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Abstract The Unit Commitment (UC) problem is a well-known combinatorial op-
timization problem arising in operations planning of power systems. It involves de-
ciding both the scheduling of power units — when each unit should be turned on or
off—, and the economic dispatch problem — how much power each of the on units
should produce —, in order to meet power demand at minimum cost, while satisfying
a set of operational and technological constraints. This problem is typically formu-
lated as nonlinear mixed-integer programming problem and has been solved in the
literature by a huge variety of optimization methods, ranging from exact methods
(such as dynamic programming and branch-and-bound) to heuristic methods (ge-
netic algorithms, simulated annealing, and particle swarm). Here, we discuss how
the UC problem can be formulated with an optimal control model, describe previ-
ous discrete-time optimal control models, and propose a continuous-time optimal
control model. The continuous-time optimal control formulation proposed has the
advantage of involving only real-valued decision variables (controls) and enables
extra degrees of freedom as well as more accuracy, since it allows to consider sets
of demand data that are not sampled hourly.
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1 Introduction

In this work, we address the Unit Commitment (UC) problem using Optimal Control
methodologies. Despite being an highly researched problem with dynamical and
multi-period characteristics, it appears that it has not been addressed by optimal
control methods before, except in [13].

A problem that must be solved frequently by a power utility is to economically
determine a schedule of which units are to be used and how much each unit should
produce in order to meet the forecasted demand, while satisfying operational and
technological constraints, over a short time horizon [30, 31]. Good solutions are
of most importance since they not only may provide substantial savings (tens to
hundreds of millions of dollars) in operational and fuel costs but also maintain sys-
tem reliability by keeping a proper spinning reserve[42]. Due to its combinatorial
nature, multi-period characteristics, and nonlinearities, this problem is highly com-
putational demanding and, thus, solving the UC problem for real sized systems is
a hard optimization task: it is a NP-hard problem. The UC problem has been ex-
tensively studied in the literature. Several numerical optimization techniques, based
both on exact and on approximate algorithms have been reported.

Several approaches based on exact methods have been used, such as dynamic
programming, mixed-integer programming, benders decomposition, lagrangian re-
laxation and branch and bound methods, see e.g. [20, 8, 36, 3]. The main draw-
backs of these traditional techniques are the large computational time and memory
requirements for large complexity and dimensionality problems. Dynamic program-
ming [20, 27] is a powerful and flexible methodology, however its suffers from the
dimensionality problem, not only in computational time, but also in storage require-
ments. Recently a stochastic dynamic programming approach to schedule power
plants was proposed [29]. In [3], a solution using lagrangian relaxation is proposed.
However, the problem becomes too complex as the number of units increases and
there are some difficulties in obtaining feasible solutions. Takriti [36] addresses the
unit commitment problem by using mixed-integer programming which is a very
hard task when the number of units increases since it requires large memory and
leads to large computational time requirements. Other authors have proposed the use
of mixed integer linear programming to solve the linearized versions of the problem,
see e.g. [14, 39]. The branch-and-bound method proposed in [8] uses a linear func-
tion to represent the fuel consumption and a time-dependent start-up cost, but has a
exponential growth in the computational time with problem dimension.

More recently, several metaheuristic methods such as evolutionary algorithms
and hybrids of the them have been proposed, see e.g. [38, 10, 34, 7, 2]. These ap-
proaches have, in general, better performances than the traditional heuristics. The
most commonly used metaheuristic methods are simulated annealing [26, 34], evo-
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lutionary programming [18, 28], memetic algorithms [38], particle swarm optimiza-
tion [41], tabu search [25, 40], and genetic algorithms [19, 35, 9, 32]. For further
discussion and comparison of these methodologies, with special focus on meta-
heuristic methods, and other issues related to the unit commitment problem see the
very recent review by Saravanan et al [33].

Although the UC problem is a highly researched problem with dynamical and
multi-period characteristics, it appears that it has not been addressed before by op-
timal control methods, except in [13] as mentioned previously. In this work, the
authors have formulated the UC problem as a discrete mixed-integer optimal con-
trol problem, which has then been converted into one with only real-valued con-
trols. Here, we discuss formulations of the UC problem as an Optimal Control (OC)
model and propose a new optimal control modeling approach. The model derived is
a continuous one and only involves real-valued decision variables (controls).

The main contributions of the proposed modeling approach are twofold. Firstly,
since it allows decisions to be taken at any time moment, and not only a spe-
cific points in time (usually, hourly), it may render better solutions. It should
be noticed that the proposed approach allows for decisions about unit commit-
ment/decommitment and about power production variation at any moment in time.
Secondly, it no longer forces utilities to treat demand variations as instantaneous,
i.e. time steps. In addition, if one chooses to use the approximated hourly data,
as usual in the literature, the solution strategies (both regarding unit commit-
ment/decommitment and power production) of the proposed model will approxi-
mate the discrete-time solutions since actions are only required to be taken hourly.

The remaining of this article is organized as follows. In Section 2, the UC
problem is described and its mathematical programming formulation is given. The
mixed-integer optimal control formulation and the variable time transformation that
allows for rewriting it with only real-valued controls are given in Section 3. In Sec-
tion 4, we provide a detailed description of the continuous optimal control model
including only real-valued controls, which is proposed here. Finally, in Section 5 we
draw some conclusions and discuss future work.

2 The Unit Commitment Problem

The Unit Commitment Problem involves both the scheduling of power units (i.e., the
decision when each unit is turned on or turned off along a predefined time horizon),
and the economic dispatch problem (the problem of deciding how much each unit
that is on should produce). The scheduling of the units is an integer programming
problem and the economic dispatch problem is a nonlinear (real-valued) program-
ming problem. The UC problem is then as a nonlinear, non-convex and mixed inte-
ger optimization problem [9]. The objective of the UC problem is the minimization
of the total operating costs over the scheduling horizon while satisfying the system
demand, the spinning reserve requirements, and other generation constraints such
as capacity limits, ramp rate limits, and minimum up/down times.
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The objective function is expressed as the sum of the fuel, start-up, and shut-
down costs.

2.1 Mixed-Integer Mathematical Programming Model

The model has two types of decision variables. Binary decision variables u(1),
which are either set to 1, meaning that unit j is committed at time ¢; or otherwise are
set to zero. Real-valued variables y;(z), which indicate the amount of power pro-
duced by unit j at time ¢. For the sake of simplicity, we also define the auxiliary

variables T()"/ °I7(¢), which represent the number of time periods for which unit j
has been continuously on-line/off-line until time ¢.

Objective Function:
The objective function has three cost components: generation costs, start-up costs,
and shut-down costs. The generation costs, also known as the fuel costs, are con-
ventionally given by the following quadratic cost function.

Fi(yj(1)) =aj- (yj(t))> +b;-y(t) +cj, M

where aj,bj,c; are the cost coefficients of unit j.
The start-up costs, that depend on the number of time periods during which the
unit has been off, are given by

min, j min, j (2)
Sey if T T AT,

min, j

Suy, it Tl <T () <1l 4T,
Sj(t) =

where Sy ; and Sc,; are, respectively, the hot and cold start-up costs of unit j and
e 7f /'is the minimum uptime/downtime of unit j. The shut-down costs Sy; for
each unit, whenever considered in the literature, are not time dependent.

Therefore, the cost incurred with an optimal scheduling is given by the mini-
mization of the total costs for the whole planning period,

Minimize

Zl(Z{F v(t)) -ujt) +8;(2) - (1 —uj(t = 1)) -u;(t)} +Saj- l—u,())-uj(t—1)>.
3)

Constraints:
As said before, there are two types of constraints: the operational constraints and
the technological constraints. The first set of constrains can be further divided into
unit output range limit (equation (4)), maximum output variation, i.e. ramp rate
constraints (equation (5)), and minimum number of time periods that a unit must be

continuously in each status (on-line or off-line) (equations (6) and (7)); while the
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second set of constraints can be divided into load requirements (equation (8)) and

spinning reserve requirements (equation (9)).

Yminj-uj(t) <y;(t) <Ymax;j-u;(t), forr € {1,...,T} and j € {1,....N}. (4

—AP <yi(t)—yit—1) <A} forre{1,..,T} and j € {1,...,N}. (5

T7"(t) > Ty, » for each time ¢ in which unit j is turned off and j € {1,...,N}.

min, j>

(6)
Tj"ff(t) > Tm"f;{j, for each time 7 in which unit j is turned on and j € {1,...,N}.
(7
N
Y vi(0)-ui(t) > D(t),t € {1,...,T}. ®)
=1
N
Ymaxj-uj(t) > R(t)+D(t),t € {1,....,T}. )
=1

j=
The parameters used in the above equations are defined as follows:

T: Number of time periods (hours) of the scheduling time horizon;

N: Number of generation units;

R(t): System spinning reserve requirements at time #, in [MW];

D(t): Load demand at time ¢, in [MW];

Ymin;: Minimum generation limit of unit j, in [MW];

Ymax;: Maximum generation limit of unit j, in [MW];

T, ;: Cold start time of unit j, in [hours];

Tgﬁ{:’f . Minimum uptime/downtime of unit j, in [hours];

Ti‘a: Initial state of unit j at time O, time since the last status switch off/on, in

[hours];

TJ‘?{)f: Initial state of unit j at time O, time since the last status switch on/off, in

[hours);

A9%/UP;: Maximum allowed output level decrease/increase in consecutive periods

for unit j, in [MW].
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3 Discrete-Time Optimal Control Approach

In this section, we describe the work in [13], where a mixed-integer optimal control
model (OCM) is proposed to the UC problem. Although it is possible to address
optimal control problems (OCPs) with discrete control sets (see, e.g., [11, 24]), it
is computationally demanding. Thus, it was proposed to convert this model into
another OCM with only real-valued controls. The conversion process requires the
use of a novel variable time transformation that was able to address adequately sev-
eral discrete-valued control variables arising in the original problem formulation.
Finally, The transformed real OCM was transcribed into a nonlinear programming
problem to be solved by a nonlinear optimization solver.

3.1 Discrete-Time Mixed-Integer Optimal Control Model

The mixed-integer optimal control model has two types of decision/control vari-
ables. On the one hand, binary control variables u j(t), which are either set to 1,
meaning that unit j is committed at time t; or otherwise set to zero. On the other
hand, real-valued variables A j(t), which enable to control, by increasing or decreas-
ing, the power produced by unit j at time 7. We consider two types of state variables:
variables y;(r), which represent the power generated by unit j at time 7 and variables
T;’"/ %/ (1), which represent the number of time periods for which unit j has been
continuously on-line/off-line until time ¢. For convenience, let us also define the
index sets: T := {I,...,T} and J := {1,2,...,N}. The parameters related to the
problem data are as defined in the previous section. The UC problem can now be
formulated as a mixed-integer optimal control model.

Objective Function:
Minimize
T [N
Zi <Zl {F(j(0))uj(e) +S5(0) (1=t = 1))uj(t) +Saj - (1 —uj(e)) -ujlr — 1)})
=1 \j=

(10)
where the costs are as before.

The state dynamics:
The state dynamics in this model are as follows:

The production of each unit, at time ¢, depends of the amount produced in the
previous time period and is limited by the maximum allowed decrease and increase
of the output that can occur during one time period:

vi(t) =[yj(t—1)+A;(t)] .uj(t), forr € Tand j € J. (11)
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The number of time periods for which unit j has been continuously on-line until
time 7 is given by

TP (1) = [T7"(t — 1)+ 1] .u;(t), fort € T and j € J. (12)

The number of time periods for which unit j has been continuously off-line until
time ¢ is given by

T (1) = [r,f’-f-f(zf 1)+ 1] (1—uj(t), forreTand jel.  (13)

Pathwise Constraints:
The constraints are as before, except for the ramp rate constraints, and thus they
are given by equation (4) and equations (6) to (9). The ramp rate constraints, which
were given by equation (5) are now handled by the control constraints.

Aj(r) € [fA;’",A;‘p} forteTand j€J. (14)

3.2 The Variable Time Transformation Method

The idea here is to develop a variable time transformation in order to convert the
mixed-integer OCM into an OCM with only real-valued controls. The transforma-
tion of a mixed-integer optimal control problem into a problem with only real-valued
controls is not new, nor is new the general idea of a variable time transformation
method. See the classical reference [17] and also [37, 22, 23, 1, 21]. See also the
recent work [15] for a discussion on several variable time transformation methods.

Consider, for each unit j, a non-decreasing real-valued function 7 — 7;(¢). Con-
sider also a set of values 7, 7,,... such that when Tj(t) = T; for odd k we have
a transition from off to on for unit j, and when 7;(f) = 7 for even k we have a
transition from on to off. So, we consider that unit j is:

e On iij(l) S [f],fg)U[f3,f4)U...U[f2k,1,f2k);
o off if Tj(t) S [0,’?1)U[’1_72,’?3)U...U[’l_72k,’l_72k+1).

It might help to interpret 7; to be a transformed time scale and that the values
T1,T»,... are switching “times” in the transformed time scale. We can consider,
without loss of generality, that the values 7; are equidistant. Nevertheless, in real
time ¢, the distance between two events T; and 7Ty, can be stretched or shrunk
to any non-negative value, including zero, depending on the shape of the function

t—7(t).
To simplify the exposition, and without loss of generality, let us consider that
Ty — Ty—1 is constant and equal to 1, for all k = 1,2,.... In such case, unit j is:

o onif 7;(1) € [1,2)U[3,4)U...U[Rk—1,2k);
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o offif 7;(r) € [0,1)U[2,3)U...U[2k, 2k+1).

Now, consider the controls
w(t) €0,1], t=0,1,...,T—1,

that represent the increment from 7(¢) to 7(¢ + 1) such that

-1
T(t) =1+ ) w(k)
k=0
or

w(t)=1(t+1)—1(t), with 7(0)=1.

3.3 The Optimal Control Model with real-valued controls

We recall the index set J and redefine T to be more consistent with usual discrete-
time control formulations.

T:={0,...,T—1}and J:={1,2,...,N}.

In the same spirit, we redefine the control A;(z) for r € {0,...,7 — 1} to be the
amount of power generation incremented or decremented for the next time period
(rather than comparatively to the previous period).

Note that the controls are all real-valued and comprise:

A(r) € [—A;’",A;‘P],
wi(r) € [0,1].

Define the sets of time periods:
17" :={teT:1(t) € 2k—1,2k),k > 1},
off._
[0 = T\I}",
L2 = {r e T i) > 2k+ 1,75 — 1) < 2k+ 1,k > 0},

17 = {r € T tj(t) > 2k, 75t — 1) < 2k,k > 1}}.

Finally, the unit commotment problem can be formulated as an optimal control
problem, as follows:
Minimize

N
Zl Y Epie)+ Y s+ Y sq0) |, (15)
£

rely” tel’,.’ff>”” t€1;’">0ff
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subject to the dynamic constraints

Ti(t+1)=1(t) +w;(t) jel, teT,

") +1jed, el
T(t+1) =< ) / Iy
’ 0 jel, ey,
T (1) = T (1) +1jel, rely,
’ 0 jel, telp,
yi(t)+A;@) jel, 1€l
WU+1){0 jEJteﬁﬁ
) / 9

the initial state constraints

Tjan (0) — ‘jg (given),
Tjoff (0) = ijjgf (given),

0if 77 =0
. — J,0
T](O) { 1if T;j(r)l > O,

0 it 70 =0
yj(O) = . Ymin:.Y 1if T(;n 0
¥j0 € [Ymin;,Ymax;| if T/5 >0,

the control constraints
A1) € [—A;?”,A;"’} ,
wj(t) € [0,1],
and the pathwise state constraints
yj(t) € [Ymin;,Ymax;] jel, tel}",
Zy](t)ZD(t) t:1’27"'7T7
Jjel

Y Ymaxj(t) > R(t)+D(t) t=1.2,...,T,
jel

where Ymax(t) = Ymax; if t € I]",Ymax;(t) = 0 otherwise

Yi(t) € Wonin; max {Yyin, AY Y] jE Tt € I;}ff>on’

= Lmin,j

- >10l el rer!

min, j

Tj(m(l‘—l)> on jEJ, tel;m>off’

(16)

A7)

(18)

19)

(20)
2y

(22)

(23)

(24)
(25)

(26)
@7

(28)

(29)
(30)
€29
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3.4 Conversion into a Nonlinear Programming Problem

To construct the nonlinear programming problem (NLP), we start by defining the
optimization variable x containing both the control and state variables. That is

x=[A,w,T, T, T y|

with dimension (67 + 1) X N).

(We could have considered just the controls A, w together with the free initial
state y(0). An option which, despite having the advantage of a lower dimensional
decision variable, is known to frequently have robustness problems, specially in
optimal control problems with pathwise state constraints such as ours. For further
discussion see e.g. Betts [4].)

The objective function should be rewritten in terms of x: Minimize J(x) over x.

To facilitate the optimization algorithm, we separate the constraints that are sim-
ple variable bounds, linear equalities, linear inequalities and the remaining:

e upper/lower bounds: equations (24)-(26);
e linear equalities: equation (16);

e linear inequalities: equation (27);

e nonlinear equalities: equations (17)-(19); and
e nonlinear inequalities: equations (28)-(31).

Note that equations (20)-(23) are not implemented as constraints since the initial
values of these state variables are considered as parameters and not variables.
With these considerations the problem is formulated as the following NLP

Minimize _p7+1)xnJ (X)
subject to
ILB<x<UB
Aegx = by
Ainegx < bineg
8(x)=0
h(x) <0.

More specifically

Minimize over x
N

Jo=Y | X FeGio)+ Y s+ Y S0

j=1 IEI;.’" teloff>on tel;m>off

Subject to
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e lower bounds:
Aj(1) > —A%, fort € Tand j €],
wi(t)>0, jel, teT;
Ti(t) >0, jel, teT,
T;’"(t) >0, jel, teT,
177 (1) >0, jeJ (e,
yj(t)>0, jel, teT,

e upper bounds:

Aj(r) <A, jel, teT,
wi(t)<1, jel, teT;
rj(t)gT, jel, teT,
T(t) >2T, jel, teT,
T/ (1) >2T, jel teT,
yj(t) <Ymax;, jel, teT,

e linear equalities:
Ti(t+1)—7i(t) —wj(r)=0 jel, teT;

e linear inequalities:
Yjeyyj(t)=D() 20 1€T;

e nonlinear equalities:

() +1 ifjel, rely,

0 if jel, tel"ff

Teff(t+1>{Tfff(f>+1 tjeseer?
J 1f]e.,]l,telj0”,
yi(t)+4A;(t) ifjel, tel”,

{ if jeJ, tel”ff

T (t+1) =

yj(t—i— 1) =

and

e nonlinear inequalities:
yi(t)>Ymin; je€l, t€l,
YjcyYmax;(t) — R(t) —D(IS >0 reT,
}’j(f)—Ymin,-ZO jEJtEIOff>on
yj(t) _maX{Ymm ) jup} <0 jelre Ioff>on
Tjon(t— 1) Tom > () ] E,]] t610n>off

min,j —

Tjoff(tfl) T{)ff >0 ] GJ [GIOff>(m

min, j

Of course, since this (real-valued) NLP is a problem that originally was a MI-
NLP, it is still a very hard problem. Namely, it is a nonconvex problem and standard
NLP solvers will find just a local, not necessarily global, optimum. Nevertheless,
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this is very useful since it can be embedded, as a local search optimizer, into a
global search heuristic method.

4 Continuous-Time Optimal Control Approach

In this section, we develop a continuous-time optimal control formulation for the
unit commitment problem that uses only real-valued decision variables.
To introduce the ideas and concepts used in this formulation let us start by
analysing a specific and simple situation.
Consider a generation unit for which the minimum time it must be consecutively
on is 2 hours (7" = 2) and the minimum time it must be consecutively off is 3
Toff —

hours (7,,;; = 3). Furthermore, consider also the unit to be initially off-line. Let the

unit be turned off and turned on as soon as the elapsed time reaches 77" and Tr:{;f s
respectively. Such a strategy corresponds to the unit having the maximum number
of status switches. Thus, for a 24h period, we would obtain a profile as given in Fig.

1.

24

on

0 3 5 8 10 13 15 18 20 23
to . to t3 tg ts5 tg t7 tg tg

Fig. 1 Unit status, when the status switching strategy is as often as possible.

For the example just described, the times at which status switching occurs are
given by

L+ T ifiis even.

t+Tp0 ¢, ifiis odd,
liv1 = f
min, j’

All other feasible status switching strategies can be obtained from the one just
described by stretching any number of time intervals [t;,#;41) withi=1,...,S, where
S - the maximum number of status switches that can occur within the 24-hours
scheduling period is given by

S=1+2x (24DIV (T +TCl )) :

7 min, j

where DIV denotes integer division.
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The stretching magnitude ¢ in the time interval [#;,#;1) is bounded from below
by 1, since the interval is initially defined as small as possible; and from above by
[1,(24 —t;)/ Tonin], Where T is set to Toin.j OF Tmol’;f ; depending on wether i is odd
or even, respectively, which allows for reaching the end of the scheduling period. It
should be noticed that all switches occur at times t; < 24 — T,,,;,, with T,,,;,, as defined.

Using a convenient selection of the ;’s we can generate any admissible switch-
ing profile. For example, choosing o = [0, oy, ..., 00] = [1,2,1,2,1,2,1,1,1,1]
leads to the profile given in Fig. 2.

24

0 3 7 10 14 17 20
to t1 to t3 t t5 tg

Therefore, in any situation the computation of the switching times is given by

ot s odd
tiy1 = P
it ti+oyT% . if iis even.

min, j

4.1 Formulation

Let us define some parameters before introducing the formulation. When consid-
ering several units, the maximum number of switches is not the same for all units
since they may have different limits on the number of periods that must elapse be-
fore a switch is possible. The same is true for the maximum magnitude of the stretch.
Therefore and in order to have one single value for these parameters, we compute
upper bounds rather than their true value. By defining

T()(Hr()ff _ min{Ton 4+ T”ff }

J

min min, j min, j
we obtain a limit for the maximum number of switches as
min

S=1+2%24 DIV (T0"+”ff)

and for the maximum magnitude of the stretch of an interval as
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on TOff }

Smax = 24/m]1n{ min, j>* min, j

For convenience, let us also define the index sets:

I:={0,1,...,S} - switching times indexes,
J:={1,2,...,N} - generation unit indexes,

and the time horizon
T := [0, 24] - time horizon interval.

Decision/Control Variables:
The model has two types of control variables, since two types of decisions are taken.
On the one hand, one has to decide for how much time each unit is in each status,
that is the magnitude of stretch applied to each time interval for each unit, ¢; ;. On
the other hand, one also must decide on the amount of power production for each
unit at each time instant. In our case, we do this by deciding on the variation of the
production at each time instant &;(z).

o;j:  stretch magnitude applied to the time interval [t;, ;1) for unit j. These are
real-valued variables in the range [1,s,4y]-

6j(t) : rate of change (increase or decrease) for the production of unit j at instant
t. These variables are also real-valued an must be within [—-A4", A7,

State Variables:
The state variables characterize the system and are as follows.

t; j + i-th switching time of unit j;
u; j : Status of unit j in the interval [t;,7;41), (1 if the unit is on; 0 otherwise);

u j(t) : Status of unit j at instant ¢, (1 if the unit is on; 0 otherwise);
yj(t) : Power generation of unit j at instant ¢, in [MW];

Objective Function:
The objective of the UC problem is the minimization of the total costs for the whole
planning period, in which the total costs are expressed as the sum of fuel costs and
start-up and shut-down costs of the generating units. Therefore, the objective func-
tion is as follows:

Minimize

Z/OT (Fj (rj(0))uj(e) +8;(6) (1= wj(r = 1)) uj(6) + Saj- (1 —u(t)) -uj(t — 1)) dr.

jel

Dynamic Constraints:
We must define the unit status during each time interval. Unit j must have it status
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switched at the beginning of each interval [f;,#;41). Thus if in the interval [f;,41)
the unit was 1 (on), then in the interval [t;1,#42) it becomes O (off) and vice-versa.

uiprj=uij—1|, jeliel

The ending time instant of a time interval, which is the beginning of the next one,
is obtained by adding up the starting time instant with the length of the interval.

tivrj=tij+ [ Tom i+ Tl (1—wi )], jETiel

In addition, we also must define the power production at each time instant and,
for convenience, also the unit status at each time instant.

ui(t) =u;;, jelieltelttipr),

)= 0 ifuj(f):(),t T.ieJ
yilt) = yj(t,-)+f,§5j(s)ds,withi:max{i:t,-§t}7 ifuj(r)=1, ehred

Control Constraints:
Due to the mechanical characteristics and thermal stress limitations, the instanta-
neous output variation level of each online unit is restricted by ramp rate constraints,
both up and down.

8j(1) e [-Adm AY), jelteT.

The magnitude of the stretch is limited both from below and from above, since
one must assure that the Tn‘;;/ ?f ! are satisfied and that the scheduling does not go
beyond the scheduling horizon.

Q;j € [I,A], foriel,jel.

24—1t; e on .. of f Y.
with A = J T oy 1S 2= Tt o+ T (1= 7):
1 otherwise,

Pathwise State Constraints:
Each unit has maximum and minimum output capacity limits.
yj(t) € [Yminjuj(t),Ymaxu;(t)] jel, teT,

The power generated at each time instant must meet the respective load demand.

Yjeryj(t) =2 D(r) 1€T,
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The spinning reserve is the amount of real power available from on-line units net
of their current production level and it must satisfy a pre-specified value, at each
time instance.

YjcyYmaxj(t)u;(t) > R(t)+D(t) teT,

Initial State Constraints:
The initial status of each unit is given.

ug,j = InitialStatus;, jeJ.
Also

uj(O)zuo)j, jel.

The first switching interval starts at the beginning of the scheduling horizon and
thus

t,j=0, jel.

Finally, the power production of each on-line unit has to be within its capacity
limits.

v;j(0) € Yminju;o,Ymaxjujol, je€lJ.

The numerical solution of continuous-time optimal control problems has been a
well-studied subject for many decades [6] and also has been having recent devel-
opments and available solvers such as ICLOCS [12], BOCOP [5], ACADO [16].
Although the use of one of these solvers is recommended, an alternative is always
to discretize the problem, transcribe it into a nonlinear programming problem and
use directly an NLP solver.

The use of a continuous-time formulation for the UC problem has some advan-
tages: (i) the possibility of accommodating any changes in the data or parameters
that occur not an hourly basis, but at any time in between; (ii) in particular, the for-
mulation proposed can deal with continuous-time varying demand (which is more
realistic), resulting in an output strategy that responds with continuous-time vari-
ations; (iii) however, in case the demand and all remaining data varies only on
an hourly basis, the resulting output strategy will follow very closely the one ob-
tained with a discrete-time model; (iv) the complexity of the optimization problem
obtained is not increased, possibly being easier to find an optimal solution, since
the decision variables involved are all real-valued. It is well-known that real-valued
nonlinear programming problems are, in general, less difficult to solve than mixed-
integer nonlinear programming problems.

5 Conclusions

We have addressed the UC problem, a well-researched problem in the literature,
which is usually formulated using a mixed-integer nonlinear programming model.
Here we have explored the formulation of this problem using optimal control mod-
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els. Previous works on an optimal control approach to the UC problem, as far as
we are aware of, are limited to the work in [13], that uses a discrete-time optimal
control model.

We have proposed here a formulation of the UC problem using a continuous-time
optimal control model. An interesting feature of the continuous-time formulation is
the fact that, contrary to the usual mixed-integer programming models in the litera-
ture, all decision variables are real-valued, which enables the use of more efficient
optimization methods for its solution.

Additional advantages of the continuous-time optimal control formulation are
the possibility of dealing more accurately with data that is provided with irregular
or fast sampled time intervals, or even continuous-time varying. In particular, this
formulation can deal appropriately with continuous-time varying demand data.
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