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Abstract: Process Analytical Technology (PAT) has been increasingly used in the pharmaceutical
industry to monitor essential parameters in real-time during pharmaceutical processes. The concen-
tration of Active Pharmaceutical Ingredients (APIs), such as paracetamol, is one of these parameters,
and controlling its variations allows for optimization of the production process. In this study, a
refractometric sensor, implemented by an interrogation system based on an Erbium-Doped Fiber
Ring Cavity (EDFRC), was presented and experimentally demonstrated. The Cavity Ring proposed
included a 1 × 3 coupler. One port of the coupler was used to increase the optical power of the
system through a Fiber Bragg Grating (FBG), and the other two ports were used as sensing head
and reference. The sensor detected variations of paracetamol concentration with a sensitivity of
[(−1.00 ± 0.05) × 10−3] nW/(g/kg) and a resolution of 5.53 g/kg. The results demonstrate the
potential of this technology as a possible non-invasive PAT tool.

Keywords: process analytical technology; concentration; paracetamol; ring cavity; erbium-doped fiber

1. Introduction

The pharmaceutical industry has widely used Process Analytical Technology (PAT) to
monitor the process in real-time, allowing for a better understanding of the processes and
improving the final product quality [1,2].

The PAT implementation requires sensors to measure the variables of interest, such as
reagent or product concentration. For more than a century, the concentration measurement
has been very important in the processing industries, including the pharmaceutical industry.
Quick and accurate control of this parameter is essential to optimize production [1–3].
Controlling the concentration allows for cost reduction, waste production decreases, and
maximization of reagents use [4].

In the pharmaceutical field, quantitative testing of Active Pharmaceutical Ingredients
(APIs) is very common. For that, real-time API concentration measurements are desirable,
as they avoid the sampling process. In this way, sample preparation is unnecessary,
eliminating the possibility of time delays. However, sometimes the available PAT is
destructive, time-consuming, and costly. For this reason, there is a continuous need to

Photonics 2023, 10, 50. https://doi.org/10.3390/photonics10010050 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10010050
https://doi.org/10.3390/photonics10010050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-1828-4633
https://orcid.org/0000-0002-6856-9143
https://orcid.org/0000-0001-7555-361X
https://doi.org/10.3390/photonics10010050
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10010050?type=check_update&version=1


Photonics 2023, 10, 50 2 of 8

develop new technologies that allow real-time measurements with high acquisition rates in
a non-invasive/non-destructive way [4–7].

In this work, a refractometric sensor is proposed that is sensitive to the variations of
paracetamol concentration—the case study. The implementation of the sensor was per-
formed using an interrogation system based on a Cavity Ring design with a 1 × 3 coupler.
One of the coupler ports was used as a sensing head (refractometric sensor), another as a
reference, and the last one as a reflector filter to increase the optical power of the system by
means of a Fiber Bragg Grating (FBG). The technology proposed can be used to monitor
the variations of liquid API concentrations in real-time and in a non-invasive way.

2. Materials and Methods

This work proposed an Erbium-Doped Fiber Ring Cavity (EDFRC) for measurements
of concentration in paracetamol liquid solutions. The experimental setup used is shown in
Figure 1.
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Figure 1. Experimental setup of the EDFRC proposed for paracetamol concentration measurements.
Coupler output ports: (1) FBG; (2) reference and (3) sensing head.

A 980/1550 nm Wavelength Division Multiplexer (WDM) was responsible for injecting
pump power into the EDFRC (976 nm), and the laser diode was temperature-controlled to
ensure the stability of the laser output. The gain medium used consisted of 4 m of highly
Erbium-doped fiber (EDF) with an active absorption coefficient of 5.0–6.7 dB/m @1531 nm.
The EDF was connected to the common port of the WDM and to a 3-port optical circulator,
which, in turn, was connected to a 1 × 3 optical coupler by means of port 2. Port 1 of the
optical coupler was connected to an FBG, centered at 1543.65 nm; port 2 was used as a
reference and port 3 was used as a sensing head.

The grating used corresponded to a commercial single FBG, centered at 1543.65 nm,
with a reflectivity of 97.59% and a bandwidth of 0.243 nm at −3 dB.

For the acquisition of the optical response, a 95:5 optical coupler was used to extract 5%
of the signal from the EDFRC to a power meter (see Figure 1). The use of the power meter
allowed us to significantly reduce the power fluctuations associated with the influence of
external factors, such as variations of pump power or room temperature.

Furthermore, the use of optical circulators in this configuration allowed us to avoid
spatial hole-burning (SHB) because the unidirectional operation was guaranteed.

The fiber tips of the three output ports of the optical coupler were properly cleaved to
ensure the Fresnel reflection. In the case of the fiber tip where the FBG was located, it was
cleaved at 2 cm after the FBG.

The sensing head structure of this experiment is shown in Figure 2.
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Figure 2. Scheme of the sensing head operating mechanism.

The physical principle related to the sensing head operating mechanism relies on
measurand-induced intensity variation of the Fresnel reflection at the fiber-to-liquid inter-
face monitored. Upon reaching the surroundings, the light is partially reflected. In this
way, the measurement of refractive index variations is achieved with the intensity changes
of the reflected optical signal. In this experiment, the ratio between the reflected light in the
fiber-to-liquid interface and the incident light (Reflectance, R) can be estimated through the
Fresnel equation for a reflection at a normal incidence, i.e., when the incident angle is equal
to 0 [8]:

R =

(
nt − ni
nt + ni

)2
(1)

where ni corresponds to the refractive index of the fiber optic core (ni = 1.468 RIU) and nt
corresponds to the refractive index of paracetamol liquid solutions (nt > 1 RIU). According
to Equation (1), less than 4% of the light guided by the fiber is reflected at the fiber-to-liquid
interface monitored.

The concentration measurements were performed using eight standard liquid solu-
tions of paracetamol (CAS number 103-90-02, min. 99% purity, supplied by Sigma-Aldrich)
in a mixture of 40% (v/v) ethanol/deionized water, prepared at room temperature (~20 ◦C).
The concentration of the solutions ranged from 52.61 to 219.25 g paracetamol/kg solvent,
which corresponded to a refractive index range of 1.3637 RIU to 1.3899 RIU. To deter-
mine the refractive index of said solutions, an Abbe refractometer (ATAGO, DR-A1) was
used to measure the samples. As expected, with the increase in paracetamol in solu-
tion, the samples become optically denser and, consequently, the refractive index linearly
increased—Figure 3.
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Figure 3. Concentration of paracetamol in solution as a function of refractive index. Measurements
of refractive index performed using an Abbe refractometer.
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Firstly, we performed a refractive index characterization of the solvent used in the
paracetamol standard solutions: a mixture of 40% ethanol and 60% deionized water. The
main objective was verified, and the output power was obtained for a reference refractive
index, considering the solvent used in the paracetamol solutions. For this, mixtures of
ethanol and deionized water with different percentages in volume were prepared.

The samples were measured using the Abbe refractometer, and we obtained a refrac-
tive index range of 1.337 RIU to, approximately, 1.357 RIU.

Using the experimental setup (Figure 1) for the mixture of interest (40% ethanol and
60% of deionized water), we obtained an output power of 15.57 nW for a refractive index
of 1.352 RIU—Figure 4.

Photonics 2023, 10, x FOR PEER REVIEW 4 of 8 
 

 

Firstly, we performed a refractive index characterization of the solvent used in the 
paracetamol standard solutions: a mixture of 40% ethanol and 60% deionized water. The 
main objective was verified, and the output power was obtained for a reference refractive 
index, considering the solvent used in the paracetamol solutions. For this, mixtures of 
ethanol and deionized water with different percentages in volume were prepared. 

The samples were measured using the Abbe refractometer, and we obtained a 
refractive index range of 1.337 RIU to, approximately, 1.357 RIU. 

Using the experimental setup (Figure 1) for the mixture of interest (40% ethanol and 
60% of deionized water), we obtained an output power of 15.57 nW for a refractive index 
of 1.352 RIU—Figure 4. 

 
Figure 4. Refractive index characterization of the ethanol and deionized water mixtures. 
Measurements of refractive index performed using an Abbe refractometer. 

3. Results and Discussion 
3.1. Output Spectrum 

The output spectra of the EDFRC were obtained using the OSA (YOKOGAWA, 
AQ6370D). They are shown in Figure 5 for the cases where: (1) the reference and the 
sensing head were placed in air (red line), and (2) the reference was immersed in the 
reference medium and the sensing head was placed in air (black line). It is important to 
refer to the fact that the reference medium used corresponds to a mixture of 40% ethanol 
and 60% deionized water (the solvent present in the paracetamol samples). In both cases, 
the configuration was pumped with 20 mW at 976 nm. The laser condition was not 
reached, as predicted, due to the low level of pump power. On the other hand, the ring 
configuration allowed for the spontaneous emission condition. 

1.335 1.340 1.345 1.350 1.355 1.360
15.45

15.50

15.55

15.60

15.65

15.70

15.75

15.80

50% ethanol + 50% deionized water

40% ethanol + 60% deionized water

30% ethanol + 70% deionized water

20% ethanol + 80% deionized water

10% ethanol + 90% deionized water
 p = (−12.90n + 33.01) nW
R2=0.984

p,
 O

ut
pu

t p
ow

er
 (n

W
)

n, Refractive index (RIU)
Figure 4. Refractive index characterization of the ethanol and deionized water mixtures. Measure-
ments of refractive index performed using an Abbe refractometer.

3. Results and Discussion
3.1. Output Spectrum

The output spectra of the EDFRC were obtained using the OSA (YOKOGAWA,
AQ6370D). They are shown in Figure 5 for the cases where: (1) the reference and the
sensing head were placed in air (red line), and (2) the reference was immersed in the
reference medium and the sensing head was placed in air (black line). It is important to
refer to the fact that the reference medium used corresponds to a mixture of 40% ethanol
and 60% deionized water (the solvent present in the paracetamol samples). In both cases,
the configuration was pumped with 20 mW at 976 nm. The laser condition was not reached,
as predicted, due to the low level of pump power. On the other hand, the ring configuration
allowed for the spontaneous emission condition.
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As can be seen in Figure 5, there is an output power level (~−60 dBm) centered at
1543.65 nm and an Optical Signal to Noise Ratio (OSNR) as low as 10 dB in both spectra.
Furthermore, as expected, the output power level of the spectrum shown in red is higher
than the one presented in black. The refractive index of the reference solution (1.352 RIU;
black line) is higher than the refractive index of the air (~1.000 RIU; red line), which causes
the referred optical power loss. In this way, the increase in the refractive index promotes the
reduction in the amplitude of the reflected wave in the interface created by the fiber and the
air/reference medium, generating the loss in optical power. The following measurements
were performed by maintaining port 2 of the optical coupler (reference) in the reference
medium of 40% ethanol and 60% deionized water.

3.2. Paracetamol Concentration Measurements and Sensor Sensitivity

The liquid samples of paracetamol were measured at room temperature using the
experimental setup proposed in Figure 1. For that, the sensing head (port 3 of the optical
coupler) was vertically immersed in each sample. The output power level in each measure-
ment, obtained using the power meter (Agilent 8163B), is represented in Figure 6. A linear
dependence between the output power and the paracetamol concentration was obtained
(correlation factor of 0.995).
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Figure 6. Output power levels as a function of paracetamol concentration in solution when the end
of the reference port was immersed in the reference solution (40% ethanol and 60% deionized water)
and sensing head was immersed in the paracetamol solutions.

From the results presented in Figure 6, a linear sensitivity of
[
(−1.00 ± 0.05)× 10−3] nW/

(g/kg) to the variation of paracetamol concentration was obtained, with ranges of 52.61 to
219.25 g/kg.

3.3. Sensor Resolution

After the sensitivity evaluation, a step technique was applied for evaluating the
resolution of the sensor: the sensing head was successively immersed in two paracetamol
samples with consecutive values of concentration, and the sensor response (Figure 7),
obtained using a power meter, was analyzed.

The minimum value of concentration (δc) that the sensor could discriminate was
defined through the sensor response (Figure 7) using Equation (2) [9]:

δc = 2
σp∆c
∆P

(2)

where σp is the is the maximum standard deviation of the output power (5.0 × 10−3 nW)
for both values of concentration (52.61 g/kg and 69.21 g/kg), ∆c is the variation of concen-
tration (16.6 g/kg), and ∆P is the mean displacement of output response between the two
steps (3.0 × 10−2 nW).

Applying Equation (2), a resolution of 5.53 g/kg was obtained. It is important to
mention that this value was also influenced by the spectral resolution of the equipment
used for data acquisition.
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Figure 7. Step technique to estimate the sensing head resolution. The reference port was immersed in
the reference solution (40% ethanol and 60% deionized water) and the sensing head was immersed,
consecutively, in paracetamol samples with consecutive values of concentration, 52.61 g/kg and
69.21 g/kg, respectively.

4. Conclusions

In this work, an interrogation system based on an Erbium-Doped Fiber Ring Cavity
was used to measure paracetamol liquid samples with different concentrations (range of
concentrations between 52.61 to 219.25 g/kg).

The Cavity Ring proposed contemplates a 1 × 3 coupler; one of the ports corresponds
to an FBG used as a reflector, and the two other ports are used as the sensing head and the
reference, respectively.

During the measurements, the reference port remained vertically immersed in the
reference medium, which was compounded by 40% ethanol and 60% deionized water (the
solvent used in the paracetamol samples).

The sensing head allowed us to measure paracetamol concentrations with a sensitivity
of

[
(−1.00 ± 0.05)× 10−3] nW/(g/kg) and a resolution of 5.53 g/kg.

The results obtained show the potential of the proposed configuration in monitoring
the concentration of Active Pharmaceutical Ingredients (APIs), such as paracetamol.

Since the concentration is one of the most important parameters in pharmaceutical
processes, the configuration proposed can be used to monitor this parameter in real-time
and in a non-invasive way. In other words, the proposed technology can be considered a
PAT tool with great potential in the pharmaceutical field.
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