
Oliveira and Barbosa Journal of Software Engineering Research
and Development (2015) 3:6
DOI 10.1186/s40411-015-0021-2

RESEARCH Open Access

Self-adaptation by coordination-targeted
reconfigurations
Nuno Oliveira* and Luís S Barbosa

*Correspondence:
nuno.s.oliveira@inesctec.pt
HASLab - INESC TEC & Universidade
do Minho, Braga, Portugal

Abstract

Background: A software system is self-adaptive when it is able to dynamically and
autonomously respond to changes detected either in its internal components or in its
deployment environment. This response is expected to ensure the continuous
availability of the system bymaintaining its functional and non-functional requirements.

Methods: Since these systems are usually distributed, coordination middleware
(typically a centralised architectural entity) plays a definitive role in establishing the
system goals. For these reasons, adaptations may be triggered at coordination level,
issuing reconfigurations to such a coordination entity. However, predicting when
exactly reconfigurations are needed, and if they will lead the system into a non
disruptive configuration, is still an issue at this level. This paper builds on a framework for
formal verification of architectural requirements, either from a qualitative or quantitative
(probabilistic) point of view, which will leverage analysis and adaptation prediction.

Results: In order to address the mentioned difficulties, it is discussed both a model
that lays down reconfiguration strategies, planned at design time, and a process that
actively uses such a model to trigger coordination-targeted reconfigurations at run
time. Moreover, a cloud-based architecture for the implementation of this strategy is
proposed, as an attempt to deliver adaptation as a service. A case study is presented
that assesses the suitability of the approach for real-world software systems.

Conclusions: We highlight the use of formal models to represent the coordination
layer and necessary reconfigurations of a software system, and also to predict the need
for (and to trigger) adaptations.

Keywords: Self-adaptive software; Feedback loop; Reconfiguration; Software
coordination; Service-oriented architectures

1 Introduction
Emergency call-centers facing unexpected peaks of activity, surveillance systems whose
CCTV devices have to operate under changeable environment conditions, or applica-
tions formobile devices constrained by limited battery autonomy, are examples of systems
which have somehow to adapt to change along a normal operating cycle. The expres-
sion self-adaptive qualifies a behaviour which has to respond at run time to contextual
changes, detected either internally or externally, in order to keep meeting its own func-
tional requirements and general service level agreement (SLA), ensuring the relevant
quality of service (QoS) attributes (Garlan et al. 2009; Oreizy et al. 1999).

© 2015 Oliveira and Barbosa. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

mailto: nuno.s.oliveira@inesctec.pt
http://creativecommons.org/licenses/by/4.0

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 2 of 31

This entails the need for some degree of introspection. Actually, such systems should be
able to keep track of their internal interconnection structures, attributes, execution envi-
ronment, requirements and reference performance levels; but above all, to observe and
detect changes in these elements. Such observations, suitably processed (e.g., by compari-
son to reference levels assigned to measurable variables) will be responsible for triggering
adaptations.
This process, which spans from acquiring information to check for relevant changes, to

actually enacting adaptations, is known as the control or feedback loopmodel in the litera-
ture associated to control theory, autonomic computing, robotics or artificial intelligence
(Gat 1998; Nilsson 1980). Its implementation involves four components responsible for
monitoring, analysing, planning and executing changes, as defined in the MAPE(-K) ref-
erence model (IBM Corp 2004; Kephart and Chess 2003). In self-adaptive software this
model is realised by monitoring the environment and probing the system’s attributes;
analysing the data collected to infer situations in need for adaptation; deciding the adapta-
tion strategy; and finally, enacting reconfigurations to enforce the system’s adaptation into
acceptable (non disruptive) configurations (Brun et al. 2009; Dobson et al. 2006; Villegas
Machado et al. 2011).
Self-adaptive systems are often distributed, component-based, with highly demand-

ing requirements. Coordination middleware, typically a centralised architectural entity,
defines the interaction between such components. This is responsible for establishing
the overall system goals by covering its requirements (Arbab 2004). For this reason,
the coordination layer of these systems plays a fundamental role in the adaptation pro-
cess. Concretely, coordination models (e.g., Reo (Arbab 2004), BIP (Basu et al. 2011),
among others) are operative in the generation of introspective/reflective abstractions
of the whole system from its coordination layer. This highlights the importance of
coordination-targeted reconfigurations.
But deciding and applying reconfigurations is not an easy task. Mainly, this is due to

the unpredictable, evolutive nature of the deployment context, which precludes know-
ing with exactitude when a reconfiguration has to be applied, and predicting its outcome.
Reconfigurations can be planned in advance provided that a number of relevant context
attributes are identified and translated into measurable variables. Suitable ranges of val-
ues for these attributes may help to plan (at design time) configurations that will, most
likely, drive the system into stable states meeting specific sets of conditions. Neverthe-
less, assumptions made at design time may not apply directly after deployment. On the
other hand, unpredictable contexts may trigger reconfigurations that were not intended
to occur because, for example, they may violate some key functional properties of the
original design. Triggering reconfigurations must, therefore, take into account, not only
the expected QoS levels, but also functional properties which are identified as design
invariants.
We have recently proposed a framework for modelling coordination-targeted reconfig-

urations and verifying their properties in the presence of contextual changes (Oliveira and
Barbosa 2013a, b). This work is based on a generic coordination model encompassing a
graph whose edges are regaded as connectors specifications. The properties of interest
are relative to behaviour, classifying reconfigurations w.r.t behavioural changes provoked
to the coordination model; or to structure, namely to the topology of the underlying coor-
dination model. Structural properties are expressed in a specific variant of hybrid logic

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 3 of 31

(Blackburn 2000), interpreted over the graph representing the interconnection network.
We have also introduced a quantitative behavioural model (Oliveira et al. 2014) for this
coordination style based on Markov chains (Hermanns 2002). This opened the possibil-
ity to assess and compare reconfigurations along a quantitative (actually, a probabilistic)
reasoning dimension.
In broad terms, this paper focuses on the adaptability quality attribute for software

architectures, often regarded as a major one in architectural design (Ciraci and van den
Broek 2006; Losavio et al. 2003). In particular, the paper proposes a self-adaptation strat-
egy, following the MAPE reference model. The novelty is the introduction of a model
of coordination-targeted reconfiguration strategies, planned at design time. This model
is actively used to decide and trigger adaptations at run time. The model’s key ingre-
dient is a transition system whose states are the configurations originally envisaged for
the architecture, and edges represent reconfigurations, i.e., paths from a configuration to
another.
The work reported here extends the original SBCARS’2014 paper (Oliveira and Barbosa

2014) as follows:

• a state transfer strategy for dynamic reconfigurations is formalised,
• the self-adaptation strategy is detailed,
• an architecture to deliver adaptation as a cloud-based service is proposed.

The envisaged adaptation strategy is discussed in Section 4. Before that, in Section 2, the
underlying framework for reconfigurations is introduced; and in Section 3 this is further
extended to cope with dynamic reconfigurations, notably with the consistent state trans-
fer problem. A detailed example is discussed in Section 5. Section 6 proposes a refactoring
of the adaptation strategy in order to deliver it as a cloud-based service for adaptation.
Section 7 revises relevant related work; and finally, Section 8 concludes and proposes
topics for future work.

2 A framework for architectural reconfiguration
A software architecture is often represented as a graphwhose vertices are labelled by com-
ponents and interconnected by adapters, wrappers, connectors or other forms of glueware
depicted in the edges (Wermelinger 1999). In this setting, architectural reconfigurations
mainly target components and connectors by adding, removing or substituting them as
blocks (Hnětynka and Plášil 2006). However, in typical service-oriented systems, the coor-
dination layer becomes prominent. Therefore, our focus will be the reconfiguration of
connectors and the communication protocols they implement.

2.1 Modelling

As proposed in (Oliveira and Barbosa 2013a, b), software architectures are regarded as
graphs of communication channels, where nodes are interaction points and edges are
labelled with an identifier and a type which encodes a concrete coordination policy. These
graphs are called coordination patterns and concretely model service orchestration. They
are abstract representations of software connectors and therefore independent of any
concrete coordination model. Each coordination pattern is characterised by its input and
output ports and the internal interaction of channels, which provide them with a specific
behaviour. The set of all coordination patterns is denoted byP . Fig. 1a depicts an example

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 4 of 31

Fig. 1 Coordination patterns example. The Sequencer (a) and the ParallelSplit (b). White circles denote
interface ports while black circles stand for internal nodes

of a coordination pattern which allows for a sequential interaction on output ports a and
b after a stimulus is received on input port i. Fig. 1b, in turn, depicts a coordination pat-
tern that ensures a parallel interaction on output ports a and b, after being stimulated on
input port i. For concreteness, the Reo framework (Arbab 2004) has been adopted to type
channels and to represent them graphically.
In this context, a reconfiguration is defined as any change made to the structure of a

coordination pattern. Such changes are guided by the application of primitive operations
that manipulate the pattern’s basic elements. An algebra of reconfigurations was defined
based on the following primitive reconfiguration operations: constπ , parπ , joinN , splitn
and removec, where indexes represent parameters: π is a coordination pattern, N is a
set of nodes, n is a node and c is a channel identifier. The set of primitive operations is
denoted by Prim.
These operations are applied sequentially to a coordination pattern. An intuitive

description of their behaviour is as follows: constπ substitutes πi by π ; parπ sets π in
parallel with πi (which are assumed to be completely disjoin), but does not establish any
connections between the two; joinN connects all nodes in N (that exist in πi) into a sin-
gle one; splitn, as its name suggests, performs the inverse operation; and, finally, removec
removes the channel identified by c from πi.
These primitives may be composed sequentially to yield complex and yet reusable

constructions referred to as reconfiguration patterns. For instance, the implodeC pat-
tern, when applied to a coordination pattern πi, removes all channels in set C from πi
(applying the remove primitive recursively over C) and then reconnects (with join) the
resulting ports. Fig. 1b shows the result of applying implode{s3} to the sequencer pattern.
The interaction at ports a and b becomes parallel, instead of sequential. The reader is
referred to (Oliveira and Barbosa 2013a, b) for a detailed description to this algebra of
reconfigurations. The set of all reconfigurations is denoted byR.

2.2 Reasoning

Often it becomes necessary to rule out reconfigurations that lead to system states
which fail to preserve some key functional requirements of a system measured either
in terms of behavioural or structural properties. The ability of inspecting these proper-
ties is, therefore, mandatory when dealing with adaptable architectures. Next we discuss
three perspectives on reasoning about reconfigurations: behavioural, structural and
quantitative.

2.2.1 The behavioural perspective

In order to reason about reconfigurations from a behavioural perspective it is necessary
to fix a concrete semantic model for coordination patterns. This must encompass suitable

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 5 of 31

notions of observational equivalence and refinement (often encoded as bisimulation and
simulation relations), which are required to compare behaviours, typically before and after
reconfiguration processes.
In this framework, reconfigurations are classified as (i) unobtrusive, when the original

behaviour is completely preserved; (ii) expansive, when new behaviour is added, but still
preserving the original; (iii) contractive, when part of the original behaviour is removed;
and (iv) disruptive, when the original behaviour or part of it is not preserved. In practice
these classifications are made w.r.t. a specific coordination pattern and the underlying
semantic model. As an example, the reconfiguration implode{s3} is disruptive w.r.t. the
sequencer coordination pattern (c.f., Fig. 1) and taking Reo automata (Bonsangue et al.
2012) as a concrete semantic model.

2.2.2 The structural perspective

For structural reasoning, on the other hand, the model is the (underlying graph of the)
coordination pattern itself. This is taken as the (Kripke) structure (Blackburn et al. 2001)
for interpretation of a propositional hybrid logic (Brauner 2010) in which structural prop-
erties are expressed. A typical example of a structural property is the requirement that
a synchronous channel has to be followed by a channel with some buffering capacity.
Sentences in theis hybrid logic are given by the following grammar:

φ ::= i | ¬φ | φ1 ∧ φ2 | [K]φ | �K�φ | @iφ

where i is a nominal (a propositional symbol that is true at exactly one node of the coordi-
nation pattern); constants true, false and the boolean connectives are defined as usual; K
is a set of channel types (abbreviations ‘−’ and ‘−t’ refer to the whole set of channel types
and that set but t, respectively). Modalities [K]φ and �K�φ quantify universally over the
edges of the coordination pattern and express properties of the outgoing (respectively,
incoming) connections from (respectively, to) the node at which the formula is evaluated.
Their duals, 〈K〉 = ¬[K]¬ and 〈〈K〉〉 = ¬�K�¬, define existential quantification over the
edges of the pattern. The satisfaction operator @i redirects the evaluation of a formula to
the context of a node named by nominal i.
As mentioned above, this logic is able to express rather sophisticated (structural)

requirements. For example, requirement “communication through the input port is made
asynchronous” is represented by @i〈〈−〉〉false → @i[fifo] true. Here, i is a nominal refer-
ring the node i in the patterns of Fig. 1. Indeed the formula says that if the node identified
by i is an input port (i.e., it has no incoming connections, formally @i〈〈−〉〉false) then
all outgoing channels are of type fifo, where fifo represents a buffered (asynchronous)
channel.

2.2.3 The quantitative perspective

Finally, to introduce quantitative reasoning into the framework the Kripke structure
derived from the underlying coordination pattern is analysed from a stochastic point of
view. As a general strategy this entails the need for a stochastic model for software con-
nectors. In (Oliveira et al. 2014) we have proposed a compositional, quantitative semantic
model for Reo like connectors, based on interactive Markov chains (IMC) (Hermanns
2002; Hermanns and Katoen 2010), from which basic features (e.g., compositionality and

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 6 of 31

the existence of suitable notions of bisimilarity) are inherited. Stochastic coordination
patterns and their reconfigurations can thus be analysed through well-known and reliable
tools for stochastic processes, namely IMCA (Guck et al. 2012), CADP (Garavel et al. 2012)
and PRISM (Kwiatkowska et al. 2010).
It is worth noting that a stochastic semantics can be adapted both for behavioural

(regarding connectors as stochastic devices, as in (Moon et al. 2014; Oliveira et al. 2014))
and structural reasoning (regarding the coordination pattern itself as a weighted tran-
sition system). This reduces the number of model-to-model transformations, languages
and tools for expressing and verifying architectural requirements, and consequently, the
number of assets used in analysis. Henceforth, the set of analysable assets will be denoted
byA.

3 Ensuring consistent dynamic reconfigurations
The application of reconfigurations to the architecture of a software system at run-
time is a major and non-trivial research problem. Mainly so because reconfigurations
have to be transparently applied, while the exact system execution state in which a
reconfiguration is required (henceforth referred to as the interrupted state), is hardly
known a priori. The qualifier transparent above means that the system has to change
its internal configuration without service disruption during and after a reconfigura-
tion process. This entails the need for (i) the atomic application of reconfigurations
with roll-back mechanisms triggered when the application fails; (ii) resuming the exe-
cution of the system in a state that is consistent (as much as possible) with the inter-
rupted state; and (iii) keeping the system in line with its functional and non-functional
requirements.
The framework revisited in Section 2 mitigates some of these problems. Require-

ment (i), for example, is met because primitive reconfigurations are atomic low-level
operations amenable to be rolled-back, provided the existence of associated recon-
figuration monitoring mechanisms. The same happens in case (iii) due to the meth-
ods provided for analysis (i.e., verification of structural, behavioural and probabilistic
properties) and comparison of reconfigurations, which can be exploited from a static
perspective.
But, certainly, the framework does not support requirement (ii), since it does not

deal explicitly with dynamic application of reconfigurations. From a static prespec-
tive, the interrupted state is either ignored or always assumed to be the initial one.
After a reconfiguration, the system is again in its initial state. For the overall analy-
sis of the system properties this approach is reasonable. Consequently, ensuring system
consistency from a static perspective of reconfigurations is not a challenge. It must
be taken seriously, though, when dynamism enters the equation. The unpredictable
evolution of the (relevant properties of the) deployment environment may raise the
need for reconfiguration at any moment in time, regardless of the overall system
state.
In the sequel we propose a simple approach to consistently transfer state between

configurations. This builds on an underlying automata-based semantic model of the
coordination pattern, enriched with symbolic state annotations. The enacting of reconfig-
urations is assumed to occur when the system enters a quiescent state, as usual in practice
(Kramer and Magee 1990).

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 7 of 31

3.1 A symbolic approach to state transfer

As mentioned above, reconfigurations in this framework target the coordination layer of
a system, modelled through coordination patterns. These patterns exhibit behaviours in
some specific semantic model, typically automata-based, defined by the software archi-
tect. However, in order to define a strategy for consistent state transfer, it is necessary that
these automata are enriched with a symbolic representation of state data. In the sequel
we continue considering Reo for concretely typing the edges of a coordination pattern,
and we take port automata (Krause 2011) (for its simplicity) as the underlying semantic
model.
Symbolic annotations are generated by the following grammar S :

s ::= ς | ¬s | s ∧ s

where ς is an atomic symbolic state. An atomic symbolic state refers to the identifier of
an edge in the coordination pattern to which data is assigned. In the concrete case of Reo,
we use the identifiers of the coordination pattern edges typed with a fifo channel, as this
is the only stateful channel considered in Reo.
Notice that, although the notation above is borrowed from Logic, connectives ¬ and ∧

have a specific meaning here. Thus, ¬ς means that the internal state ς of the pattern has
no data assigned (and therefore can be omitted from the formula), and ς1 ∧ς2 means that
both states have data in the context of the pattern. Moreover, it is asserted that

• ¬ς1 ∧ ς1 = ¬ς1
• ¬(ς1 ∧ ς2) = ¬ς1 ∧ ¬ς2.

Additionally, notation ⊥π is used to express that there is no data in any internal state of
pattern π and �π for its dual. The index π can be omitted when clear from the context.

Definition 1 (Symbolic Port Automata). A symbolic port automatonAς is an automa-
ton (Q,P,→, q0), where Q ⊆ S is a set of symbolic states, P is a set of ports, q0 ∈ Q is the
initial state, and →⊆ Q × 2P × Q is a transition relation.

A transition (q, {a, b, ...}, p), written as q {a,b,...}−−−−→ p, means that the system evolves from
state q to state p when ports a, b, ... can interact synchronously. Notation �π�ς is used,
henceforth, to refer to the symbolic port automaton of coordination pattern π .
As an example, consider the ParallelSplit coordination pattern in Fig. 1b. The state space

of the underlying symbolic port automaton is Q = {⊥, s1}, or optionally Q = {¬s1, s1}.
On the other hand, the state space of the symbolic port automaton for the Sequencer

coordination pattern (Fig. 1a), would be Q = {⊥, s1, s3,�} or optionally Q = {¬s1 ∧ ¬s3,
s1 ∧ ¬s3,¬s1 ∧ s3, s1 ∧ s3}. The corresponding port automata for the Sequencer and the
ParallelSplit patterns are depicted in Fig. 2 (top and bottom, respectively). On the other
hand, auxiliary operation IS(�π�ς) returns the initial state of the symbolic port automaton
of coordination pattern π . Whenever π is the empty coordination pattern, IS returns the
general symbolic state ⊥π . The state transfer operation is defined as follows,

Definition 2 (State Transfer). Let π be a coordination pattern, Sr ∈ S the symbolic
interrupted state for reconfiguration r = {r0, r1, . . . , rn} (where each ri is a reconfiguration

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 8 of 31

Fig. 2 State transfer upon dynamic reconfiguration. Port automata for the Sequencer (top) and ParallelSplit
(bottom) coordination patterns

primitive). The state transfer operation for applying r to π in state Sr, denoted by �π ,r,Sr ,
is inductively defined as�π ,r0,Sr ∧ �π ,{r1,...,rn},Sr , where for each ri ∈ Prim:

�π ,ri,Sr=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IS(�π ′�ς) if ri = constπ ′

Sparπ ′ ∧ IS(�π ′�ς)

Sremovec ∧ ¬c if Tc
π ∈ {fifo}

Sri otherwise

and Tc
π retrieves the type of the channel c in the coordination pattern π .

This can be generalised as follows. Assume a reconfiguration r; a (possibly empty) coor-
dination pattern πin formed either by (i) all patterns introduced by parc primitives in
r or (ii) the pattern introduced by the last constc primitive and all patterns introduced
by the sequent parc primitives in r; a coordination pattern πout as the result of apply-
ing r to π ; and finally R(π ,πout) as the set of stateful channel names removed during the
reconfiguration. Then,

Sr ∧ IS(�πin�ς) ∧ ¬
∧

R(π ,πout)

is the generalisation of�π ,r,Sr . The state obtained from this operation is referred to as the
resuming state.

3.2 An application example

Consider the Sequencer coordination pattern of Fig. 1a as the model for the coordination
layer of a running system. In certain situations (e.g., when servers are overloaded with
user requests) the system was designed to evolve into a parallelised provisioning of its
services, therefore adopting a ParallelSplit configuration for its coordination layer. This
involves the application of an implode{s3} reconfiguration to the original pattern.
Since the system is running, and the contexts which trigger such a reconfiguration are

unpredictable, it is necessary to take the consistency of the system into consideration.
This entails the need for the correct transfer of the state to the new configuration. It is
assumed (for illustration purposes) that the reconfiguration process does not fail and that
the obtained configuration will maintain the invariant properties of the system.

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 9 of 31

Consider the port automaton for the Sequencer coordination pattern as depicted in
the first row of Fig. 2. Four replications of the automaton are presented, representing the
four possible states (circled with dashes) in which the implode{s3} reconfiguration can be
issued. After reconfiguration, such states must be restored if possible.
The resuming states in the context of the ParallelSplit port automaton are depicted as

shaded circles. The tables between the automata present values for Sr , the state inter-
rupted for application of reconfiguration r = implode{s3}; I, the initial state of the
structure added to the pattern; and R, the conjunction of the identifiers of stateful chan-
nels (fifo channels in this case) removed from the original pattern. These are the necessary
ingredients to apply the general state transfer operation in order to obtain the desired
resuming state.
Recall that the implode{s3} operation may be translated into the sequence of primitives

r =
{
removes3 , join{cd,f }

}
. Therefore, the only statefull channel removed is exactly s3,

thus R = ∧
R(π ,πout) = s3, and no patterns are added to the original one, thus I =

IS(�πin�ς) = ⊥πin . For the latter, since all the patterns added by par{cd,f } are disjoint from
the original pattern, then all symbolic states negated in ⊥πin are different from the ones
in the original pattern.
Let us now discuss the four situations depicted in Fig. 2, from left to right, in more

detail. In the first situation the reconfiguration is applied when the pattern is in its initial
state. In this case such state is⊥, meaning that no data is assigned to the statefull channels
of the pattern. Thus, the resuming state is still ⊥ in the new configuration. In the second
situation the reconfiguration is applied when the system is in state s1. Hence, the resuming
state is s1 ∧ ⊥πin ∧ ¬s3 = s1.
There are situations, though, in which it is not possible to find a suitable resuming

state on the new configuration. When such is the case, the usual approach is to start the
execution of the reconfigured system from its initial state. Our approach is more com-
prehensive on this aspect: it automatically delivers the state that best approximates the
desired one. For instance, in the third situation the resuming state should be s3. But,
since s3 is removed, the best approximated state in the port automaton of ParallelSplit
is the initial ⊥ = s3 ∧ ⊥πin ∧ ¬s3. For the same reason, in the fourth case, the inter-
rupted state can not be resumed as is. However, in this case, the best approximated state
is s1 = s1 ∧ s3 ∧ ⊥πin ∧ ¬s3.

4 Self-adaptation strategy
The self-adaptation strategy proposed in the sequel is organised around two main
phases. One is offline and concerns the planning of possible reconfigurations by the
software architect. The other is online and focuses on the autonomous selection of
reconfigurations to adapt a running system as part of a monitoring feedback loop.

4.1 The offline phase: planning reconfigurations

At this phase the architects have a preponderant role in preparing adaptation assets that
in the online phase are autonomously used. One of these assets is a faithful model of the
system architecture. This is modelled by coordination patterns (as discussed in Section 2)
and constitutes the initial specification of the system. It is also in this phase that the sys-
tem (functional and non-functional) requirements are encoded into verifiable properties
targeting behaviour, structure and QoS. The set of all properties over the system and the

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 10 of 31

environment is denoted by Prop. In fact, this set is divided into four parts containing
functional (FUN) and non-functional (QoS) properties, system generic properties (SYS)
and environment specific properties (ENV). Upon these properties, the architect defines
the adaptation logic as a set of constraints.

Definition 3 (Constraint). A constraint is a triple (φ,β , υ), where φ ∈ Prop; β is a
boolean operator; and υ ∈ R ∪ B is the expected value for the conjugation property-
operator.

The set of all possible constraints will be denoted by �. Constraints and their utility is
further addressed in Section 4.3.
The final asset from this phase is concerned with preparing (modelling and analysing)

reconfigurations. The architects plan them by taking into account both the system
requirements and possible ranges of values for the attributes that characterise its environ-
ment. This leads to a set of possible configurations and reconfigurations with a depen-
dency relation between them. Such a dependency relation is captured by a reconfiguration
transition system (RTS). Formally,

Definition 4 (RTS). A RTS is a tuple (C,→, ki), where C ⊂ P × 2� × 2A is a set of
configuration states, ki ∈ C is the initial configuration state and →⊆ C × R × C is the
transition relation.

A RTS is, in essence, a labelled transition system. Transitions from each state κ are
labelled with the reconfigurations that can be applied from there. States represent valid
configurations of the deployed systems. Each state is actually composed of a coordination
pattern; a set of state-specific constraints, which enable finer decisions (details further in
Section 4.3); and a set of necessary assets for the analysis e.g., PRISM specifications and
symbolic port automata. Note that these models are computed in this phase in order to
avoid their inherent performance overheads, later, at runtime.

4.2 The online phase: monitor feedback loop

The online phase consists of a monitor feedback loop (which springs from traditional
approaches (IBM Corp 2004; Kephart and Chess 2003) built upon the reconfiguration
framework presented in Section 2. Fig. 3 depicts its main elements.
We refer to this as a feedback loop based on a RTS, because the transition system of

reconfigurations is a first-class entity in our approach.
Globally, our implementation of a feedback loop requires the following assets: (i) a RTS;

(ii) a model of the deployed system; (iii) a mapper, which maps concrete connections to
services to the logical ports of the model; (iv) the instant observations (measures) of the
system properties; (v) a pool of candidate configurations (and their analysable assets); (vi)
the reconfiguration framework for reasoning about the possible reconfigurations; (vii) the
properties of interest of the system and (viii) the services of tools for quantitative analysis
of the configuration.
Three invariants assert that (a) the current state (i.e., the current configuration) of a RTS

always points to the current configuration of the system architecture; (b) the current state
of the symbolic port automata (within the current state of the RTS) reflects the current

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 11 of 31

Fig. 3 Feedback loop based on a reconfiguration transition system

execution state of the system; and (c) the pool of candidate configurations consists of the
models obtained from the current state by a single-step transition.
In the sequel we detail how the three main components (monitor, planner and executor)

work together, resorting to the above mentioned assets, to achieve adaptability.

4.2.1 Monitoring

Themonitor component aggregates data from the deployment environment and the sys-
tem itself. Probes are assumed to collect different sort of data, depending on the variables
that drive the adaptation. Latency, throughput, bandwidth, number of clients, number
of servers or type of connection (e.g., wifi, bluetooth, GSM) are typical variables. The
monitor uses the information from the mapper to associate raw data from the system
to the model, which is then used as-is by the planner component. Fig. 4 shows a UML

sequence diagram which describes the interaction between these elements.

Fig. 4 Sequence diagram for theMonitor component

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 12 of 31

4.2.2 Planning

The planner has two components: the analyser and the decider, that work together to plan
themost adequate adaptation to the given context. These components rely on the features
of the architectural reconfiguration framework (presented in Section 2) for formally ver-
ifying the functional and non-functional properties of the architecture. Fig. 5 shows the
sequence diagram for such a component. Therein, FPChecker and NFPChecker entities
refer, respectively, to interfaces for the suitable functional and non-functional property
analysing services.
In stepmarked with (1) the decider uses the RTS for picking all the configurations reach-

able from the current state. This action creates a pool of candidate configurations along
with their pre-compiled analysable assets. In step marked with (2), the analyser reduces
the pool by discarding configurations that fail to meet the required functional properties.
These two steps are performed only once each time an adaptation occurs, or every time
the functional properties of the system change.

Fig. 5 Sequence diagram for the Planner component

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 13 of 31

Then, in the periodic loop marked with (3), the analyser incorporates the received
managed data into the analysable assets of each configuration in the pool. This is used
to check for non-functional properties of the current configuration, taking advantage of
suitable quantitative analysis tools. Whenever non-functional properties fail, a reconfigu-
ration is triggered. At this moment, in the loop marked with (4) the decider is responsible
for choosing a suitable configuration (and associated reconfiguration operation) from the
pool to embody the adaptation step. This choice, which is part of what we call the trig-
gering of a reconfiguration, is based on the results of the (qualitative and quantitative)
analyses performed.

4.2.3 Execution

The executor component receives the reconfiguration selected and applies it to the run-
ning system. In particular, it computes the resuming state by resorting to the symbolic
port automata of the current configuration, which was derived at design time, and trans-
lates it, along with the selected reconfiguration, into an executable reconfiguration. This
script is then applied to the system. This is done resorting to a Reconfigurator entity that
is associated to the framework presented in Section 2. A Reflector entity, awaits for the
system to reach a quiescent state; when such a state is attained, it makes the system reflect
the changes by applying the reconfiguration script.
Concurrently, a sequence of updates are made: the system model is substituted by the

selected configuration; the state of the RTS is updated accordingly, to meet the first feed-
back loop invariant; and finally, the candidate configurations in the pool are substituted
by new candidates, computed in the new system’s state by the decider component (c.f.,
Fig. 5).
Figure 6 depicts the sequence diagram for the Executor component, detailing the

description above.

4.3 Triggering of reconfigurations

Usually, a reconfiguration of a system is enacted whenever a non-functional property fails,
violating the SLA contract. However, this vision is not always enough since the company

Fig. 6 Sequence diagram for the Executor component

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 14 of 31

owning the adaptable systemmay have other objectives besides providing the agreed SLA.
For instance, reducing the operational costs of the system or agreeing to new functional
requirements may constitute part of these objectives. Actually, in the approach proposed
here, the adaptation triggering is lead by a number of constraints reflecting both the
objectives of the company w.r.t. the system and, consequently, the adaptation logic.

Definition 5 (Trigger Constraint). Let c1, . . . , cn ∈ �. A trigger constraint is a boolean
formula in disjunctive normal form, c1 ∧ . . . ∧ cn.

For instance, (QoS.p,>, 100) ∧ (SYS.c,min, true) ∧ (FUN.s, eval, true) defines a trigger
constraint that enacts an adaptation when the measure for the non-functional property p
is not above 100, system specific property c is not the minimum (when compared to the
same property of candidate configurations) and functional property s does not eval’uate
to true. Prefixes are omitted when the properties provenance is clear from the context.
Once a trigger constraint is violated, the adaptation is unavoidable. But choosing a suit-

able new configuration is a complex task. It may even be non-deterministic or lead the
system to an (infinite) chain of reconfigurations. To avoid this, it is necessary to define a
base strategy to direct the choice of such configurations. Formally,

Definition 6 (Filter). Let c11 , . . . , c1n , c21 , . . . , c2m , . . . , ck1 , . . . , ckl ∈ �. A filter is a non
empty, finite sequence of finite sequences

〈〈c1, . . . , c1n〉, 〈c21 , . . . , c2m〉, . . . , 〈ck1 , . . . , ckl 〉〉

In the sequel parenthesis are dismissed to simplify notation. The elements of a filter are
separated by ‘|’.
A filter is used to discard, in sequence, candidate configurations that do not hold

the constraint property. For example, the filter (composed of just the mandatory part)
(QoS.p,>, 105), (QoS.q,max, true) discards, in a first step, candidate configurations that
do not deliver non-functional property p above value 105 and, in a second step, it
takes (from the remaining configurations) the one that delivers the maximum value for
property q.
However, in some situations the filter may either discard all configurations or more than

one configurationmay prevail. In these cases it is possible to add optional filters to be used
whenever the previous filters do not find a suitable configuration. Consider, for instance,

(QoS.p,>, 105), (QoS.q,max, true)|(QoS.p,>, 95).

In the case that no configuration is able to deliver a value above 105 for property
p, and the second constraint is not able to pick a single configuration with a maxi-
mum value for property q, then the optional filter (the one after ‘|’) is applied to all the
pool of configurations and it will discard those that do not deliver a value above 95 for
property p.
Extra optional filter elements may be added to prevent that none or more than one con-

figuration remains. If however still multiple configurations prevail, the default is to select
the first one in a ranking that contemplates the results for a prioritisation of require-
ments. However, for an even finer and controlled selection of a suitable configuration,

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 15 of 31

constraints can be specified for each state of the RTS (c.f., Definition 4). These act as spe-
cific pre-conditions to the inclusion of the corresponding configuration in the pool of
candidates.

5 Application case: Adaptable-ASK
This section illustrates the application of the adaptation approach proposed in this paper
to a fragment of the ASK (Access Society’s Knowledge) system. ASK is a communication
software, from the Dutch company Almende, whose objective is to mediate consumers
and service providers (e.g. between a company looking for a temporary worker and an
available person that match such a requirement). Matching mechanisms are used to com-
bine the interveners, according to their needs (consumers) and their profiles (providers).
The business goals of the ASK system are set to deliver the best consumer-provider match
in the lowest time possible. This is to maximise the users’ experience and their conse-
quent return, which is the main source of revenue. On top of this, the company wants to
achieve such goals while keeping the entailing costs low.
The architecture of ASK is modular, counting on three high-level components: a web-

based front-end (the interface for the users), a database (that stores typical business data)
and a contact engine (responsible for the matching and processing of contacts). The con-
tact engine is the locus of the business: it collects the users’ requests, converts them into
tasks and processes them generating requests to an Executer component. Within the
Executer, requests are enqueued into an Execution-Queue (EQ) until a HandleRequest-
Execution (HRE) web-service is ready to take each one and generate best-fit connections
between service providers and consumers. The server running the HRE service is not
dedicated, but also handles other processes. Since its task of finding and establishing
the best consumer-provider connection is time and resource (mainly memory) consum-
ing, there is a top limit of 20 HRE service instances able to run concurrently. In average,
each instance of the HRE service takes 0.703s to produce an output (i.e., accepts aprox.
1.422 requests per second); this means that the server is potentially able to deal with
roughly 28.440 requests per second. The EQ queue runs on a different server and is able
to enqueue and dequeue at a rate of 10000 jobs per second.
The coordinationmodel for the Executer component is as simple as shown in➊ of Fig. 7,

where a and hre are ports connecting the web interface and the HRE service, respectively;
the fifo channel represents the EQ queue.

Fig. 7 RTS for the Adaptable-ASK system

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 16 of 31

TheASK systemwas previously studied regarding performance and resource allocation,
in a static perspective (Moon et al. 2011; Moon 2011). However, the system performance
fluctuates according to contextual changes. In fact, from years of experience, logs and
monitored data, the ASK team has learnt that during the night there is, usually, a drop
of user requests, and that after lunch until mid-afternoon, such demand reaches a peak.
Moreover, it was found that roughly every six months there is a slight down time on
the server where the HRE web-service is hosted. In these situations, a fixed architec-
ture and a fixed number of resources are probably the less interesting configuration for
the company. Thus, adaptation plays an important role here, in an attempt to contract the
right amount of system resources and defining the most appropriate behaviour for the
right environmental settings.

5.1 Planning adaptations

The context in which the ASK system operates was studied along two axis: user requests
and HRE server downtimes. As already discussed, the HRE server downtimes were
observed twice per year. Therefore, the rate of failure is about 6.43 × 10−8 per seconda.
Another important observation was that the mean time to recover from a failure was
of about 10s. The user requests distribution by the (non-uniform) intervals of a day are
depicted in Table 1.
Considering these values, it was possible to define configurations that would, most

likely, overcome such changes on the environment. In Fig. 7 it is shown part of the RTS

produced for the adaptation strategy of the Adaptable-ASK system.
Configuration➊ is the original coordination pattern resorting to one queue; it has a cost

per hour of e0.47. Configuration ➋ is a scaled up version of ➊, where more memory was
added to the original queue; it has a cost per hour of e0.54. Configuration ➌ is a scaled
out version of ➊, where a second HRE server (with same performance) is added in such a
way that both servers, connected to hre1 and hre2, execute in parallel; this configuration
has a cost per hour of e0.67. Finally, configuration ➍ is a scaled up and out version of ➊,
where more memory and a second server are added in such a way that both servers,
connected to hre1 and hre2, execute in parallel; it has a cost per hour of e 0.74.
The reconfiguration operations are represented simply as ri (for i = 1..8). Their con-

crete details are not relevant for this discussion. Also, to enhance readability, the obvious
backwards reconfigurations are omitted.

5.2 Analysing RTS configurations

In a simple analysis, it is possible to see how each configuration performs against the
variability of the environment data. We used CooPLa (Oliveira and Barbosa 2013a) and
ReCooPLa (Rodrigues et al. 2014) languages, the associated editor and its IMCReo tool
plug-in (c.f., Fig. 8) to enable such analysis. CooPLa and ReCooPLa are lightweight lan-
guages to specify coordination patterns and reconfigurations, respectively, according to
the framework introduced in Section 2. Their companion editor, CooPLa editor (CooPLa

Table 1 Requests to the ASK system during a day

Hours (interval) 0–8 8–12 12–14 14–17 17–24

Requests (per second) 0.125 12.420 8.321 30.460 12.260

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 17 of 31

Fig. 8 The CooPLa editor and IMCReo tool plugin. A - the main text editor with CooPLa specification of the
scaled up configuration (➋) and its stochastic instance; B - the view for the visualisation of the pattern under
edition; C - the IMCReo tool wizard, to convert the configuration into a PRISM model

Team 2014), is an Eclipse plug-in with features for edition time code completion, seman-
tic suggestions and visualisation of coordination patterns. The IMCReo tool is a plug-in of
the editor that converts coordination patterns into IMCReo models (Oliveira et al. 2014,
2015), which can than be converted to inputs for a range of well known quantitative anal-
ysis tools. PRISM was used in this case-study to verify the quantitative properties asserted
on each configuration.
A property of interest for the ASK team is the throughput ratio (TR) for the long run.

This is, the ratio between the effective throughput and the maximum throughput possi-
ble. In PRISM, such a property can be formulated using the notion of rewards as follows:
R{"runs"}=? [S] / T, where runs is a reward structure that assigns the value 1 to
each transition that transmits data to hre1 (and hre2); and T is a variable representing the
user requests. Table 2 summarises the values obtained for this property at the precise rate
of user requests assigned to each hour interval.
The non-faulty server (NFS) and faulty-server (FS) marks are relative to experiments

where, in the first one, the server connected to port hre1 was always available and, in
the second, was constantly failing (accepting one request in each 10s); in both cases, the

Table 2 Steady-state throughput ratio analysis for the several hour intervals

Hours (interval) 0–8 8–12 12–14 14–17 17–24

Requests (per second) 0.125 12.420 8.321 30.460 12.260

➊ Original
NFS 0.999 0.950 0.981 0.721 0.951

FS 0.661 0.008 0.012 0.003 0.008

➋ Scaled Up
NFS 0.999 0.978 0.994 0.769 0.979

FS 0.702 0.008 0.012 0.003 0.008

➌ Scaled Out
NFS 0.999 0.996 0.998 0.944 0.996

FS 0.999 0.951 0.982 0.722 0.952

➍ Scaled Up and Out
NFS 0.999 0.998 0.999 0.970 0.998

FS 0.999 0.978 0.994 0.770 0.979

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 18 of 31

Fig. 9 Performance analysis of the throughput ratio property for the several configurations. Without faulty
server (above) with faulty server (below)

server on port hre2 (when present) was always up. The graphs in Fig. 9 provide a similar
view, but now depicting an evolution of the TR property depending on the number of user
requests (which vary from 0 to 30 requests per unit of time). The upper graph shows the
evolution of TR for the servers without failures; the bottom one shows the same evolution
considering the the presence of a faulty server, in the conditions explained before.

5.3 Predicting adaptations by objectives, constraints and filters

Adding resources like servers andmemory to the system is costly as shown by the cost per
hour indicated for each configuration. Assuming that these resources are paid-per-use as
in a cloud environment, it is essential to spend only the minimum required time on the
proposed configurations.
But delivering a service only with minimum costs in mind is not advantageous, since

the obvious slowlyness of the system will alienate its customers. This brings the need for
defining a suitable service level agreement (SLA) for the system. As such, the ASK team
defined that an optimal value for the TR QoS property would be above 0.970b (in the
sequel 0.970 is referred to as TR threshold, or t for short).
This being fixed, the ASK team defined then two important properties for Adaptable-

ASK: QoS.TR and SYS.cost, and based on them the following trigger constraint:

(TR,≥, t) ∧ (cost,min, true)

Table 3 associates the most suitable configuration to each hour interval, considering
multiple adaptation objectives, defined by suitable filters.

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 19 of 31

Table 3 Predicted configurations for each hour interval and associated triggering filters

0–8 8–12 12–14 14–17 17–24

(cost,min, true) ➊ ➊ ➊ ➊ ➊

(TR,max, true) ➊ ➍ ➍ ➍ ➍

NFS – (TR,≥, t),(cost,min,true) ➊ ➋ ➊ ➍ ➋

FS – (TR,≥, t),(cost,min,true) ➌ ➍ ➌ ?? ➍

NFS – (TR,≥, t),(cost,min,true) (TR,max,true) ➊ ➋ ➊ ➍ ➋

FS – (TR,≥, t),(cost,min,true) (TR,max,true) ➌ ➍ ➌ ➍ ➍

The top two rows are concerned with the selection of candidate configurations filtering,
exclusively, by minimum cost and maximum TR value, respectively. As expected, these
filters define adaptation strategies that make the system practically fixed. The top one
reduces company costs, but also the TR values; the second augments the TR value (by
increasing customer satisfaction), but at higher costs. The third row presents a filter that
selects first the configurations delivering a TR value above the SLA threshold, and then
selects the one with minimum cost. For the NFS setting (i.e., all the servers are up), the
selected configurations are balanced and thus, the adaptation is more in line with the
company objectives. In a situation FS (i.e., one server is continuously failing), however,
there is no configuration able to deliver a TR above the desired threshold for the interval
where the user requests reach a peak (i.e., 14–17). In this case, the system would not
reconfigure itself. If for some reason the active configuration at that moment is ➊ or ➋,
then the system would perform low (see Fig. 9, bottom graph) for a while, increasing the
losses for the company. On the other hand, the fourth row extends the previous filter by
adding an optional filter that selects the configuration delivering the maximum TR value,
when the first filter is not able to propose a configuration. Therefore, it is now possible to
have a suitable configuration for situation ii) when the users demand is higher.
Since the last filter provides a balanced adaptation strategy it was chosen by the ASK

team as the runtime filter that ensures the company objectives.

5.4 A runtime situation

At runtime, however, the environment changes are more continual and unpredictable.
Therefore, the previous analysis and the adaptation strategy form only a basis for what
must be finely tuned at runtime. In any case, the more accurately the analysis in the offline
phase is, the better the results in the online phase will be.
Since the dynamic part of the adaptation methodology proposed here is not currently

implemented, we used simulation to predict how the defined adaptation strategy for the
Adaptable-ASK system would behave in a real runtime situation.
Thus, the system’s execution for one day was simulated. It was assumed that servers

will not fail along this period; and the user requests will be obtained from traces of the
system, such that the average in each part is the one shown in Table 1. The results of
the simulation are given in Fig. 10. Performance was evaluated at eachminute, considering
the current request rate and the four configurations: the active one and the three candi-
dates. The exception is when the active configuration is ➋ or ➌, for which the candidates
are only configurations ➊ and ➍c.
From the top graph in Fig. 10, we see that the first need for adaptation occurred at

minute 480, which means that for the first 8 hours of the day, the system has shown a

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 20 of 31

Fig. 10 Performance of adaptable ASK system. For one working day (above); and a zoomed view of concrete
configurations (below)

good performance while in configuration ➊. Then, in the first minutes of the 8th hour of
execution, the system adapts until stabilised for the amount of requests. However, from
minute 720 until minute 840 the system is constantly adapting itself. Three hours later, at
minute 1020, the system adapts again for some times until it stabilises for the rest of the
day. In the bottom graph of Fig. 10, we zoomed-in in a zone that spans for 20 minutes
before entering the peak of requests (at minute 840) and 10 minutes during it. Before
entering the peak zone, the system is able to deal with the requests in its original config-
uration: ➊. Notice that the second adaptation to configuration ➊ is enacted not because
the system is performing below the TR threshold, but because there is a cheaper config-
uration that delivers similar performance. This is the intended behaviour as requested by
the ASK team. However, when the users’ requests augment significantly, the system per-
forms below the TR threshold and therefore adapts to configuration ➍. In the subsequent
minutes there are no adaptations even though the system performs roughly below the TR
threshold. This is because (i) there are no selectable configurations after filtering and (ii),
the alternative filter (TR,max, true) defined for the adaptation strategy keeps selecting
configuration ➍.

5.5 Discussion

In this simulation, along 24 hours the system adapted 48 times, with amean time to adapt
of 1800s (i.e., 30 minutes)d. Although this seems to be a reasonable value, it may be mis-
leading. In fact, notice that the system only adapts itself in, roughly, three parts of the

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 21 of 31

day; the most critical one spanning from minute 720 to minute 840, where 75% of adap-
tations occur (a local mean time to adapt of 200s, or roughly 3.3 minutes). This increases
the time spent in reconfigurations (for simplicity we assumed them to be instantaneous),
which consequently decreases the productivity of the system.
Such a situation can be mitigated by increasing the complexity of the adaptation algo-

rithm, namely in what concerns analysis and decision. For instance, instead of choosing a
configuration based on its performance on the current rate of requests, we could use the
history of requests (or at least the last n rates) to predict the next one, and elaborate the
decision based on the system performance for such a prediction. Also, we could resort to
some notion of hysteresis to gracefully stabilise the system. For instance, this could delay
the next adaptation for some time or until a cheaper configuration does not ensure a TR
value above some threshold X > 0.970. The latter would improve performance and, in
the long run, decrease the costs (that may be associated to reconfigurations).
From an economical point of view, the simulation has shown that the company would

pay around e 11 per day for the system configurations and resources used. This value,
compared with the one obtained if constantly using the most expensive configuration
(around e 18 per day), shows that the adoption of this strategy would make the company
save about e 2500 per year. While it is not a huge value, it shows that there are benefits
on using this approach. Further refinements on the RTS and its constraints have potential
to improve the savings.
In order to keep the example simple and understandable, the coordination patterns con-

sidered in Fig. 7 are simple and omit several parts of the coordination of the whole ASK
system. We deliberately set aside the use of structural properties to define system func-
tional requirements to be preserved during the adaptation, and which could be used to
rule out some candidate configurations. Moreover, being a simulation, this example has
left state transfer out of the equation. The strategy for consistent state transfer subsumes
imperceptible computational efforts within the whole adaptation strategy. Thus it would
not affect the obtained results.
The symbolic port automata in Fig. 2 are similar (up to port and state names) to those

underlying the configurations considered in the example: the top one corresponds to
configurations ➋ and ➍; the bottom one corresponds to configurations ➊ and ➌. For
instance, the state transfer computed for Fig. 2 would also apply in a reconfiguration from
configuration ➊ to ➋.

6 Adaptation as a Service
The self-adaptation strategy approach we propose in this paper can be reused in differ-
ent systems since only its central pieces (properties, constraints, filters and the RTS) are
system-dependent. This assures the so desired separation of concerns between managed
and managing systems (Weyns et al. 2013). Such a separation is not a novelty. Most self-
adaptation approaches promote it (Garlan et al. 2004); and the MAPE-K reference model
almost obliges it. However, notwithstanding the separation of concerns, managed and
managing systems are usually running in the same physical execution environment. This
makes the managed system to decrease its performance, since the feedback loop allocates
part of the available resources for its own use.
A possible solution for such a problem is to physically separate both entities. This entails

the need for companies to acquire more processing and storage power as well as to be

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 22 of 31

willing to manage such extra resources with all the costs associated. A smoother solution
is to rent virtual machines from a cloud service, and deploy therein the feedback loop
system. On the one hand, this eases management, but on the other hand it requires an
extra effort in order to set the whole system up.
In order to avoid these problems, we propose a new strategy towards delivering

adaptation as a service (AaaS).

6.1 Architecture andmain workflow

The essential components of our feedback loop (monitor, analyser, decider and execu-
tor) are loosely coupled entities with a specific behaviour. Regarding them as services is
therefore natural. With this in mind, we propose to refactor our self-adaptation strategy
in Section 4, so that the essential parts of the feedback loop are deployed in the cloud
for immediate usage. The expected result is that the common computational activities for
adaptation (e.g., analysing data for perceiving the need for adaptation or deciding which
reconfiguration to choose among a set of possible ones) are transparent to (and not devel-
oped by) the users. Fig. 11 presents the overview of the expected global architecture, along
with traces of the main workflow for both users and the adaptation service. In the next
paragraphs, the adaptation service will be referred to as AaaS, and the hosting cloud as
AaaS cloud.

Fig. 11 Adaptation as a Service architecture overview

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 23 of 31

Actually, we take all the tasks that are known to be time and resource consuming, and
encapsulate them as services. In particular, we assume the existence of online versions
of established analysis tools (e.g., CADP, PRISM, IMCA, HyLoRes, among others) that
make available, through public interfaces, services of which AaaSwill be client. Moreover,
the tools associated to the formal framework presented in Section 2 are also assumed to
be available as services in a dedicated cloud environment. These two sets of services are
expected to release most of the workload from the feedback loop.
The feedback loop constitutes the core of the AaaS. We made it more comprehensive

by supporting multiple monitoring and decider components, in an attempt of decentral-
ising the feedback loop (André et al. 2011; Nallur and Bahsoon 2013; Vromant et al. 2011;
Weyns et al. 2013). This comes with the price of extra coordination and synchronisa-
tion effort. But it is essential. For instance, instead of having a single filter-based strategy
to decide reconfigurations, we can have several others, including one that uses artificial
intelligence techniques (e.g., case-based reasoning) to make such a decision. The results of
all decider components have to be coordinated. Only one will prevail, but such a decision
will be endowed with extra robustness.
AaaS is able to track more than one single system. The cloud support for multi-

tenancy and the service-orientation of the approach allow AaaS to deliver the same
adaptation service with the same expected quality to several systems. For this, each
tracked system is given a space in a storage centre, where the RTS and the current pool
of configurations are placed. AaaS remains loyal to the coordination-centred vision for
reconfigurations, though. Moreover, in Section 4, we assumed that the managed sys-
tems could be distributed but their coordination layer had to be centralised. With a
large-scale approach like AaaS, that assumption makes no sense. Thus, although there
must be a main coordination entity for a distributed system, there can be several sub-
coordination entities distributed in several nodes of the same system that are themselves
tracked by AaaS. Again, this is based on the theories for feedback loop decentralisation
discussed by D. Weyns et al. 2011, 2013, and consequently, requires a distributed notion
of coordination-targeted reconfigurations (Koehler et al. 2009), which is out of the scope
of this paper.
In the sequel we exploit the offline and online phases of this cloud based approach for

system adaptation.

6.1.1 The offline phase

In this phase the architects have to prepare the assets (as suitable files) that make adap-
tation possible. This includes the system properties, that translate functional and non
functional requirements; the constraints, that define the system goals for adaptation; the
filters, that define the main strategy for deciding the reconfiguration to lead the system
into a desired configuration; and finally the RTS.
The production of the RTS is a complex and time-consuming task. To help the archi-

tects accomplishing it, the reconfiguration services assumed can be used; in particular,
the IMCReo translation service, which becomes computationally heavy as the complexity
of the system coordination patterns grow. The analysis tools to fine tuning thresholds and
othermeasures are also assumed to be used from the available services. In the end, the RTS
is expected to be delivered as a comprehensive set of files written in CooPLa (for the defi-
nition of coordination patterns) and ReCooPLa (for the reconfiguration scripts). Together

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 24 of 31

with the other assets, all these files have to be uploaded to the AaaS cloud through the con-
figuration interface as depicted in Fig. 11. Once uploaded, the RTS files are transformed
into a RTS model and all the associated assets (e.g., the final PRISM files) of each state are
conveniently generated and stored in the storage centre.
The configuration interface is expected to guide the architect through all the configu-

ration of an instance of AaaS. Besides the upload of the required files, the architect is also
able to choose, for instance, which analysis tool(s) shall be used to verify the properties of
the system or which strategy(ies) shall be applied to decide the reconfigurations to apply
when needed.
In addition, the architect is responsible for coupling monitors to systems that are able

to ship data to the AaaS cloud every time a (relevant) change occurs either in the envi-
ronment or internally. The architect has also to define a local mapper component that
contributes a reflection model of the managed system. A local executor component,
actually an AaaS off-the-shelf component, also needs to be attached to the system.

6.1.2 The online phase

When the configuration is over and the architect decides to explicitly enable AaaS to
manage its system, the online phase begins.
As expected, monitors ship data to the AaaS cloud, which is synchronised and merged

therein. A monitor merger service is assumed to merge the monitored data and send
it to the analyser service. The latter behaves exactly as before. The particularity is
that it now evokes services for the necessary quantitative analysis. It is still respon-
sible for triggering the need for a reconfiguration by analysis of the user-uploaded
constraints.
When an adaptation is triggered, the decider (or deciders) start the analysis to plan

a new adaptation. Depending on the user configuration, one or more strategies may be
associated to the managed system. Each strategy is different. For instance, the filter-based
strategy uses the analysis services to analyse the configurations in the pool, which are
sent as a unique workload. A strategy adopting case-based reasoning mechanisms would
delegate its tasks into services to that end, but will rely on a knowledge centre to define
its decision, as depicted in Fig. 11. The decider service is also responsible for updating the
pool of configurations, as explained in Section 4.
Upon decision, the chosen reconfiguration is passed to the executor. The executor

translates the reconfiguration into a script able to concretely apply the changes to the
managed system. This script is passed to the local executor component. The latter uses
the reconfiguration services to compute the resuming state, and when the system enters
a quiescent state, applies the changes via the mapper component. The option of having
a local executor component is due to AaaS being not aware of the internal state of the
systems it manages. Thus, interrupted and resuming states have to be computed locally.
This is also necessary because such states have to be computed in the instant before the
changes are applied to the system, so that the managed system consistently resumes its
production.

6.2 Discussion

The AaaS approach brings several benefits when compared to traditional approaches.
It promotes a clear (physical) separation between the managed system and its feedback

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 25 of 31

loop. It allows architects and developers to focus on the design and development of
the system and, consequently, frees them from dealing with the always complex imple-
mentation of feedback loop components. It eases the evolution of legacy static systems
into self-adaptable ones and allows for more comprehensive and robust decisions,
by enabling the combination of several strategies. Moreover, it enables the decen-
tralisation of the feedback loop, augmenting the dependability of the system as a
whole.
AaaS is a one-size-fits-all approach for adaptation. This can be seen as a drawback,

but in fact the approach is highly configurable in order to support the demands of their
tenant systems. In fact, the adaptation logic is mainly delivered by the architects in the
uploaded analysable assets. AaaS essentially performs intense computations in order to
deliver decisions based on such assets. The adaptation logic is not static. At any time the
company may change its goals or the system requirements, or the architects may update
the RTS to cope with new system configurations. This entails the need for re-uploading
new asset files. The AaaS is expected to reconfigure its behaviour to conform to these
changes immediately. Moreover, the customisation of AaaS behaviour can be performed
at any time, as well.
Although AaaS service is configured by the architects, behind the scenes, a local feed-

back loop will ensure the correct work of each AaaS instance monitoring each client
system. This will enable necessary adaptations when, for instance, some component of
an AaaS instance fails to respond or when the AaaS infrastructure needs to enlarge its
computational power for continuously ensuring correct load balancing.
The approach, however, has limited applicability in time critical software systems or in

application highly distributed by mobile devices. In the first case latency may impair real
timeliness. In the second, because mobile networks are often unstable.
However, surveillance systems, asynchronous communication systems (like ASK) and

many others that may adapt to context changes but are not time critical, would bene-
fit from such an infrastructure. Usually deployed in environments with a stable network
infrastructure, these systems are able to exchange data with the remote servers of AaaS,
and perform the necessary computation for adaptability.

7 Related work
Our proposal of a self-adaptation strategy mainly focuses on two aspects. The
first one concerns the reconfigurations of the coordination layer and their plan-
ning/organisation in a relational structure. The second one is the integration of a
formal framework in a feedback loop, allowing for detecting, deciding and triggering
adaptations.
Several approaches to implement feedback loops for self-adaptive systems are reported

in the literature. In general, these approaches agree on external, reusable and component-
based feedback loops implementations, rather than on internal, monolithic, and inter-
twined implementations (Cheng et al. 2009; Huebscher and McCann 2008; Salehie and
Tahvildari 2009). How adaptations are decided and which assets are used to aid in such
decisions differ from case to case. In the sequel we compare our approach with other
works along three dimensions: i) quantitative analysis; ii) design, detection and selection
of adaptations; and iii) the use of models as system-knowledge artefacts for the feedback
loop implementation.

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 26 of 31

7.1 Adaptations and quantitative analysis

In (Calinescu and Kwiatkowska 2009; Calinescu et al. 2012), the authors present a frame-
work for the adaptation of software systems, where system components are modelled as
Markov chains. The framework takes advantage of quantitative model checking, using
PRISM, to analyse the components and dynamically adjust the system to its objectives and
the changes in the environment. Specific policies are used to define constraints to which
the system should agree or measures of success that it must optimise. Adaptations are
made on the configurable parameters of the system that realise the policies. Our approach
shares with this one the use of quantitative model checkers (e.g., PRISM) to analyse the sys-
tem. However, we focus on the coordination layer and use (interactive) Markov chains to
analyse it, rather than the components themselves. Moreover, the adaptations we assume
are made to the structure of the coordination and not to the parameters of the system.
Another approach, documented in reference (Becker et al. 2013) is based on simulation

of a specific-modelled system to gradually find a suitable point to trigger adaptations and
consequently to fulfil system requirements. This is done for a range of possible (static)
contexts and through multiple design iterations. Similarly, we analyse possible system
coordination configurations, but instead of proposing a single design, we propose a rela-
tional structure that captures several designs, which are likely to perform well against
contextual variability. Tools for performance analysis (Becker et al. 2009; Bondarev et al.
2006; Grassi et al. 2009, 2007) that take into account the performance of the original sys-
tem and may integrate part of a feedback loop component to enact adaptations, should
also be mentioned.

7.2 Languages for adaptation specification

In (Huber et al. 2014) the authors propose the S/T/A domain-specific modelling language
to describe runtime adaptation processes on top of QoS models of component-based
system architectures. S/T/A is used to define strategies, tactics and actions for adapta-
tions. Strategies define system goals; tactics define how to proceed on an adaptation;
and actions are the atomic elements that change the system configuration. Weights are
assigned to tactics, after simulation, to define the impact of applying them to the running
system. Then, they can be used by strategies to determine which tactic to apply next. Our
approach also defines strategies (referred to as trigger constraints), tactics (reconfigura-
tions) and actions (which are seen as primitive reconfiguration operations). Differently
from this approach, we do not base the choice of a reconfiguration only on its impact.
Instead, we concretely define filters to select the most appropriate reconfiguration for the
current environment settings.
Reference (Cheng and Garlan 2012) introduces Stitch, a language to define strategies

and tactics. Each tactic defines a condition for its applicability, a set of actions (that
apply changes to the system) and a set of effects, which may be regarded as adaptation
post-conditions. A strategy encapsulates an adaptation processes, by using tactics in a
deterministic if-then approach. In this paper we do not present a language to concretely
define the triggering of adaptations and the selection of the most appropriate reconfigu-
ration. However, we define constraints and filters, which detects and enacts adaptations
based on the general objectives of the system and not on specific events. Other lan-
guages like Acme (Garlan et al. 1997), Wright (Allen 1997) or YAWL (van der Aalst and
ter Hofstede 2005) allow for the specification of adaptations. However, their specific use

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 27 of 31

as ADLs or workflow languages, limit their use in the specification of proper adaptation
strategies.

7.3 Models in adaptation approaches

Models are used extensively as part of feedback loop implementation strategies. They
usually convey the architecture of a running system at a level of abstraction suitable for
analysis. In (Garlan et al. 2004), notions of architecture style, invariants, operators and
properties are used to define strategies of adaptation, where invariants are checked upon
a model of the system that is seen as an abstract graph of computational elements, upon
which behaviour and specific properties are defined.
In (Litoiu et al. 2008), the authors propose an adaptation strategy to guarantee web ser-

vices quality. In particular, they propose a control loop implementation that is based on
a model of the web service and a robust estimator, used to keep the QoS values in accor-
dance to the SLA. In (Floch et al. 2013; Hallsteinsen et al. 2012), MUSIC is presented
as a framework for model driven development of (component and SOA-based) adapt-
able mobile applications in the context of ubiquitous computing. It relies on models of
the context and of the application architecture; the latter being annotated with applica-
tion adaptation capabilities and its dependencies to the context. Moreover, it instantiates
the MAPE-K architecture and uses a reasoner to search the set of possible configura-
tions for the optimal solution in the current context. When an adaptation is required, a
reconfiguration script is derived and executed. How the best configuration is determined,
concerning QoS and the SLA, is not clearly reported, however. In (Agrawal et al. 2003;
Fischer et al. 2000), UML is used along with graph transformation techniques to define the
adaptation of systems. In this approach, performance analysis is not natural, but check-
ing behavioural and structural properties bedomes easier using constraint languages like
OCL. Nevertheless, all of these approaches use ad hocmodels. Our approach, on the other
hand, resorts to a generic graph-based model that may borrow structure and behaviour
from formal models like Reo, later transformed into (interactive) Markov chains. Also, to
the best of our knowledge, this is the first attempt of issuing a self-adaptation strategy for
software systems with the focus on the analysis and adaptation of the coordination layer
that leads the global system architecture.

7.4 Decentralised self-adaptation

Decentralised approaches for self-adaptation use several feedback loops (or several of its
components) to control a system (typically complex and distributed) (Vromant et al. 2011;
Weyns et al. 2013).
In (Caprarescu and Petcu 2009) the authors, inspired from natural adaptive systems,

propose a robust feedback loop for computational systems. Multi-agent technology and
swarm intelligence is used to define decentralised feedback loops that mimic ant colonies.
The authors stress that use of multiple feedback loop agents enables robustness, for when
one agent fails, the others may continue by enacting self-organisation.
In reference (André et al. 2011) it is proposed a framework (SAFDIS) for adapta-

tion of distributed service-based applications, that is fully decentralised. Feedback loops
are regarded as independent applications, external to the managed systems which they
control. Each such loop adapts the associated members of the distributed managed appli-
cation. Cooperation via coordination and negotiation is, however, part of the decision

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 28 of 31

making algorithm. Moreover, SAFDIS is implemented as a SOA system, enabling its
components to be used as services by developers and architects.
MOSES (Cardellini et al. 2012) is proposed as a methodology to support QoS-driven

adaptation of service-oriented systems. In particular, it acts as a service broker in order to
provide the best selection and binding of services for a suitable description of the system
architecture and its companion non-functional requirements. Decentralisation occurs at
the monitor level. Several monitors collect data about QoS of regionally distributed pools
of services, that are candidates for binding to the managed system. The remaining tasks
of the MAPE-K reference model are centralised, though.
In (Nallur and Bahsoon 2013) the authors focus on a market-oriented programming

strategy to define adaptation strategies. They consider several market places where seller
services offer their QoS attributes for some cost, and buyer applications bid for services
with a desired QoS and the price willing to pay for such service. Markets, as distributed
places, make the approach decentralised, since several decider agents have to work in each
market for a suitable solution.
Although SAFDIS framework (André et al. 2011) being, however, close to our pro-

posal, none of the above decentralised approaches for feedback loops intends to deliver
adaptation as a service.

8 Conclusions
The paper discussed an architectural adaptation strategy for systems able to self-adapt in
accordance to the surrounding environment. It is based on two phases: one offline, where
reconfigurations are planned and organised; and another online, that takes advantage of
such organisation of reconfigurations to autonomously choose one and adapt the system,
as part of a monitoring feedback loop. This strategy acts on top of a concrete framework
that allows the software architect tomodel and apply reconfigurations and to formally ver-
ify and reason about functional and non-functional (quantitative/probabilistic) require-
ments of the system architecture. We highlight the use of formal models to represent the
coordination layer of a software system. Through source-to-source transformation tech-
niques these models are transformed into suitable quantitative models, enabling runtime
verification of both non-functional and functional requirements of the system. This plays
a crucial role in triggering adaptations, and, in general, in the maintenance of software
architecture quality, and system consistency upon dynamic reconfigurations.
The use of formal methods, in contrast to other approaches commonly employed by

practitioners (e.g. UML, rule-based, etc.) allows for a precise specification of patterns,
reconfigurations and properties, as well as their verification through appropriate tools. A
slighter heavy, and certainly less usual notation is a price to be paid. Nevertheless both
the CooPLa (Oliveira and Barbosa 2013a) and ReCooPLa (Rodrigues et al. 2014) editors,
that support architectural design in this framework, and the plugged-in verifiers, have
user-friendly interfaces and are relatively easy to use. In any case there is no alternative in
Software Engineering to the road towards increased precision and rigour.
Based on this adaptation architecture, the paper also proposes a cloud-based imple-

mentation of a feedback loop that is transparent to the users and delivers adaptation as a
service. Among several advantages, we highlight the fact that it frees the users to actually
develop such a feedback loop, and gives them total control of how the system shall evolve
in each situation, by enabling a fully configurable cloud environment.

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 29 of 31

Currently, we are developing a prototype implementation of the approach introduced
in Section 4 on top of the reconfiguration framework mentioned in Section 2. Moreover,
we are studying how the RTS model can be delivered as a weighted automata where the
edges are labelled with reconfigurations and their application costs. Weighted automata
theory would allow for addressing overall reconfiguration properties like, for instance, “in
one year, the overall time spent on reconfigurations shall remain below 120s”.
A complex problem is still to solve, though. As pointed out in the SBCARS’2014 session,

we are naively assuming that each RTS state has a small number of transitions. Scalabil-
ity issues would arise if that number grows bigger; meaning more configurations in the
pool and consequently more time doing heavy quantitative analysis and arriving to a deci-
sion. A possible solution will resort to RTS-specific bisimulation techniques in order to
minimise that structure.

Endnotes
aThemean time between failure (MTBF) QoS attribute of the server is consequently set

to 15552000s = (360 ∗ 24 ∗ 60 ∗ 60)/2.
bFor the purposes of this paper, the SLA of the ASK system is comprised only of this

TR property and its derivates, like throughput, latency or response time.
cRemember that inverse reconfigurations are omitted in the RTS of Fig. 7 but assumed

to exist.
dNotice that reconfigurations were assumed to take effect in a negligible (near to

instantaneous) amount of time.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
NO developed the adaptation strategies with all associated techniques, designed and conducted the case study and
drafted the manuscript. LSB discussed the obtained results and thoroughly revised the paper. All authors read and
approved the final manuscript.

Acknowledgements
We would like to thank the SBCARS’2014 reviewers and conference participants for the questions raised, which we have
tried to address here. This work is funded by ERDF - European Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness) and by National Funds through FCT, the Portuguese
Foundation for Science and Technology, within project FCOMP-01-0124-FEDER-028923. Author Nuno Oliveira
was supported by a Doctoral Grant from FCT, with reference SFRH/BD/71475/2010.

Received: 4 December 2014 Accepted: 11 May 2015

References
Agrawal A, Karsai G, Shi F (2003) A UML-based graph transformation approach for implementing domain-specific model

transformations. Int J Softw Syst Modeling1–19
Allen R (1997) A formal approach to software architecture. PhD thesis, Carnegie Mellon, School of Computer Science,

Pittsburgh, PA, USA. (January 1997). CMU Technical Report CMU-CS-97-144
André F, Daubert E, Gauvrit G (2011) Distribution and self-adaptation of a framework for dynamic adaptation of services.

In: The Sixth International Conference on Internet and Web Applications and Services (ICIW). IARIA, Red Hook, NY,
USA. pp 16–21

Arbab F (2004) Reo: A channel-based coordination model for component composition. Math Struct Comp Sci
14(3):329–366

Basu A, Bensalem S, Bozga M, Combaz J, Jaber M, Nguyen TH, Sifakis J (2011) Rigorous Component-Based system design
using the BIP framework. Software IEEE 28(3):41–48

Becker M, Luckey M, Becker S (2013) Performance analysis of self-adaptive systems for requirements validation at
design-time. In: Proceedings of the 9th QoSA ’13. ACM, New York, NY, USA. pp 43–52

Becker S, Koziolek H, Reussner R (2009) The palladio component model for model-driven performance prediction. J Syst
Softw 82(1):3–22

Blackburn P (2000) Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic J IGPL 8(3):339–365
Blackburn P, de Rijke M, Venema Y (2001) Modal Logic. Cambridge Tracts in Theoretical Computer Science (53).

Cambridge University Press, Cambridge

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 30 of 31

Bondarev E, Chaudron M, With P (2006) A process for resolving performance Trade-Offs in Component-Based
architectures. In: Component-Based Software Engineering. Lecture Notes in Computer Science, vol. 4063. Springer,
Berlin, Heidelberg. pp 254–269

Bonsangue M, Clarke D, Silva A (2012) A model of context-dependent component connectors. Science Comput
Programm 77(6):685–706

Brauner T (2010) Hybrid Logic and Its Proof-Theory. Applied Logic Series. Springer, Berlin, Heidelberg
Brun Y, Serugendo GM, Gacek C, Giese H, Kienle H, Litoiu M, Müller H, Pezzè M, Shaw M (2009) Engineering Self-Adaptive

systems through feedback loops. In: Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer
Science, vol. 5525. Springer, Berlin, Heidelberg. pp 48–70

Calinescu R, Kwiatkowska M (2009) Using quantitative analysis to implement autonomic IT systems. In: Proceedings of
ICSE’09. IEEE Computer Society, Washington, DC, USA. pp 100–110

Calinescu R, Ghezzi C, Kwiatkowska M, Mirandola R (2012) Self-adaptive software needs quantitative verification at
runtime. Commun ACM 55(9):69–77

Caprarescu BA, Petcu D (2009) A Self-Organizing feedback loop for autonomic computing. In: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD ’09. Computation World:. IEEE
Computer Society, Washington, DC, USA. pp 126–131

Cardellini V, Casalicchio E, Grassi V, Iannucci S, Lo Presti F, Mirandola R (2012) MOSES: A framework for QoS driven runtime
adaptation of Service-Oriented systems. IEEE Trans Softw Eng 38(5):1138–1159

Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (2009) Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, vol. 5525.
Springer, Berlin, Heidelberg. pp 1–26

Cheng SW, Garlan D (2012) Stitch: A language for architecture-based self-adaptation. J Syst Softw 85(12):2860–2875
Ciraci S, van den Broek P (2006) Evolvability as a quality attribute of software architectures. In: Proceedings of the

International ERCIM Workshop on Software Evolution. UMH, Mons. pp 29–31
Dobson S, Denazis S, Fernández A, Gaïti D, Gelenbe E, Massacci F, Nixon P, Saffre F, Schmidt N, Zambonelli F (2006) A

survey of autonomic communications. ACM Trans Auton Adapt Syst 1(2):223–259
Fischer T, Niere J, Torunski L, Zündorf A (2000) Story Diagrams: A New Graph Rewrite Language Based on the Unified

Modeling Language and Java. In: Theory and Application of Graph Transformations. Lecture Notes in Computer
Science, vol 1764. Springer, Berlin, Heidelberg. pp 296–309. Chap. 21

Floch J, Frà C, Fricke R, Geihs K, Wagner M, Lorenzo J, Soladana E, Mehlhase S, Paspallis N, Rahnama H, Ruiz PA, Scholz U
(2013) Playing MUSIC – building context-aware and self-adaptive mobile applications. SPE 43(3):359–388

Garavel H, Lang F, Mateescu R, Serwe W (2012) CADP 2011: a toolbox for the construction and analysis of distributed
processes. Int J Softw Tools Technol Transfer 15(2):89–107

Garlan D, Monroe RT, Wile D (1997) ACME: An Architecture Description Interchange Language. In: Proceedings of
CASCON’97. IBM Press, Cranbury, NJ, USA. pp 169–183

Garlan D, Schmerl B, Cheng SW (2009) Software Architecture-Based Self-Adaptation. In: Zhang Y, Yang LT, Denko MK
(eds). Autonomic Computing and Networking. Springer, US. pp 31–55. Chap. 2

Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P (2004) Rainbow: Architecture-Based Self-Adaptation with
reusable infrastructure. Computer 37(10):46–54

Gat E (1998) Three-layer architectures. In: Kortenkamp D, Bonasso RP, Murphy R (eds). Artificial Intelligence and Mobile
Robots. MIT Press, Cambridge, MA, USA. pp 195–210

Grassi V, Mirandola R, Randazzo E (2009) Model-Driven assessment of QoS-aware Self-Adaptation. In: Software Engineering
for Self-Adaptive Systems. Lecture Notes in Computer Science, vol. 5525. Springer, Berlin, Heidelberg. pp 201–222

Grassi V, Mirandola R, Sabetta A (2007) A model-driven approach to performability analysis of dynamically reconfigurable
component-based systems. In: Proceedings of WOSP ’07. ACM, New York, NY, USA. pp 103–114

Guck D, Han T, Katoen JP, Neuhäußer MR (2012) Quantitative timed analysis of interactive markov chains. In: Goodloe AE,
Person S (eds). NASA Formal Methods. Lecture Notes in Computer Science, vol. 7226. Springer, Berlin, Heidelberg.
pp 8–23

Hallsteinsen S, Geihs K, Paspallis N, Eliassen F, Horn G, Lorenzo J, Mamelli A, Papadopoulos GA (2012) A development
framework and methodology for self-adapting applications in ubiquitous computing environments. J Syst Softw
85(12):2840–2859

Hermanns H (2002) Interactive Markov Chains: The Quest for Quantified Quality. Lecture Notes in Computer Science,
Vol. 2428. Springer, Berlin, Heidelberg

Hermanns H, Katoen JP (2010) The how and why of interactive markov chains. In: Proceedings of FMCO’09. Lecture Notes
in Computer Science, vol. 6286. Springer, Berlin, Heidelberg. pp 311–337

Hnětynka P, Plášil F (2006) Dynamic reconfiguration and access to services in hierarchical component models
Component-Based software engineering. In: Component-Based Software Engineering. Lecture Notes in Computer
Science, vol. 4063. Springer, Berlin, Heidelberg. pp 352–359. Chap. 27

CooPLa Team, CooPLa Editor (2014). http://coopla.di.uminho.pt
Huber N, Hoorn A, Koziolek A, Brosig F, Kounev S (2014) Modeling run-time adaptation at the system architecture level in

dynamic service-oriented environments. Serv Oriented Comput Appl 8(1):73–89
Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and applications. ACM Comput

Surv 40(3):1–28
IBM Corp (2004) An Architectural Blueprint for Autonomic Computing. IBM Corp, USA
Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
Koehler C, Arbab F, Vink E (2009). In: Corradini A, Montanari U (eds). Reconfiguring Distributed Reo Connectors. Lecture

Notes in Computer Science, vol 5486. Springer, Berlin, Heidelberg. pp 221–235
Kramer J, Magee J (1990) The evolving philosophers problem: Dynamic change management. IEEE Trans Softw Eng

16(11):1293–1306
Krause C (2011) Reconfigurable component connectors. PhD thesis, Leiden University, Amsterdam, The Netherlands

http://coopla.di.uminho.pt

Oliveira and Barbosa Journal of Software Engineering Research and Development (2015) 3:6 Page 31 of 31

Kwiatkowska M, Norman G, Parker D (2010) A framework for verification of software with time and probabilities. In:
Proceedings of FORMATS’10. Lecture Notes in Computer Science, vol. 6246. Springer, Berlin, Heidelberg. pp 25–45

Litoiu M, Mihaescu M, Ionescu D, Solomon B (2008) Scalable adaptive web services. In: Proceedings of SDSOA ’08. ACM,
New York, NY, USA. pp 47–52

Losavio F, Chirinos L, Lévy N, Ramdane-Cherif A (2003) Quality characteristics for software architecture. J Object Technol
2(2):133–150

Moon Y, Arbab F, Silva A, Stam A, Verhoef C (2011) Stochastic Reo: a case study. In: Proceedings of the 5th International
Workshop on Harnessing Theories for Tool Support in Software (TTSS ’11), Oslo, Norway. pp 1–16

Moon YJ (2011) Stochastic models for quality of service of component connectors. PhD thesis, Universiteit Leiden
Moon YJ, Silva A, Krause C, Arbab F (2014) A compositional model to reason about end-to-end QoS in stochastic Reo

connectors. Sci Comput Programm 80:3–24
Nallur V, Bahsoon R (2013) A decentralized self-adaptation mechanism for service-based applications in the cloud. Softw

Eng IEEE Trans 39(5):591–612
Nilsson NJ (1980) Principles of Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Oliveira N, Barbosa LS (2013a) On the reconfiguration of software connectors. In: Proceedings of SAC’2013, vol 2. ACM,

New York, NY, USA. pp 1885–1892
Oliveira, N, Barbosa LS (2013b) Reconfiguration mechanisms for service coordination. In: her Beek MH, Lohmann N (eds).

Web Services and Formal Methods. Lecture Notes in Computer Science, vol. 7843. Springer, Berlin, Heidelberg.
pp 134–149

Oliveira N, Barbosa LS (2014) A self-adaptation strategy for service-based architectures. In: VIII Brazilian Symposium on
Software Components, Architectures and Reuse. SBCARS’2014, vol. 2. SBC - Brazilian Computer Society, Porto Alegre,
RS, Brazil. pp 44–53

Oliveira N, Silva A, Barbosa LS (2014) Quantitative analysis of Reo-based service coordination. In: Proceedings of SAC’14.
ACM, New York, NY, USA Vol. 2. pp 1247–1254

Oliveira, N, Silva A, Barbosa LS (2015) IMCReo: interactive Markov chains for stochastic Reo. J Internet Serv Inform Secur
5(1):3–28

Oreizy P, Gorlick MM, Taylor RN, Heimhigner D, Johnson G, Medvidovic N, Quilici A, Rosenblum DS, Wolf AL (1999) An
architecture-based approach to self-adaptive software. Intell Syst Appl 14(3):54–62

Rodrigues F, Oliveira N, Barbosa LS (2014) 3rd Symposium on Languages, Applications and Technologies. OpenAccess
Series in Informatics (OASIcs), vol 38. In: Pereira MJV, Leal JP, Simões A (eds). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany. pp 61–76

Salehie M, Tahvildari L (2009) Self-adaptive software: Landscape and research challenges. ACM Trans Auton Adapt Syst
4(2):1–42

van der Aalst WMP, ter Hofstede AHM (2005) YAWL: yet another workflow language. Inform Syst 30(4):245–275
Villegas Machado NM, Müller HA, Tamura Morimitsu G (2011) On designing Self-Adaptive software systems. Sistemas &

Telemática 9(18):29–51
Vromant P, Weyns D, Malek S, Andersson J (2011) On interacting control loops in self-adaptive systems. In: Proceedings of

the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. SEAMS ’11. ACM,
New York, NY, USA. pp 202–207

Wermelinger MA (1999) Specification of software architecture reconfiguration. PhD thesis, Universidade Nova de Lisboa,
Lisboa, Portugal

Weyns D, Schmerl B, Grassi V, Malek S, Mirandola R, Prehofer C, Wuttke J, Andersson J, Giese H, Göschka K (2013) On
patterns for decentralized control in Self-Adaptive systems. In: de Lemos R, Giese H, Müller H, Shaw M (eds). Software
Engineering for Self-Adaptive Systems II. Lecture Notes in Computer Science, vol. 7475. Springer, Berlin Heidelberg.
pp 76–107

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	A framework for architectural reconfiguration
	Modelling
	Reasoning
	The behavioural perspective
	The structural perspective
	The quantitative perspective

	Ensuring consistent dynamic reconfigurations
	A symbolic approach to state transfer
	An application example

	Self-adaptation strategy
	The offline phase: planning reconfigurations
	The online phase: monitor feedback loop
	Monitoring
	Planning
	Execution

	Triggering of reconfigurations

	Application case: Adaptable-ASK
	Planning adaptations
	Analysing RTS configurations
	Predicting adaptations by objectives, constraints and filters
	A runtime situation
	Discussion

	Adaptation as a Service
	Architecture and main workflow
	The offline phase
	The online phase

	Discussion

	Related work
	Adaptations and quantitative analysis
	Languages for adaptation specification
	Models in adaptation approaches
	Decentralised self-adaptation

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

