Chapter 16
Predicting Adverse Drug Events
from Electronic Medical Records

Jesse Davis, Vitor Santos Costa, Peggy Peissig, Michael Caldwell,
and David Page

Abstract Learning from electronic medical records (EMR) poses many challenges
from a knowledge representation point of view. This chapter focuses on how to cope
with two specific challenges: the relational nature of EMRs and the uncertain depen-
dence between a patient’s past and future health status. We discuss three different
approaches for allowing standard propositional learners to incorporate relational infor-
mation. We evaluate these approaches on three real-world tasks where the goal is to use
EMRs to predict whether a patient will have an adverse reaction to a medication.

16.1 Introduction

Personalized medicine represents a significant application for the health informatics
community [13]. Its objective can be defined as follows:

Given: A patient’s clinical history,
Do: Create an individual treatment plan.

Personalized medicine is possible due to the fundamental shift in health care practice
caused by the advent and widespread use of electronic medical records (EMR). An
EMR is arelational database that stores a patient’s clinical history: disease diagnoses,
procedures, prescriptions, lab results, and more. Figure 16.1 shows one very simpli-
fied EMR with two patients that includes phenotypic data, lab tests, diagnoses, and
drug prescriptions. With EMR’s relevant data residing on disk as opposed to paper
charts, it is possible to apply machine learning and data mining techniques to these
data to address important medical problems such as predicting which patients are
most at risk for having an adverse reaction to a certain drug.

However, working with EMR data is challenging. EMR data violate some of
the underlying assumptions made by classical statistical machine learning tech-
niques, such as decision trees [19], support vector machines [22], and Bayesian
networks [15]. These techniques are designed to work on propositional (tabulated)
data. That is, they operate on data that resides in a single table, where each row rep-
resents a data point and the rows in the table are assumed to be independent. Namely,
the obstacles of working with EMR data include:

© Springer International Publishing Switzerland 2015 243
A. Hommersom and PJ.F. Lucas (eds.), Biomedical Knowledge
Representation, LNAI 9521, DOI 10.1007/978-3-319-28007-3_16

244 J. Davis et al.

A) | PID|Birth Date | Gender B) |PID| Date Labtest | Result
P1|09/02/50 | Female P1 | 12/23/04 | Glucose 43

P2 | 03/19/75 | Male P1 | 10/25/04 | Glucose 45

P2 | 04/17/05 | Lipid panel | 278

C) |PID|Date |Diagnosis D) |PID| Date | Medication | Dose
P1|02/01/01 | Flu P1 | 05/01/02 | Warfarin 10mg
P1 | 05/02/03 | Bleeding P1 | 02/02/03 | Terconazole| 10mg
P2 | 04/21/05 | High Cholestrol P2 | 04/21/05| Zocor 20mg

Fig. 16.1 A simplified electronic health record. Table A contains information about each patient.
Table B contains lab test results. Table C lists disease diagnoses. Table D has information about
prescribed medications.

Multiple relations: Each type of data (e.g., drug prescription information, lab test
results) is stored in a different table of a database. Traditionally, machine learning
algorithms assume that data are stored in a single table. For example, see the tables
in Fig. 16.1.

Uncertainty: The data are inherently noisy. For example, a diagnosis code of 410 for
myocardial infarction (heart attack, or MI) may be entered to explain billing for
tests to confirm or rule out an MI, rather than to indicate that the patient definitely
had an MI on this date. It might even be entered to indicate that an earlier MI is
relevant to today’s visit.

Non-deterministic relationships: It is important to model the uncertain, non-
deterministic relationships between patients’ clinical histories and current and
future predictions about their health status.

Differing quantities of information: Different patients may have dramatically dif-
ferent numbers of entries in any given EMR table, such as diagnoses or vitals.

Missing and/or incomplete data: Patients switch doctors and clinics over time, so a
patient’s entire clinical history is unlikely to reside in one database. Furthermore,
information, such as the use of over-the-counter drugs, may not appear in the
clinical history. In addition, patients rarely return to report when a given condition
or symptom ceased, so this information is almost always missing.

Schema not designed to empower learning: Clinical databases are designed to
optimize ease of data access and billing rather than learning and modeling.

Large amounts of data: As more clinics switch to electronic medical records, the
amount of data available for analysis will exceed the capability of current machine
learning techniques.

Longitudinal data: Working with data that contains time dependencies introduces
several problems. The central problem we had to address in our work was deciding
which data to include in our analysis.

These points raise interesting questions for knowledge representation, especially
as they have an effect on the applicability of machine learning and data mining
techniques. This chapter will focus on the first two challenges: how to effectively
represent uncertainty given the multi-relational nature of the data.

16 Predicting Adverse Drug Events from Electronic Medical Records 245

We will discuss three different strategies for learning statistical models from rela-
tional data. The first approach, known as propositionalization, is to simply handcraft a
set of features which are used to represent the multi-relational EMR as a single table.
Then it becomes possible to apply traditional techniques from statistical machine
learning to the modified data. The second approach builds on the first by employing
a pipeline that automatically generates a set of features, uses these features to propo-
sitionalize the data, and then performs learning on the transformed data. The third
approach is more advanced in that it infegrates feature construction, feature selection
and model learning into a single process.

To illustrate and evaluate the different approaches, we focus on the important task
of predicting adverse drug reactions (ADRs) from EMR data. ADRs are the fourth-
leading cause of death in the United States and represent a major risk to health,
quality-of-life and the economy [16]. The pain reliever Vioxx™ alone was earning
US$2.5 billion per year before it was found to double the risk of a heart attack
and was pulled from the market while other similar drugs remain on the market [7].
Additionally, accurate predictive models for ADRs are actionable. If a model is found
to be accurate in a prospective trial, it could be used to avoid giving a drug to those at
highest risk of an ADR. Using three real-world ADR tasks, we find that the dynamic
approach results in the best performance on two of the three data sets and that the
handcrafted approach works reasonably well.

16.2 Background

We briefly review Bayesian networks, which are a well-known technique for repre-
senting and reasoning about uncertainty in data. We then discuss Datalog and how
it can be used to represent relational data. The rest of the chapter will make use of
both of these techniques to tackle the knowledge representation problems posed by
EMRs.

16.2.1 Bayesian Networks

Bayesian networks [15] are probabilistic graphical models that encode a joint proba-
bility distribution over a set of random variables, where each random variable corre-
sponds to an attribute. A Bayesian network compactly represents the joint probability
distribution over a set of random variables by exploiting conditional independencies
between random variables. We will use uppercase letters (e.g., X) to refer to arandom
variable and lower case letters (e.g., x) to refer to a specific value for that random
variable. Given a set of random variables X = {X, ..., X,,}, a Bayesian network
B = (G, ®) is defined as follows. G is a directed, acyclic graph that contains a
node for each variable X; € X. For each variable (node) in the graph, the Bayesian
network has a conditional probability table Ox, parenss(x;) giving the probability

246 J. Davis et al.

distribution over the values that variable can take for each possible setting of its
parents,and & = {fx,, ..., Ox,}. A Bayesian network B encodes the following prob-
ability distribution:

Pp(Xy,...X,) =1:[P(X,-|Parents(X,-)). (16.1)
i=1

The Bayesian network learning task can be formalized as follows:

Given: Data set D that contains variables X;, ..., X,,.
Learn: Network structure G, that is, which arcs appear in the network, and €x,| paren:s
(X;) for each node in the network.

One well-known Bayesian network classification model is called tree-augmented
naive Bayes (TAN) [6]. A TAN model has an outgoing arc from the class variable to
each other attribute. It also allows each non-class variable to have at most one other
parent in order to capture a limited set of dependencies between attributes. To decide
which arcs to include in the augmented network, the algorithm does the following:

1. Construct a complete graph G 4, between all non-class attributes A;. Weight each
edge between i and j with the conditional mutual information, C1(A;, A;|C).
2. Find a maximum weight spanning tree 7" over G 4. Convert T into a directed
graph B. This is done by picking a node and making all edges outgoing from it.
3. Add an arc in B connecting C to each attribute A;.

In step 1, CI represents the conditional mutual information, which is given by
the following equation:

P(al, ajlc)
CI(A;; Aj|C) = P(a,,a ,o0)log———————— (16.2)
This algorithm for constructing a TAN model has two nice theoretical proper-
ties [6]. First, it finds the TAN model that maximizes the log likelihood of the network
structure given the data. Second, it finds this model in polynomial time.

16.2.2 Datalog

Datalog is a subset of first-order logic whose alphabet consists of three types
of symbols: constants, variables, and predicates. Constants (e.g., the drug name
propranolol), which start with a lowercase letter, denote specific objects in the
domain. Variable symbols (e.g., Disease), which start with an uppercase letter,
range over objects in the domain. Predicate symbols P/n, where n refers to the
arity of the predicate and n > 0, represent relations among objects. An afom is
P(t,...,1,) where each t; is a constant or variable. A ground atom is an atom

16 Predicting Adverse Drug Events from Electronic Medical Records 247

where each #; is a constant. A literal is an atom or its negation. A clause is a dis-
junction over a finite set of literals. A definite clause is a clause that contains exactly
one positive literal. Definite clauses are often written as an implication B =— H,
where B is a conjunction of literals called the body and H is a single literal called
the head. The following is an example of a definite clause:

Drug(Pid, Datel, terconazole) AWeight(Pid, Datel, W)
AW < 120 = ADR(Pid).

All variables in a definite clause are assumed to be universally quantified.

Non-recursive' Datalog, in combination with a closed-world assumption, is equiv-
alent to relational algebra/calculus. Therefore, it is natural and easy to represent rela-
tional databases, such as EMRs, in Datalog. The most straightforward way to do this
is to create one ground atom for each row of each table in the EMR. Consider Tables
C and D in Fig. 16.1, where the data would result in the following ground atoms:

Diagnosis(pl,02/01/01, £1u)
Diagnosis(pl, 05/02/03,bleeding)
Diagnosis(p2,04/21/05,high cholestrol)

Drug(pl, 05/01/02,warfarin, 10mg)
Drug(pl, 02/02/03, terconazole, 10mg)
Drug(p2, 04/21/05, zocor, 20mg)

16.3 Approaches

In this section we describe three different strategies for coping with the multi-
relational nature of EMRs.

16.3.1 Handcrafting Features

The act of converting a relational database, such as an EMR, into a single table is
known as propositionalization [8]. One simple strategy is to handcraft a set of features.
While this process usually results in a loss of information, it makes it possible to

! A Datalog clause is non-recursive by definition if the predicate appearing in its head does not appear
in its body. A Datalog program, or theory, is non-recursive if all its clauses are non-recursive.

248 J. Davis et al.

apply standard machine learning techniques, such as Bayesian network learning, to
the transformed data.

The most obvious and straightforward way to do this is to construct a set of binary
features for each relevant relation in the domain. For example, consider the diagnosis
relation in Fig. 16.1. In this case, one feature for each possible diagnosis code would
be constructed that is true of a patient if it appears in the patient’s EMR ar any point
in the past. In effect, this conversion makes the assumption that the only thing that
matters about a patient’s future health status is if they have ever been diagnosed with
a specific disease in the past. When in the past the diagnosis was made is irrelevant.
The same strategy would then be applied to the other relevant relations in the domain.
In the example, this would yield one set of features about lab tests and another set
of features about medications.

It is also possible to design more complicated features. One idea would be to
incorporate time constraints into the features. For example, one feature could be
defined that is true of a patient if he has been diagnosed with a specific disease within
the past year. Another idea is to look at pairs of diseases or pairs of medications.
One example is a feature that is true of a patient if he was prescribed two specific
medicines at any point in the past, regardless of the prescription date (i.e., they do
not need to be co-prescribed). Features could be defined that combine both time and
diagnoses (or medications) in order to capture co-occurrence. For example, a feature
could be proposed that is true of any patient that was prescribed two medications
within three months of each other.

While simple, this approach has several potential limitations. Namely, there is
a huge space of possible features to consider, and it is challenging to do this in a
sensible and systematic way by hand. Furthermore, taking a more directed approach,
especially when handcrafting complex features, requires significant domain exper-
tise. Finally, even employing the simplest strategy can result in a very large number
of features. For example, creating one binary feature for each diagnosis code that is
true of a patient if (s)he has ever been diagnosed with that particular disease would
lead to over 5,000 features alone!

16.3.2 Automatically Generating Features: A Multi-Step
Approach

One way to alleviate the feature construction burden that the previous approach places
on a modeler is to use an automated approach to generate the features. Note that it is
possible to represent each of the features mentioned in the previous subsection as a
query in Datalog. For example, the query Diagnosis(Pid, _, £1u) would return
the set of all patients that have ever been diagnosed with the £1u. Essentially, this
corresponds to using the body of a definite clause, whose head is the target concept,
to define a feature. This insight suggests that one possibility is to employ techniques
from the field of inductive logic programming (ILP) [11]. The goal of ILP is to learn
hypotheses expressed as definite clauses in first-order logic. ILP is appropriate for

16 Predicting Adverse Drug Events from Electronic Medical Records 249

learning in multi-relational domains because the learned rules are not restricted to
contain fields or attributes from a single table in a database. Commonly-used ILP
systems include FOIL [20], Progol [14] and Aleph [21].

The ILP learning problem can be formulated as follows:

Given: Background knowledge B, a set of positive examples ET, and a set of negative
examples E~ all expressed in first-order definite clause logic.

Learn: A hypothesis H, which consists of definite clauses in first-order logic, such
that BAH =Etand BAH [E™.

In practice, it is often not possible to find either a pure rule or rule set. Thus, ILP
systems relax the conditions that B A H = ET and B A H [E~. Typically, this
is done by allowing H to cover a small number of negative examples. That is,
B AH = E'~,where E'~ C E~ and the goal is to make |E'~| as small as possible.
ILP systems learn rules for a fixed target concept, such as ADR(P1d), by itera-
tively learning rules one at a time. Thus, the central procedure is learning a single
definite clause. This is usually posed as the problem of searching through the space
of possible clause bodies. We briefly describe the general-to-specific, breadth-first
search through the space of candidate clauses used by the Progol algorithm [14]. First,
a random positive example is selected to serve as the seed example. To guide the
search process, it constructs the bottom clause by finding all facts that are relevant to
the seed example. Second, a rule is constructed that contains just the target attribute,
such as ADR(P1id), on the right-hand side of the implication. This means that the fea-
ture matches all examples. Third, candidate clause bodies are constructed by adding
literals that appear in the bottom clause to the left-hand side of the rule, which makes
the feature more specific (i.e., it matches fewer examples). Restricting the candidate
literals to those that appear in the bottom clause helps limit the search space while
guaranteeing that each generated refinement matches at least one example.
Employing ILP to learn the feature definitions gives rise to the following proce-
dure. In the first step, ILP is employed to learn a large set of rules. In the second step,
each learned rule is used to define a binary feature. The feature receives a value of one
for an example if the data about the example satisfies (i.e., proves) the clause and it
receives a value of zero otherwise. This results in a single table, with one row for each
example. In the third step, a classifier is learned from the newly constructed table.

16.3.3 VISTA: An Integrated Approach

Next, we describe VISTA [4], an alternative approach that is based on the idea of con-
structing the classifier as we learn the rules. VISTA integrates feature construction,
feature selection, and model construction into one, dynamic process. Consequently,
this approach scores rules by how much they improve the classifier, providing a tight
coupling between rule generation and rule usage.

Like the multi-step approach described in the previous subsection, VISTA uses
definite clauses to define features for the statistical model. VISTA starts by learning

250 J. Davis et al.

amodel M over an empty feature set F'S. This corresponds to a model that predicts
the prior probability of the target predicate. Then it repeatedly searches for new
features for a fixed number of iterations. VISTA employs the Progol algorithm that
is described in the previous section to generate candidate features.

VISTA converts each candidate clause into a feature, f, and evaluates f by learn-
ing a new model (e.g., the structure of a Bayesian network) that incorporates f.
In principle, any structure learner could be used, but VISTA typically uses a tree-
augmented naive Bayes model [6]. VISTA evaluates each f by comparing the gen-
eralization ability of the current model F'S versus a model learned over a feature set
extended with f. VISTA does this by calculating the area under the precision-recall
curve (AUC-PR) on a tuning set. AUC-PR is used because relational domains typi-
cally have many more negative examples than positive examples, and the AUC-PR
ignores the potentially large number of true negative examples.” In each iteration,
VISTA adds the feature £ to F'S that results in the largest improvement in the score
of the model. In order to be included in the model, " must improve the score by a cer-
tain percentage-based threshold. This helps control overfitting by pruning relatively
weak features that only improve the model score slightly. If no feature improves the
model’s score, then it simply proceeds to the next iteration. Algorithm 3 provides
pseudocode for VISTA.

Algorithm 3. VISTA (Training Set 7', Validation Set V, Maximum Iteration iter)

FS = {0}
M =BuildTANModel(T, FS)
score =AUCPR(M, V)

repeat
bestScore = score
fhest =0

/*Generate Candidate Features*/
Cand = GenCandidates()
for all (f € Cand) do
M =BuildTANModel(T, FS U f)
score’ =AUCPR(M’, V)
if (score/ > bestScore) then

fbest = f
bestScore = score’
end if
end for

if (fbest #) then
FS=FS U fpest
M =BuildTANModel(T, F'S)
score =AUCPR(M, V)
end if
until Reaching iteration iter
return: F'S

2In principle, VISTA can use any evaluation metric to evaluate the quality of the model such as
(conditional) likelihood, accuracy, or ROC analysis.

16 Predicting Adverse Drug Events from Electronic Medical Records 251

16.4 Empirical Evaluation

In this section, we evaluate the three approaches outlined in Sect. 16.3 on three real-
world data sets. In all tasks, we are given patients that take a certain medication,
and the goal is to model the patients that have a related ADR. We first describe the
data sets we use and our metholodgy. Then we present and discuss our experimental
results.

16.4.1 Task Descriptions

Our data comes from a large multi-specialty clinic that has been using electronic
medical records since 1985 and has electronic data back to the early 1960s. We
have received institutional review board (IRB) approval to undertake these studies.
For all tasks, we have access to information about observations (e.g., vital signs,
family history, etc.), lab test results, disease diagnoses, and medications. We only
use patient data up to one week before that patient’s first prescription of the drug
under consideration. This ensures that we are building predictive models only from
data generated before a patient is prescribed that drug.

The characteristics of the data for each task can be found in Table 16.1. On each
task we consider only patients who took a medication, and the goal is to distinguish
between patients who went on to experience an adverse event (i.e., positive examples)
and those who did not (i.e., negative examples). We now briefly describe each task.

Selective Cox-2 inhibitors (e.g., Vioxx™) are a class of pain relief drugs that
were found to increase a patient’s risk of having a myocardial infarction (MI) (i.e., a
heart attack). For the Cox-2 data set, positive examples consist of patients who had
a MI after taking a selective Cox-2 inhibitor. To create a set of negative examples,
we took patients that were prescribed a selective Cox-2 inhibitor and did not have
an MI. Furthermore, we matched the negative examples to have the same age and
gender distribution as the positive examples to control for those risk factors.

Angiotensin-converting enzyme inhibitors (ACEI) are a class of drugs commonly
prescribed to treat high blood pressure and congestive heart failure. It is known that

Table 16.1 Data set characteristics.

Selective Cox-2 Warfarin ACEi
Pos. examples 160 144 102
Neg. examples 2,134 1,440 1,020
Unique drugs 2,590 2,316 2,044
Unique diagnoses 7,912 8,389 7,286
Drug facts 3,518,467 603,503 335,065
Diagnoses facts 3,653,487 691,591 436,934

252 J. Davis et al.

in some people, ACEi may result in angioedema (a swelling beneath the skin). To
create the ACEi data set, we selected all patients with at least one prescription of
an ACEi drug in their electronic health record. Within this population, we defined
positive examples to be those patients who have a diagnosis of angioedema at any
point after their first ACEi prescription.

Warfarin is a commonly prescribed blood thinner that is known to increase the
risk of internal bleeding for some individuals. To create the Warfarin data set, we
selected all patients who have at least one prescription of Warfarin in their electronic
health record. We defined positive examples to be those patients with a bleeding
event (any of 219 distinct diagnoses in the ICD9 hierarchy representing bleeding
events) at any point after their first Warfarin prescription.

16.4.2 Methodology

We perform stratified, ten-fold cross-validation for each task and compare the fol-
lowing algorithms.

Handcrafted. In this model, we construct a set of handcrafted features to propo-
sitionalize the EMR. We create one binary feature for each possible diagnosis
code, medication, and lab test. The feature is true of a patient if the appropriate
diagnose, medication, or lab test appears in the portion of the patient’s EMR
used for training. For each test fold, we use information gain on the training set
to select the 50 most informative features. A TAN classifier is trained that uses
these 50 attributes.

Multi Step. First, we use ILP to learn a set of rules on the training data. We use the
AlephILP system [21], which s are-implementation of the Progol algorithm [14],
to learn rules. The background knowledge used to construct the rules includes
diagnosis codes, medications, and lab tests as before, but also allows temporal
relations between events and comparing the results of observations against a
learned threshold. We run Aleph under the induce_max command in order to
fully exploit all the training examples. Second, we create a data set by converting
each rule learned by Aleph into a binary attribute, which is true of an example
if the rule covers the example. Third, we train a TAN classifier over the newly
transformed data set.

VISTA. We follow a greedy algorithm. Starting from a network that contains the class
node only, we search for clauses that when added to a classifier will improve its
performance. We define a network to be an improvement over a previous classifier
if it increases the area under the precision-recall curve (AUC-PR) by at least 2 %.
First, we sub-divide the nine folds in the training data into five training and four
tuning folds. The training folds are used to generate the candidate classifiers. We
first use these folds to discover the clauses and then to train the TAN classifiers.
The tuning folds are kept separate. They are used to compute the AUC-PR for
the new TAN classifier and decide whether a feature should be included in the
model or not. As a stop criteria, we use an arbitrary time limit of three hours for
learning each model.

16 Predicting Adverse Drug Events from Electronic Medical Records 253

All three approaches make use of a TAN classifier learning algorithm where we
compute maximum likelihood parameters of the model and use Laplace smoothing
to prevent zero probabilities.

When reporting results, we focus on precision-recall analysis. In precision-recall
space, recall is plotted on the x-axis and precision on the y-axis. Recall (also called
the true positive rate) is defined as the proportion of positive examples that are
correctly classified as positive. Precision reports the fraction of examples classified
as positive that are truly positive. Often times, precision-recall analysis is preferred
to ROC analysis in domains, such as ours, that have a large class skew [5]. Note that
in ROC analysis, a very small false positive rate can correspond to a large number
of false positives, if there are a large number of negative examples. In contrast,
precision-recall analysis ignores the potentially large number of true negatives. We
also report the results for random guessing, which corresponds to an AUC-PR equal
to the proportion of positive examples in the test set [2].

16.4.3 Results and Discussion

Table 16.2 shows the average AUC-PR for each of the tasks. First, regardless of the
task, each approach also does significantly better than random guessing. Thus, each
approach is picking up signal in the data. VISTA results in the best performance on
two of the three tasks. This indicates that there is some benefit to using the dynamic,
automated approach. The handcrafted approach also exhibits good performance, and
has the best performance on the Warfarin task. Interestingly, this approach yields
better results than the multi-step approach. One possible explanation is that ILP tends
to be biased towards constructing a smaller set of strong, complex features whereas
on this task it may be beneficial to have a larger set of weak, simple features. In the
future, it is worth exploring a model that uses a combination of simple and complex
features. Additionally, ILP systems generate rules that predict the positive examples.
In contrast, the other two approaches are able to select features that are predictive of
either the positive or negative class, which may yield a benefit.

Figures 16.2, 16.3, and 16.4 show the precision-recall curves for each task. Note
that on this task, for drugs on the market it is probably more meaningful to focus on
the high precision, low recall (i.e., recall < 0.3) parts of the plots. This is because if
we act only based on this portion of the curve then we would only change current
clinical practice by denying the drug to patients who will almost all suffer the ADE if

Table 16.2 Average AUC-PR and its standard deviation for each approach. The best result for each
task is shown in bold.

Selective Cox-2 Warfarin ACEi
VISTA 0.614 + 0.11 0.171 £ 0.06 0.328 + 0.06
Multi Step 0.557 £0.14 0.188 + 0.09 0.261 £ 0.09
Hand Crafted 0.553 £0.15 0.252 £+ 0.07 0.274 £ 0.10
Random Guessing 0.070 £+ 0.00 0.091 £+ 0.00 0.091 £ 0.00

254 J. Davis et al.

" VISTA —
1 Multi Step |
os | Handcrafted 1

Precision

0 L L L L L L L L L
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

Recall

Fig. 16.2 Precision-recall curves for the Selective Cox-2 task.

" VISTA —
Multi Step -~]
08 Handcrafted - 1

Precision

L
0 01 02 03 04 05 06 07 08 09 1

Recall

Fig. 16.3 Precision-recall curves for the Warfarin task.

they take the drug, without denying the drug unnecessarily to most individuals who
need it. Exceptions to this preference to operate at the left of the PR curve would be if
(1) the ADR is severe compared with the benefit of the drug, (2) there is an alternative
treatment available, or (3) this is a new drug being added to the market, and we want
to add it as safely as possible. Focusing on this region of PR space shows a similar
picture as looking at average AUC-PR. Again, VISTA has the best performance on
two tasks and the handcrafted approach does the best on the third task.

16.5 Related Work

There has been much previous work on using ILP for feature construction. Such
work treats ILP-constructed rules as Boolean features, re-represents each example
as a feature vector, and then uses a feature-vector learner to produce a final classifier.
The first work on propositionalization is the LINUS system [12]. LINUS transforms
the examples from deductive database format into attribute-value tuples and pairs
these tuples to a propositional learner. LINUS primarily uses propositional algorithms

16 Predicting Adverse Drug Events from Electronic Medical Records 255

! " VISTA —
o Multi Step -~]

os Handcrafted -~ g

Precision

0 L L L L L L L L L
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

Recall

Fig. 16.4 Precision-recall curves for the ACEi task.

that generate i f-then rules. LINUS then converts the propositional rules back into
the deductive database format.

Previous work has also used ILP-learned rules as features in a propositional clas-
sifier. For example, [17] do this using a naive Bayes classifier. Some other work,
especially on propositionalization of first-order logic [1], has been developed that
converts the training set to propositions and then applies feature vector techniques to
the converted data. This is similar to what we do, however we first perform learning
in the first-order setting to determine which features to construct. This results in
significantly shorter feature vectors than in other work.

The most closely related work to VISTA includes the nFOIL [9] and kFOIL sys-
tems [10]. These systems differ in that they use different statistical learners, naive
Bayes for nFOIL and a kernel in kFOIL, and use FOIL instead of the Progol algorithm
for proposing the features. Furthermore, VISTA works with AUC-PR which allows
it to tackle problems that have significant class skew, which is common in medical
domains. The work on structural logistic regression [18] also integrates feature gen-
eration and model selection. This work defines features using SQL queries and the sta-
tistical learner is logistic regression, but these are not especially important differences.
The drawback to this approach is that it is extremely computationally expensive. In
fact, they report only searching over queries that contain at most two relations. In ILP,
this would be equivalent to only evaluating clauses that contain at most two literals.

In a different context, the issue of converting multiple tables into a single table is
also addressed by data warehouses [3]. Typically, data warehouses often use either
a star or snowflake schema. These schemas are centered on a single so-called “fact
table,” whichis then connected to several different, multi-dimensional attributes. Each
attribute value is often organized according to a hierarchy. For example, a place hier-
archy may be city, county, state, and so forth. Traditionally, data warehouses focus on
supporting ad-hoc user queries that produce a single table by rolling-up or drilling-
down along one of the attribute dimensions. This is in constrast to our focus on building
predictive models from data. Additionally, we make no assumption about the schema
of data and the work presented in this chapter automatically constructs a single table.

256 J. Davis et al.

16.6 Conclusions

This chapter addressed the challenges associated with learning statistical models
from multi-relational electronic medical record (EMR) data. Specifically, we dis-
cussed how to construct features from the multi-relational EMR that can be used
by a standard statistical machine learning algorithm such as Bayesian networks. We
presented three different approaches: handcrafting a set of features, a multi-step algo-
rithm that automatically learns features, and an integrated algorithm that combines
feature construction with model learning. Empirically, we report results on predict-
ing three ADRs from real-world EMR data. We found that the dynamic approach
performed the best on two of the three tasks and that handcrafting the features also
yielded good results.

Acknowledgements JD is partially supported by the Research Fund K.U.Leuven (CREA/11/015
and OT/11/051), EU FP7 Marie Curie Career Integration Grant (#294068) and FWO-Vlaanderen
(G.0356.12). VSC is funded by ERDF through Programme COMPETE and by the Portuguese
Government through FCT Foundation for Science and Technology projects LEAP (PTDC/EIA-
CCO/112158/2009) and ADE (PTDC/EIA-EIA/121686/2010). MC, PP, EB and DP gratefully
acknowledge the support of NIGMS grant ROIGM097618-01.

References

1. Alphonse, E., Rouveirol, C.: Lazy propositionalisation for relational learning. In: 14th European
Conference on Atrtificial Intelligence, pp. 256-260. IOS Press (2000)

2. Boyd, K., Davis, J., Page, D., Costa, V.S.: Unachievable region in precision-recall space and
its effect on empirical evaluation. In: Proceedings of the 29th International Conference on
Machine Learning. Omnipress (2012)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD
Rec. 26(1), 65-74 (1997)

4. Davis, J., Ong, 1., Struyf, J., Burnside, E., Page, D., Costa, V.S.: Change of representation for
statistical relational learning. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 2719-2726 (2007)

5. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Pro-
ceedings of the 23rd International Conference on Machine learning, pp. 233-240. ACM Press
(2006)

6. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian networks classifiers. Mach. Learn. 29,
131-163 (1997)

7. Kearney, P., Baigent, C., Godwin, J., Halls, H., Emberson, J., Patrono, C.: Do selective cyclo-
oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk
of atherothrombosis? meta-analysis of randomised trials. BMJ 332, 1302-1308 (2006)

8. Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational data mining.
In: DZeroski, S., Lavrac, N. (eds.) Relational Data Mining Part III, pp. 262-291. Springer,
Heidelberg (2001)

9. Landwehr, N., Kersting, K., and Raedt, L. D. nFOIL: Integrating Naive Bayes and FOIL. In:
Proceeding of the 20th National Conference on Artificial Intelligence, pp. 795-800 (2005)

10. Landwehr, N., Passerini, A., Raedt, L.D., Frasconi, P.: kFOIL: Learning simple relational
kernels. In: Proceedings of the 21st National Conference on Artificial Intelligence (2006)
11. Lavrac, N., Dzeroski, S. (eds.): Relational Data Mining. Springer, Heidelberg (2001)

12.

13.

14.

15.

16.

18.

19.
20.
21.
22.

Predicting Adverse Drug Events from Electronic Medical Records 257

Lavrac, N., DZeroski, S.: Inductive learning of relations from noisy examples. In: Muggleton,
S. (ed.) Inductive Logic Programming, pp. 495-516. Academic Press, London (1992)
McCarty, C., Wilke, R., Giampietro, P., Wesbrook, S., Caldwell, M.: Personalized Medi-
cine Research Project (PMRP): design, methods and recruitment for a large population-based
biobank. Personalized Med. 2, 49-79 (2005)

Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13, 245-286 (1995)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, California (1988)

Platt, R., Carnahan, R.: The US food and drug administration’s mini-sentinel program. Phar-
macoepidemiol. Drug Saf. 21, 1-303 (2012)

. Pompe, U., Kononenko, I.: Naive Bayesian classifier within ILP-R. In: De Raedt, L. (ed.),

Proceedings of the 5th International Conference on Inductive Logic Programming, pp. 417—
436 (1995)

Popescul, A., Ungar, L., Lawrence, S., Pennock, D. Statistical relational learning for document
mining. In: Proceeding of the 3rd International Conference on Data Mining, pp. 275-282 (2003)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81-106 (1986)

Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239-266 (1990)
Srinivasan, A.: The Aleph Manual (2001)

Vapnik, V.: The Nature of Statistical Learning Theory. Information Science and Statistics.
Springer, Heidelberg (1999)

	16 Predicting Adverse Drug Events from Electronic Medical Records
	16.1 Introduction
	16.2 Background
	16.2.1 Bayesian Networks
	16.2.2 Datalog

	16.3 Approaches
	16.3.1 Handcrafting Features
	16.3.2 Automatically Generating Features: A Multi-Step Approach
	16.3.3 VISTA: An Integrated Approach

	16.4 Empirical Evaluation
	16.4.1 Task Descriptions
	16.4.2 Methodology
	16.4.3 Results and Discussion

	16.5 Related Work
	16.6 Conclusions
	References

