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Abstract—Traditional coverage path planners create
lawnmower-type paths in the operating area completely
ignoring the uncertainty in the vehicle’s position. However, in
the presence of significant uncertainty in localization estimates,
one can no longer guarantee that the vehicle will cover all the
area according to plan. Aiming to bridge this gap, we present
a coverage path planning technique for search operations
which takes into account the vehicle’s position and detection
performance uncertainties and tries to minimize this uncertainty
along the planned path. The objective is to plan paths, using a
localization error model as input, to reduce as much uncertainty
as possible and to minimize the extra path length (swath
overlap) while satisfying mission feasibility constraints. We
introduce an algorithm that calculates what will be the best
moments for bringing the vehicle to surface to ensure a bounded
position error. We also consider time and energy constraints
that may influence the planned trajectory as path overlap is
increased to account for uncertainty. Additionally we challenge
the assumption frequently seen in coverage algorithms where
two observations of the same target are considered independent.

Keywords—coverage, planning, localization, uncertainty, iner-
tial navigation, AUV

1. INTRODUCTION

When covering an area using an autonomous underwater
vehicle (AUV), it may not be possible to guarantee that all
the area is covered since the path actually followed by the
vehicle may deviate from the path planned by the coverage
algorithm. The real path can deviate from the planned path
due to:

« the existence of external disturbances such as sea currents
and bad weather;

« the vehicle state estimate being uncertain and bounded or
unbounded errors may exist;

« the performance of the motion controller not being good
enough.

State estimation techniques commonly used in navigation
systems, such as the Kalman filter, model sensor noise and
produce estimates of the state prediction error. So a method-
ology is required to incorporate this knowledge of uncertainty
(which is already available) in the planning stage, compen-
sating for the limitations of the navigation system. Ignoring
the uncertainty that accompanies probabilistic state estimates
during planning can lead to a costly replanning stage where
there is a need to cover all of the operating area (in the
worst case) due to the existence of small gaps between parallel
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(a) Plot of the planned path (in black, planning area in red) and the
actual path followed by the vehicle (in blue).
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(b) Expected performance. (c) Real performance.

Fig. 1. Effect of the navigation system’s uncertainty in detection performance.

tracks where coverage performance is below what is required.
Potentially, it can even lead to planning or even mission failure
if the vehicle is not able to georeference acquired data due to
the limited capability of smoothing algorithms to reduce past
uncertainty.

Consider figure 1(a) which displays the outcome of a
simulation where the AUV was trying to cover an area with
a sidescan sonar. The performance of a low cost inertial
measurement unit (IMU) with a high drifting bias is being
simulated, chosen specifically for demonstrating the problem
under study. Figure 1(b) shows the estimated performance for
the planned path. Figure 1(c) shows the real performance given
the position of the vehicle during the simulated mission. When
determining the proper MCM coverage plan, one is usually
constrained by the time to complete the operation and the risk
to which vehicles and personnel may be subjected to. Thus,



the scenario described above represents an unacceptable risk
to units involved in an MCM operation and clearly needs to
be accounted for.

An algorithm is needed to improve coverage performance,
accounting for navigation errors along mission execution and
adapting the planned path in response. There are several
measures of mission performance, such as coverage factor,
POD or probability of success (POS). Each of these measures
can be considered appropriate for the application. In particular,
the POD measure of performance is suggested (calculated
using a lateral range curve as a function of range) together with
the definition of a minimum level of performance at each point
in the map. This would indirectly force complete coverage of
the operating area while ensuring a lower bound on detection
performance.

Aiming to bridge this gap, a CPP technique is presented
which takes into account the robots motion and sensing
uncertainty and tries to minimize this uncertainty along the
planned path. The objective is to plan paths, using a state
prediction error model as input, to reduce as much uncertainty
as possible and to minimize the extra path length (swath
overlap) while satisfying mission feasibility constraints. In
the end a modified lawn-mower search pattern is produced
to accomplish these objectives. In particular, the decay in
detection performance over the discretized workspace is as-
sessed by projecting the expected variation in range through
the coverage sensor lateral range curve. An iterative algorithm
based on simulated annealing is proposed to optimize track
distance. The optimization algorithm simulates the uncertainty
throughout the path and varies track spacing in order to ensure
that the detection performance is above a given threshold.
Additionally, whenever the uncertainty after a parallel track
exceeds a user-provided threshold, a directive for getting a
navigation update is inserted, seeking to reduce uncertainty
and to avoid creating a mission plan that would take too long
to execute due to the constant (growing) swath overlap.

2. RELATED WORK

Coverage path planning algorithms have considered the
problem of localization uncertainty.

Colin et al. [1] present a “probably approximately cor-
rect measure of coverage performance, developed to account
for sensor uncertainty. The authors argue that once vehicle
localization error is significant, the definition of complete
coverage must be adapted to become probabilistic. However,
this approach considers an uniform sensor characteristic and
provides no adaptive approach to account for the robot’s
pose uncertainty. Also, they assume a steady-state localization
variance which is not a valid assumption for a vehicle using
dead-reckoning or a inertial navigation system.

Hollinger el al. [3] presented an algorithm for accurate
reconstruction of the seafloor that plans the AUV’s dives
seeking to maximize variance reduction along the planned
path while also satisfying a budget constraint on maximum
path length. They model the expected accuracy of the map
using non-parametric Bayesian Regression in the form of

Gaussian Processes. The GP representation provides a measure
of variance, which is used as a measure of uncertainty, as well
as a mean value of altitude at each point of the bottom grid.
Then they propose a greedy method to reduce this uncertainty
by calculating efficient dive patterns: greedily select dives that
maximize variance reduction until the budget is reached and
then run a gradient optimization that perturbs each dive and
locks the pattern into a local optimum. They estimate the
variance reduction by first calculating the sum of variance in
the area viewed by the dive.

Galceran et al. [4] present a survey path planning technique
which takes into account the robots motion and sensing uncer-
tainty and seeks to minimize this uncertainty along the planned
path. They deal with the application constraints of surveying
the target area in parallel tracks, at a certain constant altitude
from the seafloor, and avoiding turns in order to maximize the
quality of the sonar readings. A graph is built, representing
the parallel tracks required to cover the target area. Then,
a survey path is planned using two steps: first find the best
possible order in which to cover the parallel track edges of the
graph which minimizes the overall uncertainty along the path;
second by inserting crossing track edges in the path found in
the first step if, after tracing a parallel track, the uncertainty
surpasses a given threshold. The robots position uncertainty
along the determined path is estimated using a particle filter
with the a priori bathymetry and simulated multibeam sonar
measurements. Whenever the uncertainty after a parallel track
exceeds a user-provided threshold, a crossing track through a
salient area is inserted, seeking to reduce uncertainty. They are
interested only in the uncertainty of the robots belief rather
than in the position estimate. Their planning heuristic does
not guarantee an optimal path with respect to uncertainty
but it tackles the intractability of the planning problem by
producing a low uncertainty solution, as demonstrated by
their experimental results. On the other hand it can lead to
lengthened paths due to the addition of multiple crossing
tracks.

Paull et al. [5] presented a probabilistic framework within
which paths can be generated that guarantee coverage based
on new probabilistic coverage criteria. The pose belief is used
to generate a coverage estimate that is maintained as the robot
navigates around its workspace. This probabilistic representa-
tion is then used to adaptively plan paths for coverage based
on an entropy reduction formulation.

We propose an approach similar to Paull et al. [5] but
we introduce an algorithm that anticipates what will be the
best moments for bringing the vehicle to surface to ensure
a bounded position error. We also consider time and energy
constraints that may influence the planned trajectory as path
overlap is increased to account for uncertainty. Additionally
we challenge the assumption frequently seen in coverage
applications where two observations of the same target are
considered independent. Modern research involving the cal-
culation of the cumulative detection performance in different
case studies assume complete independence, but there are
some problems with this approach [2]. By performing cov-
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Fig. 2. Horizontal plane error model for a modern strap-down INS.

erage on the same environment, with the same system and
with increasing uncertainty in position it may be wise to
consider that there is an indeterminate amount of correlation
between observations. Therefore, we will present an alternative
approach and assess the impact on detection performance
estimation.

3. NAVIGATION SYSTEMS UNCERTAINTY

Accurate navigation information is essential for achieving
the expected mission performance, for safe vehicle operation
and recovery. For the data acquired by an AUV to be of
value, the location from which the data has been acquired
must be accurately known. Current practice in AUV navigation
is focused on dead-reckoning, INS, acoustic systems and
terrain aided techniques. Next, a brief description of the errors
involved in these systems is given.

3.1. Unbounded error

The problem with relying on inertial navigation is that
the position error increases without bound as the distance
travelled by the vehicle increases. The rate of increase will be
dependent on currents, the vehicle speed, the quality of dead
reckoning algorithm and other sensor data. GPS can provide an
accurate position update provided the vehicle is able to return
to surface periodically for a position fix. The maximum vehicle
travel time between surfacings for a position update will be
determined by the navigation system’s accuracy, as described
in figure 2. Systems integrating a poor quality IMU will face
an unacceptably high frequency of surfacing. Surfacing always
comes with a cost, especially on extra mission execution time.
For deep water applications, the time and energy needed by an
AUV for transiting to the surface can be very unfavourable.
Also, vehicles operating close to important shipping routes
are in considerable danger of collision with surface vessels
if they need to frequently return to surface for position fixes.
Position drift rates for high quality IMU units (unaided INS)
are on the order of several kilometres per hour. Integrating
a DVL sensor in the INS can greatly improve performance
with drift rates ranging from 0.01% to 0.1% of the distance
travelled depending on the format of paths.

3.2. Bounded error

Acoustic transponders can be used as beacons to guide the
AUV without the need for resurfacing. Long baseline (LBL)
navigation systems provide position accuracy of a few meters
with a maximum range on the order of a few kilometres. Errors
in acoustic systems come from several sources. The main
sources of error are: errors in the assumed array geometry and
errors in the assumed sound speed profile. Positioning error
comes from assuming incorrect positions of the array beacons.
Reflection or multipath errors will result in erroneous time-
of-flight values and thus wrong position fixes. Typically, LBL
works well in deep water. When operating in shallower water,
complex propagation effects become relevant and increase
the frequency of bad position fixes. Even if the sound speed
profile is known at the start of an AUV mission, the acoustic
propagation environment can change during the mission (due
to thermoclines, etc).

4. METHODOLOGY

Aiming to bridge this gap, a CPP technique is presented
which takes into account the robots motion and sensing
uncertainty and tries to minimize this uncertainty along the
planned path. The objective is to plan paths, using a state
prediction error model as input, to reduce as much uncertainty
as possible and to minimize the extra path length (swath
overlap) while satisfying mission feasibility constraints. Here
a modified lawn-mower search pattern is used to accomplish
these objectives. In particular, the decay in detection perfor-
mance over the discretized workspace is assessed by projecting
the expected variation in range through the coverage sensor
lateral range curve. An iterative algorithm based on simulated
annealing is also proposed to optimize track distance. This
is an optimization algorithm that involves the simulation of
uncertainty throughout the path and the implementation of a
feedback policy that ensures that the detection performance
will above a certain threshold. This approach has the distinct
advantage that it can be easily added to existent coverage path
planning algorithms as an add-on, optimizing existent plans
before creating the mission directives.

4.1. Uncertainty estimation

The uncertainty in the state estimate provided by the AUVs
navigation system when performing a coverage mission may
cause the vehicle to deviate from the planned trajectory. This
means that when traversing straight parallel transects, the
vehicle may actually be closer or further away from a given
point located between two transects, as depicted in figure 3.

The component of uncertainty in position, perpendicular to
the transects, can be interpreted as the uncertainty on effective
distance to that fixed point on the workspace. Thus, range is
a random variable R. This variation in range to a given cell
will result in a variation in detection performance. This means
that detection performance on each cell of the workspace
will now be a random variable Y with a given probability
distribution function (PDF) instead of a fixed quantity. It is
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Fig. 3. Example of a lawnmower trajectory followed by the AUV. As the
vehicle travels along the path, the uncertainty of the navigation systems
estimates (in orange) increases. The distance to a fixed point (in red) cannot
be considered static, from a planning perspective, given the uncertainty in
position.

assumed that the PDF of R, fgr, can be approximated by a
Gaussian function:

) B (v — NR)Q
Fr(r) = Tt 20%, (1

Then the PDF of Y, fy, is obtained by applying the
transformation technique for continuous random variables [6]:
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where [(r), which is the LRC function used to characterize
the detection systems performance, is a one-to-one function
and [~1(y) is its inverse. For this study, the inverse cube model
is considered an appropriate function to represent the LRC and
apply this methodology:
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where c is a constant that depends on the environment where
the vehicle is operating and its velocity. By applying this
principle, it is possible to derive the PDF and the CDF of
Y, respectively:
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This was the process for estimating the detection perfor-
mance distribution due to a single sonar measurement. As
the vehicle may cover the same area twice with the sonar by
traversing consecutive path transects, individual measurements
need to be combined. For instance, in minehunting operations,
where considerable risk is involved, the cost of overestimating
the detection performance may be much higher than the
cost of underestimating it. Hence, it should be beneficial to
opt for a conservative estimate. Conservative estimates are
obtained by assuming the existence of complete correlation,
thus by choosing the higher of the individual estimates (max
operator). When combining the observations, one can as-
sume dependence or independence, being the latter frequently
chosen as it simplifies the procedure of calculating a PDF.
Both approaches will be compared by also estimating a PDF
assuming dependence and assessing the impact on detection
performance estimation.

The combined detection performance of two measurements
Y) and Y5 is given by:

Z = maz (Y1, Ya) ©)

Fy(y) = (5)
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For two independent random variables Y; and Y5 , Zs CDF
and PDF can be calculated with the following expression,
respectively [7]:

Fz(2) = Py, (2)Fy, (2) @)

fz(2) = fvi (2)Fy, (2) + fv,(2) Fy, (2) (8

In a real world situation, it is difficult to assess the degree of
correlation between the two observations. If such correlation
exists, the true distribution for the combined detection perfor-
mance Z should be derived, if possible. However, due to the
complexity of the mathematical functions, derivation of the
equation is difficult. In such cases, Monte Carlo simulation is
a suitable tool to estimate the real distribution function of Z
and, for this reason, it was applied here. Figure 4 presents a
visual comparison between both approaches. It is possible to
see that the first approach is a little conservative until halfway
through the mission, as expected. But surprisingly, from there
onwards, the first approach became increasingly pessimistic as
time, and localization uncertainty as a consequence, increased.
Such a performance supports the argument that one cannot just
assume independence between observations without assessing
the true relationship between the variables.

In our case, if the mission planner considered independence
blindingly, then it would bring the parallel tracks excessively
together to compensate for the growing uncertainty and that
would increase mission time and energy expenditure beyond



Detaction performan

(a)

Detection parformance certainty map (%)

(b)

Fig. 4. Detection performance certainty maps considering (a) independence
and (b) dependence between observations.

what was really required. Unfortunately, given the difficulty
in deriving the real Fz and the time needed to perform the
Monte Carlo simulation, there is no alternative to considering
independence between the observations. To mitigate the effect
on the calculation of the probabilistic measure of detection
performance, an upper bound on time between surfacing
manoeuvres is established to reduce localization uncertainty. In
this experiment, assuming a navigation error model as depicted
in figure 2 and by analysing the maps on figure 4, a time
interval of 575 seconds was chosen as the difference between
the approaches was negligible up to this point.

4.2. Uncertainty reduction procedure

As a means to minimize the number of gaps in coverage
resultant from uncertainty in the states estimates, our local
optimization algorithm will adjust the position of the parallel
transects in order to guarantee that the probability of the
detection performance Z being above a minimum value D,,,;,,
is close to a predefined certainty level C":

Consider the following assumptions:

e operating area A;

o N tracks, parallel in projection to horizontal plane;

« each track ¢ marks the end of a subarea a;, so there area
N + 1 subareas;

e a variance threshold, V.., that represents maximum
variance allowed at any time during the mission;

e a maximum overlap parameter, O,,,,, that represents
the maximum overlap allowed between two consecutive
swaths.

The inputs for this procedure are:

« lawnmower search pattern;

« topography map;

e navigation systems error function;

o minimum detection performance D,,;, and required cer-

tainty level C;

« available time and energy for executing the mission;

° Vmax;

e Onaz-

Then the outputs will be:

o optimized lawnmower search pattern;

¢ detection performance map;

« best time instants for surfacing for uncertainty reduction

(if using INS).

A high level description of the algorithm is presented in
the flowchart depicted on figure 5. The first phase consists
in analysing variance growth along the trajectory. Each time
the variance surpasses V4, (Which is the maximum squared
deviation determined previously) a surfacing request is added
to reduce uncertainty, preferably at the start of the track. Since
variance is a function of time and the velocity of the vehicle
is known, the distance between each of these points can be
determined.

Next is the spacing optimization procedure. In order to
increase the certainty that the detection performance require-
ments will be met, track spacing needs to be reduced. Here, the
maximum overlap between two tracks needs to be considered.
This was introduced to avoid creating paths that are too
long. When energy and time constraints are broken after
adding extra tracks, this parameter will be reduced in order
to create smaller paths. Reducing overlap may also lead to
the performance requirements not being met, in which case
the solution which offers the best possible P(Z > D,uin)
throughout all operating area is returned.

Simulated Annealing (SA) gives us the opportunity to
quickly improve any solutions that are being considered.
This algorithm has been designed to optimize two distinct
objectives, namely:

e Minimize the uncovered area;

e Maximize P(Z > D,yin).

These objectives are prioritized differently according to our
specific mission planning goals: the P(Z > D,,;,) can only
be increased if there are no more uncovered areas. Note that
decreasing the amount of uncovered area will lead to an



increase in P(Z > D,,;,) but not to its maximization. This
is a combinatorial problem where the best set of inter-track
distances needs to be chosen, minimizing the uncertainty in
detection performance over an area characterized by a specific
topography. Distinct strategies are used depending on the
type of sonar that is being used for seafloor mapping, more
specifically if using multibeam (no nadir gap) or sidescan
sonar (with nadir gap).

A. Strategy for the case without nadir gap:

Initialization:

e Determine the original spacing between tracks (kept
constant by the EA);

« Neighbourhood size is set to the initial spacing.

Evaluation:

« Determine the amount of uncovered area and the P(Z >
Dinin) (per subarea and total);

o Accept the solution if better then the last or apply the
Metropolis criterion [8].

Check for termination:

e Terminate when the temperature reaches a minimum
value, when it converges or when a maximum number
of iterations is achieved.

Mutation:

o Select the subarea between a pair of tracks with lower
coverage quality;

« Place two tracks closer together, achieving higher cover-
age in the subarea in between;

o The amplitude of the mutation A; is obtained from
equation 10, where r is a random number between -1 and
1, N is the neighbourhood size and T is the temperature
of the process. It must be inferior to the previous track
spacing s; in subarea ¢;

« Update spacing s; (equation 9);

o Calculate the contribution (weights w;) of each subarea
Aj (j # i) to compensate for A; (equations 14 and 12);

o If there are no uncovered areas (ucells = 0) then
maximize P(Z > D) using a similar procedure
where track spacing is decreased in the region where the
uncertainty is higher; in this case the contribution of each
region A; depends directly on the uncertainty in each of
those regions (equation 13).

S; = §; — A, (9)
k
A== A (11
poh
1
w' = 12
i ucells; 12)
w); = avgpod; (13)
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2
Aj = wj; X AL (15)

B. Strategy for the case with nadir gap:

The most used technique to handle this problem is the
uneven lawn-mowing coverage pattern, where consecutive
pairs of tracks cover each other’s nadir. Here, the distinction
between odd and even areas is performed because they must
be handled differently. Even areas will have smaller spacing
since the adjacent tracks need to be closer together in order
to cover their nadir gaps. Even areas contain the complete
nadir region belonging to each of the adjacent tracks, even
the portion that lies on the adjacent areas (the nadir extends
to each side of the track considering that the sonar is being
carried with zero roll angle). This strategy differs from the
previous one on the mutation phase:

Mutation:

o Similar to the previous one, except that adjusting odd
subareas only affects other odd subareas, while adjusting
even subareas only affects adjacent subareas;

o The purpose of controlling track spacing in even subareas
is mainly to cover their nadir gaps, therefore only the
adjacent subareas should compensate for the variation of
track spacing;

o Even subareas should remain untouched when adjusting
odd subareas so the nadir gaps remain covered.

4.3. Determination of surfacing manoeuvres positions

Additionally, the location where each surfacing manoeu-
vre will take place can also be optimized. Since smoothing
algorithms have limited performance and the error grows
exponentially, it is beneficial to redistribute these locations in
order to keep the error as low as possible at any time during the
mission. Originally, the locations of the surfacing manoeuvres
are calculated every time the error is near its maximum value.
It is not ideal if, for example, there is a surfacing manoeuvre
near the end of the mission. In such cases, it is appropriate
to redistribute the locations so the average error is lower. We
assume that the number of manoeuvres is known, given that
we know the total trajectory length, the vehicle velocity and
the maximum amount of time between manoeuvres to keep
a bounded error. Then, knowing the amount of manoeuvres
and the total trajectory length, the ideal distance between the
manoeuvres can be determined. Our algorithm tries to place
the surfacing locations as evenly distributed as possible, near
this ideal distance. Since these locations need to match a vertex
in the trajectory it may be difficult to ensure that the real
distances between surfacing manoeuvres are equal.

5. DEMONSTRATION

For demonstrating our uncertainty reduction approach, con-
sider figure 6. Figure 6(a) shows the uncertainty map for the
original trajectory. After executing the algorithm, an optimized
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Fig. 6. Uncertainty reduction demonstration.

Fig. 5. Flowchart for the uncertainty reduction algorithm.

TABLE 1
INITIAL DESCRIPTIVE STATISTICS, BEFORE TRAJECTORY OPTIMIZATION.
THE AVERAGE P(Z > Djnin) OVER THE OPERATING AREA WAS 72.2%

trajectory is obtained, represented in 6(b). Note that all non- AND THE AMOUNT OF CELLS WHERE P(Z > Dynin) < C' (MINRATIO)

yellow parts ceased to exist, meaning that the uncertainty was WAS 45.3%.
successfully reduced, as expected. The descriptive statistics
for both cases are presented in tables 1 and 2. In this scenario Subarea  P(Z > Dpin) MinRatio  Spacing
no additional tracks were added, but that may not always be 1 0.000 0.000000  1.040
the case. As explained earlier, we were quite conservative 2 99.750 0.000268  45.000
on the maximum amount of localization uncertainty which is 3 99.131 0.003722  45.000
tolerated and this is limiting the amount of overlap between 4 92.787 0.034320  45.000
swaths. 5 78.769 0.054009  45.000
As expected, the redistribution of the surfacing locations 6 65.493 0.065742  45.000
also proved to be beneficial, as displayed on figure 7. The 7 57.582 0.070966  45.000
estimated average localization error was reduced from 2.55 8 54.048 0.072419  45.000
to 2.20, although it was not possible to keep the surfacing 9 52.527 0.074601  45.000
locations as evenly distributed as desired. 10 49.613 0.077076  45.000
11 0.000 0.000000  1.040

6. CONCLUSION

In this paper a CPP technique for search operations was
described which takes into account the vehicle’s position and



Standard Deviation (m)

0 500 1000 1500
Time (s)

(a) Assuming initial surfacing locations calculated
using a greedy algorithm.

Standard Deviation (m)

1000 1500

Time (s)

0 500

(b) Assuming optimized surfacing locations.

Fig. 7. Estimated localization error during the mission, considering the required surfacing manoeuvres for uncertainty reduction.

TABLE 2
FINAL DESCRIPTIVE STATISTICS, AFTER TRAJECTORY OPTIMIZATION.
THE AVERAGE P(Z > Dy,in) OVER THE OPERATING AREA WAS 99.7%
AND THE AMOUNT OF CELLS WHERE P(Z > Dyyin) < C (MINRATIO)

WAS 0.25%.
Subarea  P(Z > Diin) MinRatio  Spacing
1 99.748 0.000150  26.962
2 99.712 0.000305  48.588
3 99.750 0.000175  28.160
4 99.647 0.000274  44.376
5 99.749 0.000274  44.220
6 99.750 0.000274  43.355
7 99.750 0.000212  34.470
8 99.713 0.000256  40.554
9 99.750 0.000231  37.238
10 99.749 0.000281  44.806
11 99.750 0.000069  14.351

detection performance uncertainties during mission execution
and tries to minimize this uncertainty along the planned path.
Such a technique is required in order to incorporate this
knowledge of uncertainty in the planning stage, compensating
for the limitations of the navigation system. Accounting for
uncertainty during planning reduces the need for a costly
replanning stage, where full area coverage may be required (in
the worst case) due to the existence of small gaps in coverage
between the parallel tracks, and increases the quality of the
acquired data. Results showed that the method was successful
in minimizing uncertainty and selecting the best positions for
performing the surfacing manoeuvres.
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