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Abstract—The strong growth that is felt at the level of
photovoltaic (PV) power generation craves for more sophisticated
and accurate forecasting methods that could be able to support
its proper integration into the energy distribution network.
Through the combination of the vector autoregression model
(VAR) with the least absolute shrinkage and selection operator
(LASSO) framework, a set of sparse VAR structures can be
obtained in order to capture the dynamic of the underlying
system. The robust and efficient alternating direction method
of multipliers (ADMM), well known for its great ability dealing
with high-dimensional data (scalability and fast convergence), is
applied to fit the resulting LASSO-VAR variants. This spatial-
temporal forecasting methodology has been tested, using 1-hour
and 15-minutes resolution, for 44 microgeneration units time-
series located in a city in Portugal. A comparison with the
conventional autoregressive (AR) model is performed leading to
an improvement up to 11%.

Index Terms—Forecasting, scalability, solar power generation,
sparse matrices.

I. INTRODUCTION

The variable nature of many renewable energy sources
poses a number of challenges as to its proper connection
and integration in electric power systems. It is of utmost
importance for decision-making operators to have accurate
forecasts of renewable energy generation in order to plan the
daily operations and select optimal strategies in the power
system.

The forecasting techniques applicable in this context are
classified according to the pretended forecast horizon. For
the very short-term horizon (up to 6 hours ahead), which is
addressed in this paper, statistical models considering the latest
measurements are assumed appropriate. Within this frame-
work, recent studies show that the use of a spatial-temporal
approach, taking advantage of the dispersed information ob-
tained by geographically distributed sensors, has revealed to
be promising (see e.g. [1]). In addition, the implementation of
adequate sparsification strategies is very important in order to
select the relevant input variables and achieve a sparse solution
(coefficient matrix only have a small number of nonzero
entries) with less computational cost. In an attempt to explore
sparse structures of the spatial-temporal relations different
methodologies have been proposed (see e.g. [2], [3] and [4]).
Also with this purpose, and inspired by [5], [6] proposed a va-
riety of sparse structures (of the coefficient matrix) for vector
autoregression (VAR) model using the least absolute shrinkage

and selection operator (LASSO) framework [7] and applied
the alternating direction method of multipliers (ADMM) [8] to
fit them. The authors implemented it to wind power forecasting
and achieved good results compared to competitive models.
This paper explores the same methodology but applied to solar
power forecasting, addressing the necessary adjustments to
take into account in this new context. A comparative analysis,
in terms of improvement over autoregression (AR) model,
of the different proposed structures and between them and
two models considered in [1], VAR fitted with ordinary least
squares (OLS) and gradient-boosting (GB) algorithm, will be
performed under a case-study with 44 microgeneration units
in the same control area.

The paper is organized as follows. Section II provides a gen-
eral description of the spatial-temporal forecasting methodol-
ogy. The obtained test case results are presented and discussed
in Section III. Finally, the paper ends with concluding remarks
and future work in Section IV.

II. SPATIAL-TEMPORAL FORECASTING METHODOLOGY

The forecasting methodology employed is proposed in [6]
and allows, through the combination of the VAR and LASSO
approaches to take advantage of the spatially distributed infor-
mation and, simultaneously, to perform a smart selection of the
relevant information, thereby enabling to detect the spatial-
temporal dynamics of the power generation. The different
resulting sparse structures LASSO-VAR (LV) are fitted using
the ADMM, that allows to solve large-scale problems in a
reduced computational time.

A. LASSO-VAR Framework

The VAR model arises as a natural extension of the uni-
variate AR model, linking and cointegrating the time series
variables in a multivariate system which allows that variations
to one variable to propagate to the others.

The VAR process of order p (VAR[p]) evolves according to

Yt = η +

p∑
l=1

B(l) · Yt−l + et, (1)

in which {Yt} = {(y1,t, y2,t, . . . , yk,t)′} denote a k-
dimensional vector time series, η is a vector of constant terms,
each B(l) ∈ Rk×k represents a coefficient matrix related to the
lag l and et ∼ (0,Σe) denotes a white noise disturbance term.



This expression, relating the future observations at each of
the k microgeneration units to the past observations of all units
in the model, can be written in the compact matrix notation

Y = η1′ +BZ + E, (2)

where Y = (Y1, Y2, . . . , YT ) define the k×T response matrix,
B =

(
B(1), B(2), . . . , B(p)

)
the k× kp matrix of coefficients,

Z = (Z1, Z2, . . . , ZT ) the kp × T matrix of explanatory (or
predictors) variables, in which Zt = (Y ′t−1, Y

′
t−2, . . . , Y

′
t−p),

E = (e1, e2, . . . , eT ) the k × T error matrix, and with 1
denoting a T × 1 vector of ones.

In this context, through the use of least squares (LS)
statistical methodology, it is possible to estimate the unknown
coefficients capturing contemporaneous dependencies among
the variables and thus getting the model that best describes
the data. To simplify the calculations, centered variables Y
and Z will be assumed and, consequently, the intercept η will
no longer appear in the least squares objective function and
will be estimated after the model has been fitted.

Due to a quadratically growing dimension of the parameter
space inherent to VAR model, a consistent prediction is only
possible through the use of a procedure that induces a low-
dimensional structure on the underlying model. The LASSO
framework is very convenient to deal with estimating a high-
dimensional network since it simultaneous performs variable
selection and produces a sparse solution. This is achieved
through a regularized version of least squares that introduces
L1 penalties on the coefficients promoting a sparsity structure
on the model space. The standard LASSO-VAR (sLV) loss
function is expressed as

1

2
‖Y −BZ‖22 + λ ‖B‖1 , (3)

where λ > 0 is a scalar regularization (or penalty) parameter
controlling the amount of shrinkage, and ‖.‖r represents
both vector and matrix Lr norms. Different penalties can
be used in order to reach the goal of reducing the effective
dimensionality of the problem and detect different sparsity
patterns accordingly to the inherent structure of the VAR. The
efficient use of appropriate penalties lead to more accurate
estimation and forecasting strategies.

The Table I presents a brief description of following
sparsity-promoting LV structures: standard LASSO-VAR,
row LASSO-VAR (rLV), lag-group LASSO-VAR (lLV), lag-
sparse-group LASSO-VAR (lsLV), own/other-group LASSO-
VAR (ooLV) and causality-group LASSO-VAR (cLV). The
different penalties applied to them induce different types of
sparsity, depending on the selection target by which they
are managed. While the rLV and sLV deal with model’s
coefficients individually resulting in an unstructured sparsity
pattern, the remaining structures lLV, lsLV, ooLV and cLV,
look through sparsity in distinct group structures highlighting
characteristics such as lag selection, group and within-group
sparsity, delineation between a component’s own lags and
those of another component and evaluate which variables add
forecast improvement, respectively. More details about these
structures can be found in [5] and [6].

Table I: Brief description of LASSO-VAR structures

LV St. Penalty Selection target

rLV λ
∥∥Bi

∥∥
1 individual entries by row

sLV λ ‖B‖1 individual entries
lLV λ

∑p
l=1 ‖Bl‖1 lags

cLV
λ
∑

i6=j

‖(B1)ij . . . (Bp)ij‖2
locations (causality)

lsLV (1− α)λ
∑p

l=1 ‖Bl‖F
+αλ ‖B‖1

lags and individual entries
within lags

ooLV
√
kλ
∑p
l=l ‖diag(Bl)‖2

+
√
k(k − 1)λ

∑p
l=l

∥∥∥B−
l

∥∥∥
2

lags diagonal (diag(Bl)) and
off-diagonal entries (B−l )

B. ADMM Fitting

The ADMM has attracted renewed attention recently due to
its applicability to optimization problems arising from many
applications, and the relative ease with which it may be
implemented in parallel and distributed computational environ-
ments, which is very advantageous when dealing with high-
dimensional problems. Moreover, given the superior conver-
gence properties and decomposability of this robust method,
problems with nondifferenciable constraints (such as LASSO)
can be easily handled. This section provides a brief introduc-
tion to the analytical underpinnings of the method. Recall the
standard LASSO-VAR objective function in (3) and rewrite it
in ADMM form as

minimize
1

2
‖Y −BZ‖22 + λ ‖H‖1

subject to B −H = 0.

(4)

The ADMM can be viewed as a version of method of mul-
tipliers with the difference that it splits the objective function
in two distinct objective functions, f(B) = 1

2 ‖Y −BZ‖
2
2

and g(H) = λ ‖H‖1, by replicating the B variable in the H
variable and adding an equality constraint imposing that these
two variables are equal. The corresponding ADMM algorithm
consists of the following iterations:

Bk+1 := arg min
B

(1

2
‖Y −BZ‖22 +

ρ

2

∥∥B −Hk + Uk
∥∥2
2

)
(5)

Hk+1 := arg min
H

(
λ ‖H‖1 +

ρ

2

∥∥Bk+1 −H + Uk
∥∥2
2

)
(6)

Uk+1 := Uk +Bk+1 −Hk+1. (7)

Separating the minimization over B and H into two steps
is precisely what allows for decomposition when f and g
are separable. The update of B and H is performed in an
alternating fashion, which accounts for the term alternating
direction, making it possible to exploit the individual structure
of the f and g so that B-minimization and H-minimization
may be computed using different techniques in an efficient
and parallel manner. In this work the ridge regression and the
soft thresholding techniques will be used to solve the B and
H minimizations steps, respectively.



The same procedure ought to be adapted to perform the
ADMM formulation for the other LV structures with some
caution on the particular details of each model. To develop
distributed algorithms for the proposed structures, the problem
should be formulated as a consensus or sharing optimization
[8].

III. PRACTICAL IMPLEMENTATION AND RESULTS

A. Data Description and Experimental Setup

The ADMM algorithm is applied to the proposed LV
variants in order to predict values of solar power for horizons
up to six-steps-ahead. Two datasets encompassing time-series
of solar power from 44 microgeneration units located in a city
in Portugal are considered: (a) 15-min and (b) hourly averaged
resolution. In order to form stationary time series such that the
forecasting methods can be used, a normalization of the solar
power is obtained by using a clear sky model [9] which gives
an estimate of the solar power in clear sky conditions at any
given time. The data cover the period from February 1, 2011
to March 6, 2013. The first 12 months are used to fit the
models through Nelder Mead method [10] and the remaining
13 months are employed to evaluate the performance of the
models. Apart from the static approach, a sliding window of
12 months period is also considered. Also, with the intention
of exclude the nighttime hours, data corresponding to a solar
zenith angle larger than to 90◦ are removed. For all models,
the lags 1, 2 and 24/96 (diurnal component corresponding to
1-hour and 15-min resolution, respectively) are considered.

The evaluation of the LV structures performance is accessed
using the root mean squared error (RMSE) calculated for each
t+h, h = 1, . . . , 6, lead-time with the following expressions:

RMSEt+h =

√√√√1

k

k∑
i=1

(
Ŷt+h|t − Yt+h

)2
, (8)

where Ŷt+h|t represents the forecast made at time instant t
and Yt+h is the observed normalized solar power value. The
RMSE is normalized with the solar peak power and calculated
separately for each model using the full dataset of errors.
The performance of the LV models is compared computing
the improvement over the AR model in terms of RMSE. In
the implementation of the distributed algorithm, a consensus
problem approach is considered.

B. Forecasting Results and Discussion

The improvement of the LV structures over the AR model
fitted with the LS method, in terms of RMSE, for each lead
time is plotted in Fig. 1 and 2 using 1-hour and 15-min
resolution, respectively. Clearly all the proposed structures
outperform the AR model, becoming apparent the benefit from
considering spatial-temporal models. For all lead times, the
cLV and ooLV structures stand out as the ones with better
performance, except for lead time 4 using 15-min resolution
dataset, in which although ooLV remains on the top, the sLV
and rLV slightly outperform cLV. For each dataset resolution,
the models have a similar improvement behaviour over the

time horizon (decreasing using 1-hour resolution and increas-
ing using 15-min resolution) and the highest improvement
is achieved on the first lead time (≈ 7.3%) using 1-hour
resolution and in the fourth lead time (≈ 7.9%) using 15-min
resolution.
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Fig. 1: RMSE improvement over of the LV structures using a static approach
over AR model (fitted with LS model) for 1-hour resolution dataset
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Fig. 2: RMSE improvement over of the LV structures using a static approach
over AR model (fitted with LS model) for 15-min resolution dataset

The Fig. 3 and 4 show the improvement of the LV struc-
tures applying a sliding-window (SW) approach (the window
slides by day) over the AR fitted using Recursive Weighted
Least Squares model (RWLS) with forgetting factor, hereafter
referred as AR[RWLS], for 1-hour and 15-min resolution,
respectively. It is noteworthy that all the models present a
higher improvement for all lead times and that the improve-
ment behaviour maintains the same, although more smoothed,
relatively to the static approach. For 1-hour resolution dataset,
unlike the static approach, it seems to be more difficult to
detect which structures exhibit a better performance. However,
one can elect the cLV and the lsLV (attaining improvements
of 10.6% and 11%, respectively, for the first lead time) as
the structures with better performance given their more stable
behavior over all the lead times. For 15-min resolution dataset,
although there are not huge differences between the models,
clearly the lLV and lsLV structures are distinguish as the ones
with better performance (attaining improvements of 10% and
9.8%, respectively, for the first lead time).

Comparing the 1-hour resolution results with those obtained
by the VAR model fitted with OLS and GB (in [1]), it can be
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Fig. 3: RMSE improvement over of the LV structures using a SW approach
over AR model (fitted with RWLS model) for 1-hour resolution dataset
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Fig. 4: RMSE improvement over of the LV structures using a SW approach
over AR model (fitted with RWLS model) for 15-min resolution dataset

observed that the improvement of the cLV and lsLV structures
is only surpassed by the VAR[OLS] in the lead times 2 and
3, and by the VAR[GB] in lead times 5 and 6, although in the
latter case the difference is not significant.

In order to make possible the quantification of the im-
provement (in terms of errors magnitude), the Tables II and
III show, for both static and sliding-window approaches, the
global RMSE scores for lead-time t+1 using the six LASSO-
VAR structures and also the AR model (static approach) or the
AR[RWLS] model (sliding-window approach), corresponding
to 1-hour and 15min resolution datasets, respectively.

Table II: Average RMSE (lowest value in bold) across all sites for lead-time
t+1 (values normalized by rated power) for static and SW approaches using
1-hour resolution dataset

rLV sLV lLV cLV lsLV ooLV AR/AR[RWLS]

static 8.8087 8.803 8.93 8.5913 8.8688 8.6744 9.3043
SW 8.2917 8.2959 8.2654 8.3009 8.2621 8.2571 9.3124

Table III: Average RMSE (lowest value in bold) across all sites for lead-time
t+1 (values normalized by rated power) for static and SW approaches using
15-min resolution dataset

rLV sLV lLV cLV lsLV ooLV AR/AR[RWLS]

static 8.1438 8.1275 8.3115 8.1236 8.2246 8.1224 8.6202
SW 7.8867 7.8983 7.8224 7.9280 7.8344 7.9165 8.6875

For the purpose of analyzing the sparsity of the coefficients
matrices generated by the proposed models (for static ap-

proach), the corresponding percentages of sparsity for all lead
times are presented in the Tables IV and V, corresponding
to 1-hour and 15-min resolution datasets, respectively. It is
possible to observe that all the structures, except the lLV and
ooLV, exhibit significant sparsity and it increases with the
lead time. Both lLV and ooLV models penalize large blocks,
which sometimes is too restrictive motivating that an entire
block is included or excluded from the model. By the way
of example, the sparsity patterns for the first lead time of the
cLV using 1-hour resolution dataset and of the ooLV using 15-
min resolution dataset (the models with better performance
in each case) are represented in Fig. 5 and 6. The darker
shade represents coefficients that are larger in magnitude. As
expected, the first lag diagonal coefficient’s (the site own past
observation) are the most relevant ones in both cases. Also,
for the 15-min resolution dataset, the ooLV reveals that in the
second lag only the site’s own past observations are relevant
input variables to perform the forecast.

Table IV: Sparsity (in percentage) of the coefficients matrices generated for the
different LASSO-VAR structures using a static approach and 1-hour resolution
dataset

LV Struc.
Lead Times

1 2 3 4 5 6

rLV 69.4 81.6 81.6 87.7 88.9 89.9
sLV 67.9 82.2 87.4 88.5 88.6 89.6
lLV 0 0 0 0 0 0
cLV 53.0 65.0 66.3 75.5 76.7 77.8
lsLV 34.0 41.9 43.5 40.4 40.4 42.2
ooLV 0 33.3 0 33.3 33.3 32.6

Table V: Sparsity (in percentage) of the coefficients matrices generated for
the different LASSO-VAR structures using a static approach and 15-min
resolution dataset

LV Struc.
Lead Times

1 2 3 4 5 6

rLV 74.6 72.2 73.3 78.4 73.6 63.24
sLV 76.2 71.9 72.4 77.5 70.04 61.3
lLV 0 0 0 0 0 0
cLV 54.2 54.9 57.2 55.3 48.7 37.7
lsLV 37.7 32.8 34.3 36.8 35.2 29.4
ooLV 32.6 0 0 33.3 0 0
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Fig. 5: Coefficients matrix (sparsity structure) of the cLV structure for first
lead-time using a static approach and 1-hour resolution dataset

In a sliding-window approach context, it is possible to
analyze the dynamic evolution of the coefficients matrix over
the time. Considering the cLV structure for 1-hour resolution
and ooLV structure for 15-min resolution, the corresponding
Fig. 7 and 8 illustrate, for the first lead time, the coefficients
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Fig. 6: Coefficients matrix (sparsity structure) of the ooLV structure for first
lead-time using a static approach and 15-min resolution dataset

matrix (colored with an absolute magnitude degree) obtained
for the windows corresponding to a sliding of one, six and
twelve months.

For both datasets, and both structures considered for each
one of them, it is notable that the first lag diagonal is the
most relevant one, followed by lag 24 diagonal, since the
coefficient’s magnitude present by them is significantly higher
than the one present by second lag diagonal and most of the
off-diagonal entries. For 15-min dataset, the ooLV structure,
which concerns the possibility that the prediction variable is
more influenced by their own past observations than by past
observations of other variables, highlights the great importance
of the predictors corresponding to the first lag in the prediction
with a huge magnitude difference relatively to the remaining
coefficients, that should also be taken into account but with a
smaller contribution. Moreover, from the fact that sometimes
only the diagonal of the second lag is considered one can infer
that the second lag is not so relevant in this case.

The sparsity evolution of the coefficient matrix obtained
along the sliding window period for 1-hour (cLV structure) and
15-min resolution datasets (ooLV structure) is depicted in Fig.
9 and 10, respectively. Using 1-hour resolution dataset, one can
observe that the coefficient matrix sparsity present a relatively
stable behaviour (between 52% and 54%) in the first four
sliding months, becoming uneven and bumpy in the remaining
sliding months highlighting a very sharp slope for a sliding
of 6/7 months (decreasing) and 11/12 months (increasing),
corresponding to a training window of August 2012 - August
2013 and January 2012 - January 2013, respectively. The low
sparsity presented when predicting the months from October
2012 to January 2013 means that, in this case, these are
the months that need less information, in terms of available
predictors, to perform the forecast. For 15-min resolution
dataset, it is possible to observe that the coefficient matrix has
a constant sparsity of 32,6% for the first seven sliding months
and no sparsity in the remaining sliding months, revealing
that for the first seven sliding months the second lag off-
diagonal entries do not contribute to improve the forecasts. As
explained before, this structure (ooLV) penalizes large blocks
(lag diagonal and off-diagonal blocks) which means that the
sparsity is not so variable as in other structures penalizing
smaller blocks or individual entries.

Finally, in order to evaluate the computational performance
of the ADMM algorithm, the running times and number of
iterations of both nondistributed and distributed versions using
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Fig. 7: Coefficients matrices of the cLV structure for first lead-time using
SW approach and 1-hour resolution dataset: (a) sliding of one month, (b) six
months and (c) twelve months

0 20 40 60 80 100 120

0

10

20

30

40
0.24

0.5 

0.75

(a) One month

0 20 40 60 80 100 120

0

10

20

30

40
0.24

0.5 

0.75

(b) Six months

0 20 40 60 80 100 120

0

10

20

30

40
0.24

0.5 

0.75

(c) Twelve months

Fig. 8: Coefficients matrices of the cLV structure for first lead-time using
SW approach and 15-min resolution dataset: (a) sliding of one month, (b) six
months and (c) twelve months

1-hour resolution dataset are depicted in Table VI. It can be
observed that the standard ADMM takes only few seconds to
run and that the use of distributed ADMM results in a decrease
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Fig. 9: Sparsity evolution of the coefficients matrix of the cLV structure
for first lead-time over the SW using 1-hour resolution dataset (red markers
correspond to first day of each month)
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Fig. 10: Sparsity evolution of the coefficients matrix of the ooLV structure
for first lead-time over the SW using 15-min resolution dataset (red markers
correspond to first day of each month)

of the running time to all structures, except for the rLV,
that can be justified by the increased time that this structure
spend out of the cycle, which reflects the impact of the the
increasing number of calculations for being applied to predict
each location separately.

Table VI: Total running times (in sec) and number of iterations (between
parenthesis) for 6 lead-times of the LASSO-VAR structures using distributed
(data divided by a i7 8-cores processor) and non-distributed ADMM

LV Structures Standard ADMM Distributed ADMM

rLV 2.34 (6389) 9.46 (3215)
sLV 1.50 (746) 0.37 (147)
lLV 1.44 (665) 0.47 (140)
cLV 3.45 (409) 1.81 (158)
lsLV 1.01 (288) 0.42 (164)
ooLV 1.03 (227) 0.45 (97)

IV. CONCLUSIONS

Inspired by previous studies, this work presents a spatial-
temporal solar power forecasting methodology combining the
VAR and LASSO frameworks that can accommodate a wide
range of potential dynamic sparse structures. A set of sparsity-
promoting LASSO-VAR structures are explored and fitted with
ADMM in order to capture the dynamics of the underlying
system and provide a scalable solution.

The models are implemented using both static and sliding-
window approaches and its results are analyzed on a realistic

case study with 44 microgeneration units geographically dis-
persed in a city in Portugal. The structures showed a significant
improvement, up to 11% using a sliding-window approach,
over AR model, and also most of them outperformed the
VAR[OLS] and VAR[GB] for almost all lead-times. These
results confirm the benefits of using spatial-temporal data
modeling short-term generation of PV farms. This short-term
forecasting system performs well in terms of computational
cost since it takes only few seconds to run. Additionally, in
general, the computational time is greatly reduced when a
distributed version of ADMM is used, revealing that one can
really profit using the ADMM to deal with high-dimensional
data.

The ADMM algorithm applied to LASSO-VAR models
has proven to be an adequate choice to estimate the regres-
sion parameters. In order to take advantage of the spatial
information to improve forecasts, more complex and dynamic
sparse structures should be engineered and combined in such
a artfully way that it will be possible to walk towards a more
accurate solution providing relevant insights about the under-
lying relationships between inputs and outputs. Furthermore,
the extension of the statistical model to a probabilistic forecast
framework and the implementation of reliable alternatives to
ADMM are promising to be considered for further work.

ACKNOWLEDGMENT

This work was made in the framework of the SusCity project
(contract no. “MITP-TB/CS/0026/2013”) financed by national
funds through Fundação para a Ciência e a Tecnologia (FCT),
Portugal.

REFERENCES

[1] R. Bessa, A. Trindade, and V. Miranda, “Spatial-temporal solar power
forecasting for smart grids,” IEEE Transactions on Industrial Informat-
ics, vol. 11, no. 1, pp. 232–241, February 2015.

[2] M. He, V. Vittal, and J. Zhang, “A sparsified vector autoregressive model
for short-term wind farm power forecasting,” in Proceedings of the 2015
IEEE Power & Energy Society General Meeting, Denver, CO, USA, July
2015.

[3] J. Dowell and P. Pinson, “Very-short-term probabilistic wind power
forecasts by sparse vector autoregression,” IEEE Transactions on Smart
Grid, vol. 7, no. 2, pp. 763–770, March 2016.

[4] R. A. Davis, P. Zang, and T. Zheng, “Sparse vector autoregressive
modelling,” 2012, arXiv:1207.0520.

[5] W. B. Nicholson, D. S. Matteson, and J. Bien, “Structured regularization
for large vector autoregression,” Cornell University, Tech. Rep., Septem-
ber 2014.

[6] L. Cavalcante, R. J. Bessa, M. Reis, and J. Browell, “Lasso
vector autoregression structures for very short-term wind power
forecasting,” Wind Energy, 2016, in press. [Online]. Available:
http://dx.doi.org/10.1002/we.2029

[7] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 58, no. 1, pp. 267–288, 1996.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[9] P. Bacher, H. Madsen, and H. A. Nielsen, “Online short-term solar power
forecasting,” Solar Energy, vol. 83, no. 10, pp. 1772–1783, 2009.

[10] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.


