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Abstract—The recent Bluetooth 5.1 specification introduced
the use of Angle-of-Arrival (AoA) information which enables the
design of novel low-cost indoor positioning systems. Existing ap-
proaches rely on multiple fixed gateways equipped with antenna
arrays, in order to determine the location of an arbitrary number
of simple mobile omni-directional emitters. In this paper, we
instead present an approach where mobile receivers are equipped
with antenna arrays, and the fixed infrastructure is composed of
battery-powered beacons. We implement a simulator to evaluate
the solution using a real-world data set of AoA measurements.
We evaluated the solution as a function of the number of beacons,
their transmission period, and algorithmic parameters of the
position estimation. Sub-meter accuracy is achievable using 1
beacon per 15m2 and a beacon transmission period of 500ms.

I. INTRODUCTION

With the trend towards edge computing and the Internet-
of-Things (IoT), there is an increased need for smarter devices
capable of operating with greater autonomy from conventional
centralized systems. One application in this domain is the
indoor localization and tracking of assets [1]. While outdoor
tracking is possible in real-time and with great accuracy, indoor
environments still lack a standard solution that is accurate
and scalable. The Bluetooth 5.1 specification introduced new
opportunities for low-cost indoor localisation through the use
of AoA of transmissions. Computing the AoA of a received
packet requires the receiver to be equipped with an antenna
array. The Bluetooth 5.1 specification defines that a packet for
direction finding is terminated with a Constant Tone Extension
(CTE) of configurable length [2]. The receiver samples its
antennas during this period, and by determining the difference
in carrier phase between pairs of antennas, the angle of the
incident plane wave front can be estimated [1].

Relative to AoA, other techniques for indoor localisation
present significant disadvantages. For example, the localisation
of a receiver relative to several transmitters can be estimated
based on signal Received Signal Strength Indications (RSSIs).
However, the RSSI is unpredictably subject to noise, or the
relative orientation of the antennas. Other techniques include
Time-Difference-of-Arrival (TDoA), where a mobile receiver
computes the difference between arrival times of packets from
fixed transmitters. However, a very precise synchronization
is required between transmitters. For example, Ultra-Wide-
Band (UWB) based solutions rely on TDoA. Although high
accuracy is possible (under 10 cm), UWB systems require
precise synchronization between the fixed receiving anchors,
meaning dedicated cable installations are required on-site. In

contrast, the AoA does not vary based on RSSI and functions
for an arbitrary number of non-synchronized transmitters, and
can be easily installed in existing locations. The technology is
also used in WiFi gateways, but in conjunction with Bluetooth,
future solutions promise scalability and low-cost.

Conventional AoA localisation is based on fixed wall-
powered receivers with antenna arrays, which receive pings
from mobile emitters (e.g., smartphones). The AoA data is
transmitted to a centralized server, which estimates transmitter
positions and returns this information to them, e.g., via WiFi.
This solution is suited for scenarios with an arbitrarily large
number of ubiquitous simple transmitters (such as crowds
in shopping malls or exhibition halls). However it imposes
a higher infrastructure cost to ensure good coverage and
localisation accuracy, due to costly wall-powered gateways
with antenna arrays.

Instead, we propose a network topology consisting of a
potentially large number of fixed Bluetooth Low Energy (BLE)
battery-powered beacons with omni-directional antennas. Mo-
bile receivers with antenna arrays can then exploit this low-cost
infrastructure to estimate their own position. By accumulating
received packets and using a known table of absolute beacon
positions, each receiver can autonomously locate itself on a
known map, without the need for a centralized infrastructure.
Compared to fixed receivers with antenna arrays, our approach
is more scalable, as low-cost beacons can be deployed flexibly
in existing locations (e.g., factories and warehouses) without
an existing power supply infrastructure. Our main application
scenario is the self-localization of forklifts and similar vehicles
in warehouses or similar industrial locations.

We provide a brief analysis of the state-of-the-art in Sec-
tion II, and present our approach in Section III. In Section IV
we detail how we implement a simulation of the solution,
and in Section V we provide the respective experimental
evaluation. We demonstrate expected localisation and tracking
performance as a function of solution parameters such as the
number of beacons, their transmission period, and position
estimation parameters. In Section VI we conclude the paper.
By implementing the AoA calculation algorithms for the
proposed topology in a configurable simulator, which relies on
real-world AoA data, we demonstrate that sub-meter accuracy
can be achieved for a receiver traveling at 10 kmh−1, using 1
beacon per 15m, transmitting at 500ms.
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II. RELATED WORK

Past Bluetooth based solutions rely on RSSI, achieving
location accuracy between 20 cm to 3m [3]–[6]. The best re-
sults are achieved by resorting to fingerprinting of the location
area. In [6], a density of 1 beacon per 25m achieves sub-
meter accuracy with a beacon transmission period of 100ms,
but the results are subject to the fingerprinting of the location
becoming outdated, or to interference with other devices. For
the same transmission period, we achieve sub-meter accuracy
with a comparable density of 1 beacon per 22m. Unlike fin-
gerprinting methods, AoA based localisation does not require
learning the characteristics of the environment, and can easily
adapt to changing beacon positions, or faulty beacons, given
enough redundancy.

In [5] the quality of the AoA samples is improved using
the Multiple Signal Classification (MUSIC) algorithm. Two
fixed anchors are used, each with 4 dipole antennas in a linear
configuration. An average accuracy of 14 cm is achieved when
locating the stationary beacon, for the 36 test positions.

In [7] a scenario with fixed receivers with 2 antennas is
evaluated. Software-defined radios emulate the specification
of packets with CTE. Each receiver is equipped with two
half-wavelength dipole antennas. The approach computes the
localisation of a single beacon, based on the AoA of received
packets, and the receiver’s known absolute positions. The
accuracy of the AoA measurements is evaluated for a range of
15°–90° in steps of 5°, obtaining standard deviations from the
true angle between 0.2° and 2°. A detailed analysis is given
on the relationship between measurement error, value of the
true angle, and the specific data channels and carrier frequency
employed. The position estimation error is below 0.85m for
95% of the true positions tested.

The use of data fusion methods and several filtering steps,
including a Kalman filter and a curve fitting step, are studied
in [8] to improve AoA sample quality. The Kalman filter is
applied to reduce errors between several values of the phase
difference between the same antenna pair. A Gaussian filter is
applied to compensate for AoA errors which vary according
to the channel used for transmission. To configure the filter,
the authors experimentally evaluated the error AoA induced by
each channel. To evaluate the approach, two transmitters and
one receiver are used. The receiver contains two arrays with
3 elements each, resulting in contiguous AoA measurement
range of −180° to 180°. Significant accuracy improvements
are achieved for a true angle range of −60° to 60°.

III. PROPOSED APPROACH

Existing approaches for mobile device self-localization
target scenarios with an arbitrary number of devices (e.g.,
cellphones) relying on a centralized localization server, and
on a mesh of fixed wall-powered receivers with antenna
arrays. Given our scenario of warehouse vehicle location,
where the number of mobile receivers is fewer, we propose
to instead equip these with antenna arrays, to use cheaper
battery powered beacons, and to remove the need for the
centralized infrastructure. In this section we detail the AoA
based position estimation methods, the real-world data set we
employed in experimental evaluation, and our formulation for
receiver trajectory tracking.
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Fig. 1. Estimation of position via received AoA and least-squares method, for
3 wall-mounted BLE beacons in a short 12x4m corridor. Angle measurements
are affected by errors, which create a candidate area.

A. Position Estimation via Least Squares

Estimation of position from received angles is based on
the assumption that the receiver knows the absolute position
of each transmitter, and that each received packet is annotated
with a beacon identifier. In an ideal scenario, two direction
vectors derived from two beacons originating from different
transmitters would be sufficient to compute a single point
corresponding to the receiver location. However, due to errors
in the measured angle (i.e., from reflections or measurement
errors), a greater number of direction vectors are required.
Even so, regardless of the number of direction vectors, there
will be no single intersection point due to errors. An example
is illustrated in Figure 1, where AoA measurement errors from
three wall mounted beacons leads to a candidate area.

To estimate a position, we resort to a state-of-the-art least-
squares method which computes the point which minimizes the
total distance to all lines [9], [10]. The respective formulation
is summarized in Equations (1) to (3).

nj = [xj , yj ]
>, ‖nj‖ = 1 (1)

R =
K∑
j=1

cj(I − njn>j ), q =
K∑
j=1

cj(I − njn>j )aj (2)

R · p = q (3)

Where cj represents the confidence level (i.e., weight) in angle
measurement j, and aj represents the known position of the
respective beacon. For each measurement, a normalized vector
nj with origin at aj is computed. Matrices R and q compose
a system of equations derived from a deduction of a point
p which minimizes the sum of distances of p to each line.
We resort to an available implementation of a linear solver to
compute p from known matrices R and q [11].

B. Real-World Data

In order to achieve more realistic simulation, the angle used
in position estimation was sampled from a real-world data set
we constructed experimentally. We used a commercial Telink
TLSR8258 antenna array board with 8 antennas, mounted on
a rotating support with controllable angle. We placed a BLE
transmitter and the receiver at a distance of 4.3m, in a non-
ideal (cluttered) room of approximately 10m by 7m. We
completed a full rotation of the receiver, in steps of 10°, and for
every step we collected 1000 samples of the measured angle
[12]. Figure 2 shows the resulting distribution of measured
angles as 36 box plots, plotted versus the true angle. Although
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Fig. 2. True angles vs. respective 1000 samples of measured angle for a
Telink TLSR8258 8-Antenna board in an uncontrolled indoor environment

the mean of each boxplot is within a 4% error of the true angle,
there are significant outliers for arbitrary true angle values,
which are likely due to reflections. Since it is impossible to
disambiguate an erroneous measurement (i.e., outlier) from a
reliable one (e.g., measuring an angle of 270° for a true angle
of 150°), we implemented a pre-processing step which filters
likely outliers. This is explained in Section V.

During simulation, the true angle of the receiver to each
transmitter is known to the simulator. To estimate a measured
angle, we sample one of the thousand data points of the nearest
available angle (e.g., for a true angle of 3° we sample real
world measurements from 0°). Additionally, the average error
for any true angle is non-zero. For any true angle, the average
error is approximately −5°. Knowing this characteristic of
the receiver, we apply a correction to this measurement offset
during simulation when estimating a measured angle.

C. Kalman Filter

In order to track the movement of the receiver, we employ
a first-order Kalman Filter [13]. The state vector x̂ represents
the position and velocity of the receiver in two-dimensional
space. The following are the matrices which define the filter’s
operation, according to its canonical formulation.

x =

xx
xy
ẋx
ẋy

 F =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 H = I(4) P = I(4) · σs (4)

R =

σs 0 0 0
0 σs 0 0
0 0 1 0
0 0 0 1

 Q =


dt4

4
0 dt3

2
0

0 dt4

4
0 dt3

2
dt3 0 dt2 0
0 dt3 0 dt2

 · σ2
x̂ (5)

The value dt represents the filter time-step, i.e., the period at
which the filter is evaluated. The receiver can describe arbitrary
trajectories in the two-dimensional space, with independent
behaviour in each orthogonal axis. Therefore, there are no
co-variance components between x and y in the R and Q
matrices. The values of σs and σx̂ represent the expected
standard deviation of the measurement noise, and the process
noise (i.e., uncertainty), respectively. The former relates to

the accuracy of position estimation based on AoA, while the
latter is intrinsic to the receiver movement. Low values for σx̂
represent higher confidence in the position samples given to
the filter, while higher values represent higher confidence in
the filter predictions. For completeness, the canonical predict
– Equation (6) – and update – Equations (7) and (8) – steps
of the Kalman filter used are given as follows:

x̂ = F x̂, P = FPF> +Q (6)

y = [px, py, ṗx, ṗy]
>, I = y −Hx̂ (7)

S = HPH> +R, K = PHS−1, x̂ = x̂+KI (8)

Where column matrix y represents a new sample of position
estimation computed via the AoA geometry described previ-
ously, and the respective estimated velocity based on previous
position data.

IV. SIMULATION

In order to evaluate the solution, we developed a Java
based simulator which implements the algorithms described
in previous sections. The simulator models a two-dimensional
map of configurable width and height, which contains a spec-
ified number of beacon objects and a single mobile receiver
object. The simulator does not model physical effects such
as reflections, RSSI, the transmitter/receiver radios, or the
Bluetooth software stack. It’s primary purpose is to evaluate
the tracking accuracy for the solution topology based on real-
angle measurement data, and as a function of other parameters
of the solution (e.g., number of beacons or Kalman filter
tuning). Table I lists the major parameters of the simulation
which can be adjusted. Where a constant value is indicated, the
respective parameter was set at that value for all experimental
evaluations. Where value ranges are indicated, this represents
the sweeps performed in Section V to evaluate the performance
as a function of the respective parameter.

A. Functional Description

The simulator evaluates the map state in time steps of
1ms. The map may contain any number of beacon objects at
any position, and one mobile receiver which follows a trajec-
tory described by a parametric function. At every time-step,
events generated by the beacons and receiver are evaluated.
Simulation ends after a specified time interval. Since in real-
world conditions, separate devices would not be accurately
synchronized, each object contains its own internal timer and
triggers its periodic events (e.g., packet transmission) based on
its value.

a) Beacons: The only event triggered by each beacon is
the generation of a packet at a given period. Packets are placed
into a self-evicting queue, and are sampled by the receiver
in order of insertion. Packets are only placed into the queue
if the respective beacon is located less than 20m from the
receiver, which is a simplified emulation of transmission range.
Also, the desynchronized event timers create a more realistic
behaviour where, despite the same bp for all transmitters,
packets are received at arbitrary intervals by the receiver.
Additionally, they ensure that the bc instantiated beacons do
not saturate the queue which represents the air medium, by
simultaneously creating packets at the same time-step. For
clarity, the simulator does not implement electromagnetic
events such as contention for the transmission medium.
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TABLE I. CONFIGURABLE SIMULATION PARAMETERS

Parameter Description Value(s)

Rx, Ry Map dimensions 100x4m
bp Packet generation period of beacons 100ms–1000ms

bc Number of beacons on the map 4–64
σs Estimated noise of measurements (p̂) 1m

σx̂ Estimated noise of movement process 0m–3m
Kp Time step of predict step 2ms

Ku Time step of update step Ku(bc, bp, pc)

pc Number of packets used in LSQ method 3–50
Trajectory Parametric functions x = f(t), y = g(t) Sinusoidal path
Weight Policy Policy for computing weights cj of LSQ (Wu, Wr , Wt)

b) Receiver: The receiver contains a list of events that
are evaluated at different periods. The movement is updated
at every time-step (i.e., 1ms), as well as the sampling of the
packet queue. The Kalman predict step is performed every
dt = 2ms, while the Kalman update step is performed at
a non-constant step. Since a position can only be estimated
based on available data (i.e., sufficient packets), the update
step is aperiodic. Additionally, the measurement vector y also
contains the estimated velocity. We compute it as the difference
between the last receiver position produced by the Kalman
filter and the new position estimate p. An estimate is only
computed if a sufficient number of packets have been read by
the receiver from the queue. This number of packets used is
configurable, and its effects are shown in Section V. Once p
is computed, the receiver discards its held packets. That is,
packets are not re-used for successive estimates of p. Finally,
although the position of the receiver is modeled, we do not
model its orientation. Calculations assume that the receiver is
facing an orientation given by vector v = [1, 0] at all times.

c) Packet Filtering: In order to discard erroneous AoA
measurements, we attempted to accumulate multiple packets
per beacon prior to computing a position estimation. By
computing the median of all samples for each beacon, we
then discard any samples which differed from the median by
more than 2°. We compared this policy to utilizing all available
packets, by varying other simulation parameters for both cases.

d) RSSI Estimation: We evaluated the use of RSSI to
attribute weights to each received packet, for the posterior
step of LSQ estimation. We do this by evaluating the Friis
transmission equation using the true (hidden) distance between
the receiver. We assume a transmission power of 0 dBm.

e) Computing weights cj for LSQ Estimation: We eval-
uated three policies for packets weights. The first attributes a
weight of 1 for all samples (Wu). The second and third perform
a linear normalization between a maximum weight of 1 and a
minimum of 0.8, according to Equation (9).

cj = 1 +

(
0.2

maxv −minv

)
(vj −maxv) (9)

Where values maxv , minv , and vj depend on policy. For
policy Wr, the first two values represent the maximum and
minimum RSSI for all samples, and the third represents the
value for sample j (i.e., lower weight is given to distant
beacons). For policy Wt, they represent the analogous values
for the reception times of the samples (i.e., lower weight is
given to older accumulated samples).

V. EXPERIMENTAL RESULTS

We evaluate the proposed solution using the simulation en-
vironment described above. Our objective was to determine if
sub-meter localisation accuracy based on BLE AoA is feasible.
Specifically, we wished to determine the minimum number of
beacons required, and to minimize their transmission period,
as these are the two factors which determine the cost of
the solution. For all experimental evaluations and parameter
sweeps, we configured the simulator such that the receiver
travels in a sinusoidal trajectory at 10 kmh−1 in a 100m
long corridor of 4m in width. Unless stated otherwise, other
parameters are: σs = 1.0, no packet filtering, the packet weight
policy is Wu, and the number of packets used for position
estimation is pc = 6. The AoA was sampled from the real-
world data set described in Section III-B. We evaluated the
quality of the solution by computing the Root mean square
error (RMSE) between the true trajectory, and the output
trajectory of the Kalman Filter. In the following sections we
tune the solution parameters based on the attainable RMSE.

A. Parameter Tuning

The solution is composed of a number of interdependent
parameters. As such, an iterative tuning process was required.
For brevity, we will present the attainable RMSE as a function
of sweeps of multiple parameters. For each sweep, other
parameters are held constant at specified values. Firstly, we
determine the best value for σx̂, under the stipulated simulation
conditions. Secondly, we determine the number of packets
to use that results in the best position estimations via the
proposed LSQ method. Thirdly, we evaluate the RMSE as a
function of both bp and bc. Finally, we demonstrate examples
of the produced trajectories, computed positions estimations,
and Kalman filter output.

a) Determining σx̂: Figure 3 illustrates the RMSE
obtainable as a function of the σx̂ parameter of the Kalman
filter, for three values of bp. We set the bc at 128 to prevent bad
performance due to lack of beacons. Although the behaviour
for greater values of bp diverges for values of σx̂ significantly
greater than 1m, we observe that there is a minimum for
approximately 0.32m. With greater values for σx̂, the tracked
position tends to match the estimated positions, which are
noisy, leading to greater RMSE. For very low values, the filter
has as slower response. For other movement speeds, the best
σx̂ is likely to change, but we can observe sub-meter accuracy
for the evaluated range, for multiple values of bp. The RMSE
for greater bp values increases more quickly for σx̂ > 0.5, since
samples are available less readily. The filter thus estimates the
receiver velocity based on sparse noisy samples. However, the
minimum at σx̂ ≈ 0.32 holds for values of bp up to 1000ms.

b) Effect of Packet Count (pc): Each position estimation
is performed when pc packets are available. Figure 4 shows
how the RMSE varies according to this parameter, for 6
combinations of bp and bc. Neither of these two parameters
influences the value of pc which minimizes the RMSE. For
greater values of pc the receiver travels a greater distance until
enough packets are accumulated (which varies as a function
of bp and bc). This leads to greater likelihood of more samples
for any one beacon, and more spatial diversity in the beacon
sampling. However, the samples now correspond to different
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Fig. 3. Root Mean Square Error as a function of σx̂ for different beacon
periods, bp, for the total sinusoidal trajectory (bc = 64, pc = 6).

2 6 10 14 18 22 26 30 34 38 42 46 50
0.0

2.0

4.0

6.0

8.0

10.0

# Packets (pc)

R
M

SE
(m

2
)

bp = 100ms

bp = 500ms

bp = 900ms

Fig. 4. Root Mean Square Error as a function of the number of packets
(pc) used for position estimation, for different beacon periods (bp) and beacon
counts (bc). Solid lines represent bc = 32 and dashed lines represent bc = 64.

true positions, which leads to poorer performance. Noticeably,
for (bc, bp) = (64, 100) the performance remains near constant
for any value of pc. Since beacons are densely placed, and the
period is low, packets corresponding to the same true position
can be gathered before any significant receiver movement.
However, the solution does no improve past pc = 6 as the
AoA information becomes redundant. Although 6 packets are
used to estimate each position for other results shown in this
section, we did not analyse their spatial distribution. However,
since the beacons are homogeneously distributed, and transmit
at the same period, it is expectable that random samples of 6
beacons within the receiver range would yield a respectively
homogeneous spatial distribution (i.e., it is unlikely that a batch
of 6 packets originated from physically proximate beacons).

c) Effect of Beacon Count (bc) and Beacon Period (bp):
The number of beacons and their transmission period have
the most significant effect on the RMSE, as expected. Since
we desire frequent position estimation for tracking, solutions
with either high bp or low bc, or both, lead to poorer results.
Figure 5 shows the performance for a range of bc values and
three bp values. Several solutions provide sub-meter accuracy,
e.g., (bc, bp) = (16, 100) or (bc, bp) = (64, 900). Since beacons
are placed along the map perimeter, the former solution
corresponds to placing one beacon every 12.5m, and the later
to placing one beacon every 3.2m. Both solutions provide
similar RMSE (≈ 1m2), but the case for (bc, bp) = (64, 900)

8 16 24 32 40 48 56 64
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2
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Fig. 5. Root Mean Square Error as a function of the number of beacons (bc),
for different beacon periods (bp), and number of beacons per 10m2 (assuming
the area of the simulated 100x4m room).

allows for a 9× decrease in beacon activity, and therefore a
potential for equivalent battery savings, despite requiring only
a 4× higher bc relative to the case for (bc, bp) = (16, 100).
Conversely, although the RMSE for bp = 100 is approximately
half than that for bp = 900 when bc = 64, 9× higher
beacon activity is required. The more cost effective solution
will depend on actual one-time infrastructure costs and battery
maintenance costs. This analysis is out of the scope of this
evaluation.

d) Effect of Packet Weight and Filtering Policies: We
performed the parameter sweeps shown in Figures 3 to 5, for
combinations of the filtering and weight policies, but omit
the respective plots for brevity. Summarily, we observed no
improvements over no filtering and policy Wu. In order for
both filtering and weighting to induce any actual effect, larger
batches of samples are required. For filtering, more than 5
samples per beacon are required. However, when pc is low
(e.g. 6), position estimation will proceed with very few samples
per beacon. As a result, filtering has no effect, and the weights
applied by linear regression reduce the contribution of samples
which are either temporally close (Wt) or of similar RSSI
(Wr). The complete interaction is difficult to evaluate given
the interdependence between pc and the rate at which packets
are received, which is a function of bp and bc.

B. Trajectory Tracking Examples

Previous sections demonstrated the effect of several pa-
rameters on the RMSE of a complete sinusoidal trajectory.
Figure 6 illustrates the full trajectory in top-down view of the
two dimensional map. Note that the axes are not normalized.
Beacons are not plotted, but are evenly spaced along the
map perimeter for all cases. Figure 6a shows the tracking
performance as a function of bc, for bp = 500, and Figure 6b
shows the tracking as a function of bp, for bc = 64. Since the
simulation is subject to randomness, we repeated each shown
run with the same values of (bc, bp) (and other parameters)
100 times to obtain a noise free RMSE. For (bc, bp) =
(64, 500), (bc, bp) = (32, 500), (bc, bp) = (16, 500), the
RMSE is 0.77m2, 0.98m2, 1.4m2, respectively. For (bc, bp) =
(64, 100), (bc, bp) = (64, 500), (bc, bp) = (64, 1000), the
RMSE is 0.53m2, 0.76m2, 1.07m2, respectively. These val-
ues are consistent with Figure 5.
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(a) Travelled sinusoidal trajectory and filter output for 64, 32, and 16 beacons (σs = 1.0, σx̂ = 0.32, bp = 500ms, pc = 6).
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(b) Travelled sinusoidal trajectory and filter output for bc = 64 beacons, for several beacon periods (σs = 1.0, σx̂ = 0.32, bc = 64, pc = 6).

Fig. 6. Tracked trajectories for values of bp and bc. Full trajectories are shown for (bc, bp) = (64, 500) (Figure 6a) and for (bc, bp) = (64, 100) (Figure 6b).
For clarity, other trajectories are shown partially, and the estimated positions fed to the Kalman filter are plotted accordingly. As bc decreases, and/or bp increases,
the receiver travels a longer period before accumulating pc = 6 sample which correspond to different true positions, leading to sparser and noisier samples.

VI. CONCLUSION

In this paper, we presented an evaluation of a BLE topology
for indoor asset localisation and tracking, based on AoA
capabilities of the Bluetooth 5.1 specification. Specifically, the
approach targets the use case of few mobile receivers which
require their own localisation in real-time. The solution aims
to reduce costs, by designing the fixed infrastructure as battery
powered omni-directional beacons. We developed a simulator
which implemented the proposed topology, position estima-
tion, and tracking methods. We evaluated the RMSE of the
tracked trajectory versus the true trajectory, along a 100x4m
corridor, for multiple number of beacons, beacon periods,
Kalman filter parameters, and heuristic policies. We predict,
based on the modeling of the proposed solution, and on real-
world angle measurements taken in non-ideal environments,
that localisation accuracy under 1m can be achieved for a
beacon period of 500ms and beacon placements every 3.2m
along the corridor walls. Future work will include the modeling
of reflections and obstructions, gather additional real-world
AoA data, and other heuristics for handling received packets
to improve the achievable RMSE for arbitrary trajectories.
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