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Abstract
This

Q1

Q2

paper introduces a class of automata and associated languages, suitable to model a computational
paradigm of fuzzy systems, in which both vagueness and simultaneity are taken as first-class citizens. This
requires a weighted semantics for transitions and a precise notion of a synchronous product to enforce the
simultaneous occurrence of actions. The usual relationships between automata and languages are revisited
in this setting, including a specific Kleene theorem.
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1. Introduction8

The notion of an automaton (Kleene 1956), as the de facto mathematical abstraction of a com-9

putational process over a discrete state space, is constantly revisited to capture different sorts of10

computational behaviours in the most varied contexts, either prescribed in a program or discov-11

ered in Nature. Already in 1997, Milner (2006) emphasised that from being a prescription for how12

to do something – in Turing’s terms a ‘list of instructions’, software becomes much more akin to a13

description of behaviour, not only programmed on a computer, but occurring by hap or design inside14

or outside it.Over time different kinds of automata were proposed generate (or recognise, depend-15

ing on the perspective) such behaviours (or the languages that express them). Regular expressions,16

as a basic notation to express languages and behaviours, were first axiomatised by Kozen (1990) as17

Kleene algebras, which are basically partially ordered, semirings endowed with a closure operator.18

Several interpretations and variants of this structure are documented in the literature (Hoare et al.19

2011; Jipsen and Andrew Moshier 2016; Kozen and Mamouras; Kozen 1997; McIver et al. 2006,20

2013; Qiao et al. 2008; Thiemann 2016).21

This paper was born out of a challenge: having previously worked with the Fuzzy Arden22

Syntax (FAS) (Gomes et al. 2021), a fuzzy, imperative language used for medical diagnosis and23

prescription of medical procedures, our aim was to introduce a specific kind of automata, and24

corresponding languages, are able to express the behaviour of the underlying fuzzy systems.25

Two specific ingredients have to be taken into consideration. The first is vagueness, or26

uncertainty, a notion that underlies the interpretation of both variables and predicates in FAS27

programs. The second is simultaneity, i.e. a form of parallel execution which is not captured by28
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non-deterministic interleaving of elementary steps, as in typical models of concurrency. Consider,29

for illustration purposes, the following program.30

Example 1.1.31

if (Temperature is in Fever_condition)32

then medicine:=5 else medicine:=033

The program adjusts the dose of medicine to be administrated to a patient depending on her34

temperature. The variable Fever_condition is a function assigning, to each real value of the35

temperature measured, a value (e.g. within the range [0, 1]) to record how close such tem-36

perature is of a ‘fever condition’. In a scenario where the predicate Temperature is in37

Fever_condition and its negation have a value greater than 0, let us say, 0.4 and 0.6, respec-38

tively, the program executes both the then and the else blocks, weighted by the value associated39

to each of them. In practice, this results in a multiplication of the values taken, in each case, by40

variable medicine. Intuitively, the values 0.4 and 0.6 mean that Temperature has probably not41

reached the limit of a fever condition but is close to it.42

Summing up, the intended semantics of a conditional statement in FAS does not reduce to a43

non-deterministic, or even to a probabilistic choice (McIver et al. 2013). Instead, it corresponds44

to a sort of parallel execution enforcing all branches to run in parallel, with (possibly) different45

weights associated to the evaluation of each condition. Therefore, as this small program illustrates,46

vagueness and simultaneity are the two ingredients our framework needs to deal with.47

Vagueness can be captured by a fuzzy finite-state automata (FFA), a structure introduced48

in the 1960’s in Wee and Fu (1969) to give a formal semantics to uncertainty and vagueness49

inherent to several computational systems. Different variants of this idea, e.g. incorporat-50

ing fuzziness into either states or transitions, or both, are well documented in the litera-51

ture (Doostfatemeh and Kremer 2005; Li and Pedrycz 2005; Liu et al. 2021; Mateescu et al. 1995).52

The corresponding fuzzy languages (Lee and Zadeh 1969; Zadeh 1996) are recognised by this53

class of automata only up to a certain membership degree. Applications are transversal to several54

domains as reported in Lin and Ying (2002), Mordeson and Malik (2002), Pedrycz and Gacek55

(2001), Ying (2002).56

On the other hand, simultaneitywas suitably formalised in whatMilner called the ‘synchronous57

version of CCS’ – the SCCS calculus (Milner 1983), a variant of CCS (Milner 1980) where arbi-58

trary actions are allowed to execute synchronously. This very same idea of synchronous evolution59

appears in the work of C. Priscariu on synchronous Kleene algebra (Prisacariu 2010). Models for60

such structures are given in terms of sets of synchronous strings and finite automata accepting61

them. These structures found application, for instance, in variants of deontic logic to formalise62

contract languages (Segerberg 1982; vonWright 1968) and of Hoare logic to reason about parallel63

synchronous programs with shared variables (Prisacariu 2010).64

The aim of this paper is to formalise the behaviour of this class of systems. H -automata are65

introduced as a variant of fuzzy transition automata in the spirit of reference (Mateescu et al.66

1995), where transitions take ‘truth’ values in a complete Heyting algebra H , and a suitable67

synchronous product construction is defined. The paper proceeds by generalising synchronous68

sets (Prisacariu 2010) into a notion of a H -synchronous language, defined as a word valuation69

function over H . Some preliminary results in this direction appeared in the authors’ conference70

paper (Gomes et al. 2020). However, the formal framework was now completely redefined in a71

very general sense – note, for example, that the need for explicitly introducing H -valued guards72

in the language, as suggested in that preliminary work, becomes redundant, i.e. implicit in the73

relevant mathematical strucutre and, thus, in the proposed language semantics.74

As a main result it is shown that, for any complete Heyting algebra H ,75

H -synchronous languages equipped with suitable language operators, as proposed here,76
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defines a synchronous Kleene algebra. Moreover, its actions can generate aH -automaton accept-77

ing precisely the H -synchronous language that constitutes its interpretation. As in the classical,78

well-known case, a regular expression can be obtained from a H -automaton by a standard state79

elimination procedure (Hopcroft et al. 2003). The procedure results in a H -automaton with a80

single transition from the initial to the final state, labelled by an action α whose interpretation is81

precisely the language recognised by that H -automaton.82

This paper is organised as follows. The remaining of this section sums up related work and83

some preliminaries to the paper’s contribution. Section 2 introduces H -synchronous languages84

and defines a number of operators over them, proving that, in this wayH -synchronous languages85

forms a synchronous Kleene algebra. Section 3 studies H -automata, including their synchronous86

product. A few examples of FAS programs involving conditionals are interpreted in this frame-87

work. Then, a Kleene theorem for H -automata and H -synchronous languages is proved in88

Section 4. Finally, Section 5 concludes and enumerates some topics for future research.89

1.1 Related work90

The construction of a finite fuzzy automata with membership degrees taken in a lattice-ordered91

monoid L is studied in Li and Pedrycz (2005) in a context analogous to the one considered here,92

based on the concept ofL -fuzzy regular expression. Those are defined as regular expressions from93

an alphabet X with a scalar λ ∈L multiplication, which resorts to the monoid multiplication. It94

is precisely this scalar that attributes the weight to a transition in the automaton. In our approach,95

on the other hand, automata are built using standard regular expressions instead of fuzzy regular96

expressions. Regular expressions are then interpreted as some sort of weighted languages (i.e.97

functions with values on a complete Heyting algebra) accepted by an automaton with weighted98

transitions.99

Most of the results presented in the context of fuzzy languages are constructed using either the100

real interval [0, 1] or a generic residuated lattice to model the (possible) many valued membership101

values. Such is the case of reference (Mateescu et al. 1995). However, one of the main results of this102

paper, Theorem 1, relies on properties provided by a specific characterisation of the underlying lat-103

tice structure. In particular, the operator ‘;’ has to be idempotent and commutative. The definition104

a H -automaton proposed here differs from the one in Mateescu et al. (1995) with respect to the105

underlying semantic structure, which is assumed to be as a complete Heyting algebra.106

Q3Probabilistic automata (Rabin 1963), another approach to handle uncertainty, weight transi-107

tion by elements of a probability distribution. An equivalent to Kleene’s theorem for these family108

of automata is presented by Bollig et al. (2012), considering (probabilistic) strings with probabilis-109

tic choice, guarded choice, concatenation and the star operator. Extensive surveys on this class110

of automata are documented in Vidal et al. (2005a,b). In the approach proposed here, however,111

uncertainty can be measured in an arbitrary, either discrete or continuous, domain, depending on112

the relevant application scenario. This is captured by a complete Heyting algebra introduced as a113

parameter in the model.114

Figure 1 summarises some systems from the literature, highlighting the difference of the115

approach taken in this paper.116

Moreover, as we summarised above, the notion of weight can take different meanings. Figure 2117

summarises some of these different approaches.118

1.2 Preliminaries119

The notion of a synchronous Kleene algebra (SKA) plays in the automata construction introduced120

by Prisacariu (2010) a role similar to the one played by Kleene algebras in the classical case (Broda121

et al. 2013). Actually, SKA:122
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Figure 1. Simple representation of different classes of automata: finite state automata, their version with weights intro-
duced in this paper (H -automata) and the synchronous product (non-weighted Prisacariu 2010 and weighted).

Figure 2. Taxonomy of related work. Values a, a1, . . . an represent probabilities or weights.

• extends Kleene algebra with a synchronous operator to model synchronous execution of123

actions;124

• has an interpretation over synchronous languages, the equivalent of regular languages to125

include actions corresponding to the synchronous execution of other actions;126

• induce the construction of a class of finite automata, which accept the same languages that127

defines the interpretation of the SKA actions.128

The relevant definitions are recalled below.129



Mathematical Structures in Computer Science 5

Definition 1. (Kleene algebra). A Kleene algebra (A,+, ·,∗ , 0, 1) is an idempotent semiring with130

a unary operator ‘∗’ satisfying axioms (1)–(13) in Table 1. Partial order ≤ is induced by ‘+’ as131

α ≤ β⇔ α + β = β.132

Well-known examples of Kleene algebras include the algebra of binary relations over a set, the133

set of all languages over an alphabet, and the (min,+)-algebra, also known as the tropical algebra,134

defined over the reals with an additional +∞ constant, as135

R= (R+
0 ∪+∞,min,+,∗ ,+∞, 0)

Extending this definition with a multiplication ‘×’ to capture the synchronous execution of136

actions1 leads to the notion of a synchronous Kleene algebra (SKA), introduced in Prisacariu137

(2010).138

Definition 2. (SKA). Let B be a set of labels. A SKA is a Kleene algebra extended with an operator
‘×’ i.e. a tuple

S= (A, B,+, ·,×,∗ , 0, 1)
where B⊂A, satisfying the axioms in Table 1.139

α + (β + γ ) = (α + β)+ γ (1)
α + β = β + α (2)
α + α = α (3)
α + 0 = 0+ α = α (4)

α · (β · γ ) = (α · β) · γ (5)
α · 1 = 1 · α = α (6)

α · (β + γ ) = (α · β)+ (α · γ ) (7)
(α + β) · γ = (α · γ )+ (β · γ ) (8)

α · 0 = 0 · α = 0 (9)
1+ (α · α∗) = α∗ (10)
1+ (α∗ · α) = α∗ (11)

α · γ ≤ γ ⇒ α∗ · γ ≤ γ (12)
γ · α ≤ γ ⇒ γ · α∗ ≤ γ (13)

α× (β × γ ) = (α× β)× γ (14)
α× β = β × α (15)
α× 1 = 1× α = α (16)
α× 0 = 0× α = 0 (17)
a× a = a , a ∈ B (18)

α× (β + γ ) = (α× β)+ (α× γ ) (19)
(α + β)× γ = (α× γ )+ (β × γ ) (20)

(α× · α)× (β× · β) = (α× × β×) · (α× β) , where (21)
α×, β× ∈ B×, with B×the× -closure of B.

Table 1. Axiomatisation of a SKA (based on Prisacariu 2010)

Following a common practice, we write ab, rather than a · b, for a, b ∈ B. Note that axiom (18)140

applies only to elements of B, instead of any arbitrary action A. This comes from the fact that141

such a property, being intuitive for atomic actions, is not so, or even desirable, for an arbitrary142

action in A. Consider, for example, action (a+ b)× (a+ b), whose execution may result in a× b143

by choosing a from the first entity and b from the second. However, by the axiomatisation above,144

we have145

(a+ b)× (a+ b)
146

= { (19)}
(a+ b)× a+ (a+ b)× b

= { (20)}
(a× a)+ (b× a)+ (a× b)+ (b× b)
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147 = { (15)}
(a× a)+ (a× b)+ (a× b)+ (b× b)

= { (3) and (18)}
a+ (a× b)+ b

Moreover, axiom (21) provides an exchange like rule to describe interaction between elements148

in B× and A. The restriction to actions in B× relates to the synchrony model, describing the149

parallelism of sequences of actions by concatenating small synchronous steps.150

We will call by synchronous regular expressions the terms of a SKAs, i.e., the terms given the
grammar

α ::= a | 0 | 1 | α + α | α · α | α× α | α∗

where a is a atomic action, constituting the set B. Actions α×, β× are built only with operator151

‘×’ from B, constituting the set B× (e.g. a, a× b ∈ B× but a+ b, a× b+ c, 0, 1 /∈ B×). The set of152

synchronous regular expressions will be denoted by Sreg.153

If synchronous execution of actions is captured as above, vagueness, on the other hand, requires154

the consideration of weighted transitions forming a complete Heyting algebra.155

Definition 3. (Complete Heyting algebra). A Heyting algebra is a bounded distributive lattice156

H = (H,∨,∧, 0, 1,→ )
with join ‘∨’ and meet ‘∧’ operators, least ‘0’ and greatest ‘1’ elements, equipped with a binary157

operator ‘→’ that is right adjoint to ‘∧’. Some axioms are listed in Table 2.158

a∧ b = b∧ a (22)
a∧ a = a (23)

a∨ (a∧ b) = a (24)
a∧ b ≤ c⇔ b ≤ a→ c (25)

Table 2. Part of the axiomatisation of a Heyting algebra

H is a complete Heyting algebra (CHA) iff it is complete as a lattice, therefore entailing the159

existence of arbitrary suprema. The usual precedence of the operators, with ‘∗’ having the highest160

precedence, then ‘;’, ‘×’, and finally ‘+’, will be assumed.161

Let us briefly revisit some properties of this structure that will be later used in proofs.162

Completeness ensures that all suprema exist when characterising operators ‘·’, ‘×’ and ‘∗’ on163

H -synchronous languages as (possible) infinite sums. Let us denote by
∨
,
∧

the distributed ver-164

sions of the associative operators ‘∨’ and ‘∧’, respectively, and by I a (possible infinite) index set.165

Axiom (25) ensures that every suprema distributes, on both sides, over arbitrary infima, i.e.166

a∧ (
∨

i∈I
ai) =

∨

i∈I
(a∧ ai) (26)

(
∨

i∈I
ai)∧ a =

∨

i∈I
(ai ∧ a) (27)

Instances of a complete Heyting algebra are enumerated in the following examples.167
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Example 1.2. (2- the Boolean algebra). A first example is the well-known binary structure
2= ({-,⊥},∨,∧,⊥,-,→ )

with the standard interpretation of Boolean connectives.168

Example 1.3. A second example is the three-valued Gödel chain, which introduces an explicit169

denotation u for ‘unknown’ (or ‘undefined’). 3= ({-, u,⊥},∨,∧,⊥,-,→ ) where170

Example 1.4. (Gödel algebra). Another example is given by the standard Gödel algebra171

G= ([0, 1], max, min, 0, 1,→ ) where172

x→ y=
{
1, if x≤ y
y, if y< x

2. H -Synchronous Languages173

In order to capture both synchronous execution and vagueness in transitions, their interpre-174

tation is made over synchronous languages with embedded weights. The latter are taken, as175

explained above, from a complete Heyting algebra H . In a sense, this generalises the work176

of Prisacariu (2010) which considers non-weighted, but synchronous languages. A number of177

operators over these languages, referred to as H -synchronous languages, are introduced below,178

structuring this domain as a SKA, parametric on the set of weights.179

Definition 4. (H -synchronous languages). Let B be a set of symbols and H a complete Heyting180

algebra over a carrier H. H -synchronous actions are pairs associating a non-empty set of sym-181

bols in B to a weight in H. Formally, % = Pne(B)×H \ {0}, where Pne(X) denotes the non-empty182

powerset of X. For each action, functions b : % −→Pne(B) and h : % −→H \ {0}, denote the cor-183

responding projections. H -synchronous words are elements of %∗. H -synchronous languages are184

sets of such words, i.e. elements of P(%∗).185

The weight of a word is computed by

hs : %∗ −→H, hs(u)=
∧

x←u
h(x)

Clearly, hs(ε)= 1, for ε the empty string.186

As an illustration, consider a finite set of labels B= {a, b} and take the Gödel algebra G, from
Example 1.4, as a domain for weights. Thus, representing a sequence by the juxtaposition of its
elements, hs(({a}, 0.6)({a, b}, 0.5))= 0.6∧ 0.5= 0.5. Thus, one may turn a language L ∈P(%∗)
into a function of synchronous words to weights through a translation function

t : P(%∗)−→HP(B)∗

such that187

t(∅) = ()
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t(L ) =
(
π∗1 (w) 2→ hs(w)

)
w∈L

Of course, t is not injective, thus two Q4characterisations of a language, i.e. as an element of P(%∗)188

or of HP(B)∗ , are not isomorphic. Function hs is particularly relevant to state, as we will do later,189

that an automata recognises a word w if it does so with a weight equal or bigger than hs(w).190

The standard operators from regular language theory can be defined over191

H -synchronous languages, as follows.192

Definition 5. The following operations are defined over H -synchronous languages L , L1, L2, for193

any complete Heyting algebra H :194

- ∅= ∅ (the empty language)195

- 1= {ε} (the language containing only the empty string)196

- L1 + L2 = L1 ∪L2197

- L1 · L2 = {uv| u ∈L1, v ∈L2}198

- L1 ×L2 = {u× v| u ∈L1, v ∈L2}, where u× v is defined by199

– u× ε = u= ε× u200

– u× v= (b(x)∪ b(y), h(x)∧ h(y))(u′ × v′) where u= xu′ and v= yv′.201

- L ∗ is the least fixed point of equation X = 1+ L · X.202

With respect to the product of languages, note that {a, b} ∈L1 ×L2 may correspond to any of203

the following situations: {a} ∈L1 and {b} ∈L2, {b} ∈L1 and {a} ∈L2, or, finally, {a, b} belongs204

just to one of the languages, and ε to the other. Note also that if a ∈L1 and bc ∈L2, then {a, b}c ∈205

L1 ×L2.206

Definition 6. (Atomic languages). Let B be a set of symbols andH a complete Heyting algebra over207

a carrier H and % = Pne(B)×H \ {0} a set of synchronous actions. The set of atomic actions of %208

is given by %0 = {a ∈% | |b(a)| = 1}. For any atomic action a ∈%0, the language La = {a} is called209

atomic language. We denote by B% the class of atomic languages of % and by B×% the×-closure of210

B. We use also L% to denote the class of the languages of %.211

Theorem 1. Let B be a set of symbols and H a complete Heyting algebra over a carrier H and212

% = Pne(B)×H \ {0} a set of synchronous actions. The structure213

L= (L% ,B% ,+, ·,×,∗ ,∅, 1)
defines a SKA.214

Proof. We detail the verification of axioms (1), (13), (20) and (18) making repeated use of215

Definition 5. The remaining cases follow a similar argument. For axiom (1) observe:216

w ∈L1 · (L2 · L3)
⇔ w= u · v such that u ∈L1 and v ∈L2 · L3
⇔ w= u · v such that u ∈L1 and v= s · t such that s ∈L2 and t ∈L3
⇔ w= u · s · t such that u · s ∈L1 · L2 and t ∈L3
⇔ w ∈ (L1 · L2) · L3

Regarding axiom (18), consider the atomic language La. We have217

w ∈La ×La
⇔ w= a× a such that a ∈La
⇔ w= (b(a)∪ b(a), h(a)∧ h(a)) such that a ∈La
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⇔ w= a such that a ∈La
⇔ w ∈La

For axiom (20),218

w ∈ (L1 + L2)×L3
⇔ u ∈ (L1 + L2) and v ∈L3 for some u and v such that w= u× v
⇔ u ∈ (L1 ∪L2) and v ∈L3 for some u and v such that w= u× v
⇔ u ∈L1 or u ∈L2, and v ∈L3, for some u and v such that w= u× v
⇔ w ∈L1 ×L3 or w ∈L1 ×L3
⇔ w ∈ (L1 ×L3)+ (L2 ×L3)

For axiom (21), consider the %-languages L ×1 , L ×2 ∈B×. Then,219

w ∈ (L ×1 · L1)× (L ×2 · L2)
⇔ w= (x · u)× (y · v) such that x ∈L ×1 , u ∈L1, y ∈L ×2 , v ∈L2

⇔ (b(x)∪ b(y), h(x)∧ h(y)) · (u× v) such that x ∈L ×1 , u ∈L1, y ∈L ×2 , v ∈L2

⇔ (x× y) · (u× v) such that (x× y) ∈L ×1 ×L ×2 , u× v ∈L2 ×L2

⇔ w ∈ (L ×1 ×L ×2 ) · (L1 ×L2)
220

Similarly to the homomorphism used to interpret Sreg as synchronous sets (Prisacariu 2010),221

we define a map to interpret actions of α ∈ Sreg as H -synchronous languages.222

Definition 7. (Sreg-interpretation). The function I : Sreg→P(%∗), called a Sreg-interpretation,223

is defined as follows:224

I(a)= La, a ∈ B×H225

I(0)=∅226

I(1)= χ227

I(α + β)= I(α)∪ I(β)228

I(α · β)= I(α) · I(β)229

I(α× β)= I(α)× I(β)230

I(α∗)= I(α)∗231

3. H -Automata232

This section presents the automata construction for H -synchronous languages. First we define233

a class of automata on top of a complete Heyting algebra H , referred as H -automata. An234

appropriate notion of a synchronous product for these automata is then presented.235

Definition 8. (H -Automata). Let H be a complete Heyting algebra and B a set of symbols. A236

H -automaton is a tuple237

M = (S,%, s0, F, δ)
where:238

• S is a finite set of states;239

• % = Pne(B)×H is the input alphabet;240
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• s0 ∈ S is the initial state;241

• F⊆ S is the set of final states;242

• δ : S×% × S→H is the transition function.243

Intuitively, δ(s1, x, s2), for x ∈%, can be interpreted as the truth degree of ‘input x causing a tran-244

sition from s1 to s2’. In a graphical representation of a H -automaton, the weight of a transition245

from s1 to s2 caused by an action a is represented explicitly as follows:246

s1 s2(a,δ(s1, a, s2))

The transition function can be inductively extended to sequences %∗ by defining
δ∗ : S×%∗ × S→H such that, for any s1, s2 ∈ S,

δ∗(s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

and, for any s1, s2 ∈ S,w ∈%∗ and x ∈%,247

δ∗(s1, xw, s2)=
∨

s′∈S
(δ(s1, x, s′)∧ δ∗(s′,w, s2))

Clearly, for any states s1, s2 ∈ X and any word w ∈%∗, δ∗(s1,w, s2) can be interpreted as the truth248

degree of ‘word w causes a transition from s1 to s2’.249

A recognising function for a particular automatonM succeeds in recognising a word if, for each250

label x ∈% appearing in the word, the weight associated to the corresponding transition δ(s1, x, s2)251

is such that h(x)≤ δ(s1, x, s2). Formally,252

Definition 9. (Recognising function). Let H be a complete Heyting algebra and253

M = (S,%, s0, F, δ) a H -automata. The recognising function for M , ρM : S×%∗ × S→H, is254

recursively defined by255

ρM (s1, xw, s2)=
{

δ(s1, x, s′)∧ ρM (s′,w, s2) if h(x)≤ δ(s1, x, s′)
0 otherwise

and

ρM (s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

Definition 10. Let H be a complete Heyting algebra, M = (S,%, s0, F, δ) be an H -automaton,256

and ρM a recognising function for M . The H -synchronous language recognised by M is defined257

as follows:258

L (M )= {w ∈%∗|ρM (s0,w, s)> 0 for some s ∈ F}

Theorem 2. Let H be a complete Heyting algebra, M = (S,%, s0, F, δ) be an H -automaton, and259

ρM a recognising function for M and w ∈%∗. Then,260

w ∈L (M ) iff ρM (s0,w, s)≥ hs(w)

Proof. First observe that from the definitions of ρM and hs, for any s, s′ ∈ S and w ∈%∗, either261

ρM (s,w, s′)= 0 or ρM (s,w, s′)≥ hs(w). For the converse direction, since ρM (s,w, s′)≥ hs(w), we262

have ρM (s,w, s′)≥ 0 and hence w ∈L (M ).263
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Figure 3. Conditional in FAS, illustrated by a liquid flowing through a ‘Y-shaped’ pipe.

We end this section defining and exemplifying a notion of synchronous product of264

H -automata, which corresponds to the automata counterpart to synchronous composition in265

Sreg. It is based on the parallel product of labelled transition systems with shared actions.266

Formally,267

Definition 11. (Synchronous product ofH -automata). LetMα = (Sα ,%α , sα0 , Fα , δα) andMβ =268

(Sβ ,%β , sβ0 , Fβ , δβ) be two H -automata. Let %α×β = %α ∪%β ∪ (%α ×%β), with269

%α ×%β = {a× b | a ∈%α , b ∈%β},
The synchronous product of Mα and Mβ is the H -automaton270

Mα×β = (Sα × Sβ ,%α×β , (sα0 , s
β
0 ), F

α × Fβ , δα×β)

whose transition function271

δα×β : (Sα × Sβ)×%α×β × (Sα × Sβ)→H

is defined by, for any p ∈%α×β ,272

δα×β((sα , sβ), p, (tα , tβ))=






δα(sα , p, tα) if p ∈%α \ %β and sβ = tβ
δβ(sβ , p, tβ) if p ∈%β \ %α and sα = tα∨

a,b
p=a×b

(δα(sα , a, tα)∧ δβ(sβ , b, tβ)) otherwise

As discussed in the Introduction, H -automata provide a suitable semantic structure for FAS273

programs. Let us illustrate such a potential through the discussion of two concrete examples.274

Example 3.1. Our fist example, already mentioned in the introduction as Example 1.1, is that275

of a conditional in FAS which involves the simultaneous execution of its branches. An intuitive276

metaphor to this behaviour is represented as a pipe as depicted in Figure 3. The liquid, repre-277

sented by blue arrows, reaches a point where it flows through both channels in parallel (capturing278

simultaneity), with different volumes going through each channel, represented by the different279

thicknesses of arrows (representing different truth degrees modelling vagueness).280

The execution of this program, which involves the multiplication of the values assigned to281

variable medicine in different branches, may lead to two distinct outcomes:282

(A) The branches remain separated, and further instructions are executed in parallel. The283

information from different branches is taken into account by the user;284

(B) The information is combined, which results in a single (crisp) output.285
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Option (B) enforce the consolidation of multiple variable values, which is achieved through286

instruction aggregate, as in the program:287

if (Temperature is in Fever_condition)288

then medicine:=5 else medicine:=0289

aggregate;290

291

This behaviour can be modelled by the synchronous product of the automata, assuming, for292

illustration purposes, that the weight of each branch are 0.58 and 0.50, respectively. We also293

assume that weights are taken from a Gödel algebra (Example 1.4).294

s1start s2
(medicine:=5, 0.58) s3start s4

(medicine:=0, 0.50)
295

296

Since we are assuming that the truth degrees associated to the evaluation of both branches297

are strictly positive, actions medicine:=5 and medicine:=0 run in parallel. Formally, the two298

automata are combined through ‘×’ giving rise to299

s1start

s2
(medicine:=5,0.58)

×

s3start

s4

(medicine:=0,0.5)

−→

s1,s3start

s2,s4

x1 ,x2300

where x1 =
(
{medicine:=5, medicine:=0}, δ((s1, s3), {medicine:=0, medicine:=5} and x2 =301

(s2, s4)302

The truth degree associated to aggregated variable medicine, after execution depends303

on the truth degrees of both branches of the conditional, which corresponds to the304

second projection of the actions (medicine:=5, δmedicine:=5(s1, medicine:=5, s2)) and305

(medicine:=5, δmedicine:=0(s3, medicine:=0, s4)). Choosing the minimum function as the306

aggregation operator, leads to the following computation:307

δ
(
(s1, s3), {medicine:=5, medicine:=0}, (s2, s4)

)

=
(
δmedicine:=5(s1, medicine:=5, s2)∧ δmedicine:=0(s3, medicine:=0, s4)

)

= min{0.58, 0.5}
= 0.5

Example 3.2. As a second example consider an excerpt of a FAS program representing a control308

system intended to adjust the peak inspiratory pressure (PIP) of a patient depending on her levels309

of O2 and CO2, after a cardiac surgery de Bruin et al. (2018) .310

311

if (O2 is in O2_normal) and (CO2 is in CO2_very_high)312

then PIP:=5313

elseif (O2 is in O2_ low) and (CO2 is in CO2_very_high)314

then PIP:=2315
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Figure 4. The synchronous product interpreting the
FAS conditional.

if (O2 is in O2_ low) and (CO2 is in CO2_high)316

then PIP:=0317

aggregate;318

319

The set of labels in this example is B= {PIP:=5, PIP:=2, PIP:=0}. Suppose that the truth320

degrees of the predicates in each of the branches of the conditional are 0.4, 0.2 and 0.6, respec-321

tively, and again assume the Gödel algebra as the domain for weights. The three branches of the322

conditional are modelled by the automata below323
324

s1start s2
(PIP:=5, 0.4) s3start s4

(PIP:=2, 0.2)
325

s5start s6
(PIP:=0, 0.6)

326

Again, the values of the three predicates are strictly positive and thus the three branches of327

the conditional are executed in parallel, corresponding to action PIP:=5× PIP:=2× PIP:=0.328

Operator ‘×’ being associative, such behaviour is modelled by the synchronous product of the329

three automata above, yielding330

331





s1start

s2

(PIP:=5,0.4)

×

s3start

s4

(PIP:=2,0.2)



×

s5start

s6

(PIP:=0,0.6)

332

An intermediate step is represented in Figure 4, with s′ = (s1, s3), s′′ = (s2, s4), and (x1, x2)333

abbreviating
(
{PIP:=5, PIP:=2}, δPIP:=5×PIP:=5((s1, s3), {PIP:=5, PIP:=2}, (s2, s4)

))
. Similarly,334

(x3, x4) abbreviates335

336 (
{PIP:=5, PIP:=2, PIP:=0}, δPIP:=5×PIP:=2×PIP:=0((s′, s5), {PIP:=5, PIP:=2, PIP:=0}, (s′′, s6)

))
337

338
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The truth degree corresponding to the combined values taken by variable PIP depends339

on three other truth degrees: the second projections of (PIP:=5, δPIP:=5(s1, PIP:=5, s2)),340

(PIP:=2, δPIP:=2(s3, PIP:=2, s4)) and (PIP:=0, δPIP:=0(s5, PIP:=0, s6)). It is computed as fol-341

lows:342

δPIP:=5×PIP:=2×PIP:=0((s1, s3), {PIP:=5, PIP:=2, PIP:=0}, (s′′, s6)
)

=
(
δPIP:=5(s1, PIP:=5, s2)∧ δPIP:=2(s3, PIP:=2, s4)∧ δPIP:=0(s5, PIP:=0, s6)

)

=min{0.4, 0.2, 0.6}
=0.2

4. A Kleene Theorem forH -Synchronous Languages343

This section establishes a Kleene theorem for H -automata and H -synchronous languages. To344

proceed in such a direction, however, entails the need for showing that, as it happens in the classic345

case, the introduction of non-determinism and transitions labelled by the empty string does not346

compromise the expressiveness of finiteH -automata. Such is the aim of the following subsection.347

4.1 H -Automata with ε-moves348

In standard finite automata theory, it is well-known that the introduction of non-determinism and349

the presence of ε-moves, i.e. spontaneous transitions labelled by the empty word, do not change350

the expressiveness of finite automata, since given a non-deterministic automaton with ε-moves,351

there is a standard procedure to build an equally finite and deterministic automaton recognising352

exactly the same language (see e.g. Hopcroft and Ullman 1979).353

This subsection develops an analogous result for H -automata. Firstly, we notice that the354

non-determinism is inherent to the very definition of H -automata. For example, the non-355

deterministic transition δ(s, a)= {w, v} can be represented in a H -automaton by δ(s, a,w)= 1356

and δ(s, a, v)= 1. Of course, it is also easy to characterise the class of finite deterministic automata357

as the subclass of H -automata such that, for each s, v,w ∈ S and for any symbol a, if δ(s, a, v)=358

1= δ(s, a,w) then v=w. This clarified, let us consider the effect of ε-moves.359

Definition 12. (H -Automata with ε-moves). Let H be a complete Heyting algebra and B a set of360

symbols. A H -automata with ε-moves, εH -automaton for short, is a tuple361

E = (S, +, s0, F, δ)
where362

• S is a finite set of states;363

• + ⊆P(B)×H such that, for any a ∈ +, if b(a)= ∅, h(a)= 1 (by a slight abuse of notation,364

the empty set of symbols will be represented by ε, originating transitions (ε, 1));365

• s0 ∈ S is the initial state;366

• F⊆ S is the set of final states;367

• δ : S× +× S→H is the transition function such that368

– for any s ∈ S, δ(s, ε, s)= 1369

– for any s, s′ ∈ S, δ(s, ε, s′)= 1 or δ(s, ε, s′)= 0.370

Definition 13. The language recognised by an εH -automaton E = (S, +, s0, F, δ) is given by371

L ε(E )= {w ∈ (+ \ {(ε, 1)})∗ | ρε(s0,w, s)> 0, for some s ∈ F} (28)
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where372

ρε(s1, xw, s2))=
{

δε(s1, x, s′)∧ ρε(s′,w, s2) if h(x)≤ δε(s1, x, s′)
0 otherwise

(29)
373

ρε(s1, ε, s2)=
{
1 if s1 = s2
0 otherwise

(30)

with374

δε(s, a, v)=
∨

s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)
(31)

for any a ∈ + \ {(ε, 1)}.375

Definition 14. Let E = (S, +, s0, F, δ), be a εH -automaton with E ⊆P(B)×H. The ε-closure of376

E is the H -automaton377

Ê = (Ŝ,%, ŝ0, F̂, δ̂) (32)
where378

• Ŝ= {v̂ | v ∈ S} where v̂= {w | δ∗(v, ε,w)= 1}379

• % = + \ {(ε, 1)}380

• F̂ = {P ∈ Ŝ | P ∩ F 7= ∅}381

• for any ŝ, v̂ ∈ Ŝ and a ∈%, δ̂(ŝ, a, v̂)= ∨
s∈ŝ,v∈v̂ δε(s, a, v), where382

δε(s, a, v)=
∨

s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)

Theorem 3. Let E = (S, +, s0, F, δ), be a ε−H -automaton. Then383

L ε(E )= L (Ê ) (33)

Proof. First, observe that, for any a ∈ + \ {(ε, 1)} and for all s, v ∈ S,384

δ̂(ŝ, a, v̂)≥ h(a)⇔ δε(s, a, v)≥ h(a) (34)
since385

δ̂(ŝ, a, v̂)≥ h(a)
⇔ { δ̂ defn.}

∨

s∈ŝ,v∈v̂
δε(s, a, v)≥ h(a)

⇔ { δε defn.}
∨

s∈ŝ,v∈v̂

( ∨

s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

))
≥ h(a)

⇔ { ŝ defn.}
∨

s1,s2∈S

(
δ∗(s, ε∗, s)∧ δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)∧ δ∗(s2, ε∗, v)

)
≥ h(a)

⇔ { δ∗ defn.}
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∨

s1,s2∈S

(
δ∗(s, ε∗, s1)∧ δ(s1, a, s2)∧ δ∗(s2, ε∗, v)

)
≥ h(a)

⇔ { δε defn.}
δε(s, a, v)≥ h(a)

Then, the result follows by induction on the structure of words. For a basic word a ∈ + \ {(ε, 1)},386

a ∈L ε(E )
⇔ { (28)}

ρε(s0, a, s)> 0, s ∈ F
⇔ { (29)}

δε(s0, a, s)≥ h(a), s ∈ F
⇔ { (34)}

δ̂(ŝ0, a, ŝ)≥ h(a), s ∈ F̂
⇔ { (29)}

ρÊ (ŝ0, a, ŝ)> 0, ŝ ∈ F̂
⇔ { (28)}

a ∈L (Ê )

For composed words aw ∈ (+ \ {(ε, 1)})∗,387

aw ∈L ε(E )
⇔ { (28)}

ρε(s0, aw, s)> 0, s ∈ F
⇔ { (29)}

δε(s0, a, s′)≥ h(a) and ρε(s′,w, s)> 0, s ∈ F
⇔ { (34) + I.H. (ρε(s′,w, s)> 0⇔w ∈L ε(E ) and ρÊ (ŝ0, aw, ŝ)> 0⇔w ∈L (Ê ))}

δ̂(ŝ0, a, ŝ′)≥ h(a) and ρÊ (ŝ′,w, ŝf )> 0, ŝ ∈ F̂
⇔ { (29)}

ρÊ (ŝ0, aw, ŝ)> 0, ŝ ∈ F̂
⇔ { (28)}

aw ∈L (Ê )

388

4.2 The theorem389

The setting is now ready to establish a Kleene theorem for H -automata and H -synchronous390

languages. Thus, for any synchronous regular expression α ∈ Sreg, we will provide a method to391
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Figure 5. Automata representing actions a ∈%, 0 and 1.

Figure 6. Automaton representing expression
α + β.

Figure 7. Automaton representing expression α · β.

build a εH -automaton (translatable to aH -automaton, as discussed above)Mα such that I(α)=392

L (Mα).393

For regular expressions built from atomic actions a ∈% = Pne(B)×H without resorting to394

the synchronous product operator, the construction follows the classical recipe, as presented e.g.395

in Hopcroft and Ullman (1979). This is then extended to synchronous regular expressions, by396

generalising a construction in Prisacariu (2010) for the synchronous operator ‘×’.397

Theorem 4. For any α ∈ Sreg, there exists a H -automaton Mα such that398

I(α)= L (Mα)

Proof. The automata corresponding to a ∈%, 0 and 1, denoted, respectively, by Ma, M0 and399

M1, are depicted in Figure 5. From Definitions 10 and 7, observe that I(a)= La = LMa ,400

I(0)= {} =∅= LM0 and that I(1)= {ε} = LM0 . Then, assuming there exist automata for arbi-401

trary regular actions α and β , we inductively build an εH -automaton for Sreg expressions402

α + β , α · β and α∗. The resulting automata, denoted by ε−H -automata Eα+β , Eα·β , Eα∗403

and Eα×β , are depicted in Figures 6, 7, 8 and 9, respectively. Clearly, Definition 13 entails404

I(α + β)= L ε(Eα+β), I(α · β)= L ε(Eα·β), I(α∗)= L ε(Eα∗) and I(α× β)= L ε(Eα×β). Then,405

by Theorem 3, we conclude that I(α + β)= L (Êα+β), I(α · β)= L (Êα·β), I(α∗)= L (Êα∗) and406

I(α× β)= L (Êα×β).407
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Figure 8. Automaton representing expression α∗.

Figure 9. Automaton representing the expression α× β.

5. Conclusions408

The paper introduced a new class of automata, and corresponding languages, able to cap-409

ture both vagueness, through transitions weighted over a complete Heyting algebra, and410

synchronous execution, through a specific product operator. The work was motivated by the quest411

for a suitable demantic structure for FAS programs.412

To model other situations, for example, in face of a requirement to compute the number of413

steps involved in an execution, or the resources consumed by a computational process, exploring414

other structures to parametrise the construction would be a possibility. The tropical semiring415

R= (R+ ∪ {∞}, min,+,∞, 0,→ )

with x→ y=max{y− x, 0}, ∀x,y∈R+∪{∞} would be worth to consider, although it fails idempo-416

tency and, therefore Theorem 1.417

Finally, a detailed comparison with other possible semantic structures is in order. Probabilistic418

concurrent Kleene algebra (PCKA), introduced in McIver et al. (2013), is an obvious choice.419

Such an approach embodies two distinct operators: the concurrency operator ‘||’, from concur-420

rent Kleene algebra of Hoare et al. (2011), to describe the parallel execution of two crisp actions,421

and a probabilistic choice operator ‘⊕’, to capture uncertainty in the execution of actions.422

For reasoning about concurrent programs with some form of uncertainty, PCKA can model423

Jone’s rely/guarantee style calculus with probabilistic behaviour, resorting to a probabilistic event424

structure semantics (McIver et al. 2016). On the other hand, SKA encodes reasoning in the style425

of Qwicki and Gries Owicki and Gries (1976) calculus. A possible direction for future work will426

investigate whether and how this can be extended to the weighted case.427
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1 Following Prisacariu (2010), the symbol ‘×’ stands for the synchronous product; any possible confusion with the same431
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