.32E-09 C-DEEPSO DEEPSO; MVMO -
system and since the hydraulic power alone is not able to 55 | T86E-16 | C-DEEPSO; DEEFSG | MVMO -

96 4.75E-13 C-DEEPSO DEEPSO MVMO

expand the renewable energy supply, wind power has become
a viable energy source in Brazil. Despite the great progress
made in this sector, considering off-shore and on-shore wind



generation, it is necessary to guarantee optimal uses of the
wind potential. The solution of the Optimal Power Flow prob-
lem to optimize the active power losses of the transmission
network within wind farms for wind power generation is
proposed using a hybrid metaheuristic. This work proposes
a new hybrid algorithm, C-DEEPSO, which corresponds to
a single-objective metaheuristic incorporating some features
of Evolutionary Computation, Particle Swarm Optimization
and Differential Evolution. C-DEEPSO is applied to a well-
studied real world large-scale problem at the power systems
industry. The proposed algorithm is compared to the baseline
algorithm, DEEPSO, and to the reference algorithm, MVMO.
The results indicate that the proposed algorithm is efficient
and competitive, capable to tackle this difficult problem. The
experimental results also show that the new approach exhibits
better results, when compared to the reference algorithm.
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