
1

Logic-based Schedulability Analysis for
Compositional Hard Real-Time Embedded Systems

André de Matos Pedro, David Pereira, Luı́s Miguel Pinho, and Jorge Sousa Pinto∗

CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal
{anmap,dmrpe,lmp}@isep.ipp.pt

∗ HASLab/INESC TEC & Universidade do Minho, Portugal
jsp@di.uminho.pt

Abstract—Over the past decades several approaches for schedu-
lability analysis have been proposed for both uni-processor
and multi-processor real-time systems. Although different tech-
niques are employed, very little has been put forward in using
formal specifications, with the consequent possibility for mis-
interpretations or ambiguities in the problem statement. Using
a logic based approach to schedulability analysis in the design
of hard real-time systems eases the synthesis of correct-by-
construction procedures for both static and dynamic verifica-
tion processes. In this paper we propose a novel approach to
schedulability analysis based on a timed temporal logic with time
durations. Our approach subsumes classical methods for uni-
processor scheduling analysis over compositional resource models
by providing the developer with counter-examples, and by ruling
out schedules that cause unsafe violations on the system. We also
provide an example showing the effectiveness of our proposal.

I. INTRODUCTION

Schedulability analysis is a very important part of the
research that is carried out in real-time systems. Due to
the complex nature of the scenarios that real-time systems
face, functional properties must be coupled with a predictable
response time, so that the operations are performed safely and
within the expected constraints. Relaxing any of these two
conditions, in the case of hard real-time systems, might lead
to catastrophic events, including the loss of human lives.

Along almost forty years, a bewildering diversity of schedu-
lability tests for hard real-time systems has been proposed to
address the constrains imposed by the required predictability.
These tests vary considerably in their complexity, expressivity,
and target scheduling policies (e.g., fixed task or job priority,
preemptive or non-preemptive). The literature [1], [12] reveals
that generally schedulability test works by assuming a worst-
case scenario and checking that each of the involved task
gets a sufficient allocation of shared resources or jobs always
complete before their deadlines. Naturally, cases that are not
”the worst” will also succeed.

In this paper we consider periodic resource models [23], [24]
for the composability of components each one with its own
set of real-time tasks, providing a rigorous definition of their
timing properties, intending to be able to formally verify their
composition. These definitions are established by the language
and semantics of timed temporal logic, an approach that is
not new in the context of real-time systems verification [5].

In this paper we also consider a variant of MTL-
∫

[16] that
is well-suited to analyze sequences and durations of timed
executions. This type of analysis is sufficient to solve the
schedulability decision problem of periodic resource models,
and compositional periodic resource models. The reasons
for adopting a logic-based paradigm towards schedulability
analysis are: it becomes more comprehensive and expressive;
rules out potential specification incoherences typical from
informal specifications; and it has some benefits relatively
to the available analysis, not in terms of efficiency but in
terms of easy extension for monitoring approaches such as
the acquisition of the maximum detection delay of a task as
in [26]. As further context to the work, we note that:

1) the outcome of a classical schedulability analysis is typ-
ically a verdict for a certain set of tasks, but no counter-
examples are shown if the set of tasks is not schedulable;

2) the behavior of the scheduler is assumed rather than being
explicitly included in the schedulability test;

3) the timing description of the tasks is the unique data pro-
vided by classical analysis methods (i.e., offsets, jitters,
periods, deadlines);

4) standard approaches are not possible to extend with other
usefull properties such as monitoring and enforcement
of real-time properties [22], [21], due to the restricted
definition of their sets of tasks (e.g., defining a bound for
two consecutive instructions, the inter-arrival time of an
event);

5) some real-time literature [26], [27] commonly considers
the estimation of an arrival rate, which implies minimiza-
tion and produces significant issues (e.g., under and over
estimations, local minimums and maximums, etc.).

Our work intends to integrate the description of the scheduling
behavior with the schedulability analysis, which enables to
draw counter-examples when the system is not schedulable.
These counter-examples are fundamental for the system de-
signer to understand and adapt the design accordingly.

Another key point of our approach is that the rigorous of
our definitions enable the integration of formal-verification
techniques such as runtime verification or model checking,
by subsuming the corresponding computational artifacts in a
correct-by-construction way. It opens the possibility of adopt-
ing mature and experimental formal verification tools [2], [6],
[19], [4] that are already available for the scenarios we intent
to certify in future development of our work.

2

Although this paper’s focus is solely on the schedulability
analysis of compositional periodic resource models under the
rate monotonic (RM) policy, we introduce this work as a
foundational approach for schedulability analysis of compo-
sitional resource models, on which we intent to use more
advanced schedulability policies and principles in the future.
Moreover, this research work is part of a long term project
whose aim is the development of novel approach for the unified
specification of hard real-time systems (functional and non-
functional requirements), supported by the combination of off-
the-shelf static verification and runtime verification methods.

We provide a fragment of the metric temporal logic with
durations (MTL-

∫
) which we named restricted metric tempo-

ral logic with durations (RMTL-
∫

), a schedulability analysis
for periodic resource models and coupled periodic resource
models, as well as the encoding of both models in RMTL-

∫
.

Our encoding allows us to isolate by construction cases where
the worst-case execution time (WCET) violations are unsafe
to the schedulability of the system, and to analyze each
component knowing only the high-level specifications (not
the internals) of the other components, which excludes the
dynamic increment of components. A synthetic workload is
also described and its schedulability test exemplified using our
analysis. For the best of our knowledge this is the first approach
that combines MTL-

∫
with schedulability analysis.

The paper is organized as follows. Section II introduces
research work that relates to the one presented in this pa-
per. Section III introduces the preliminary concepts that are
necessary for our schedulability analysis as a background.
Section IV describes the syntax and semantics of the MTL-

∫
logic, including a set of necessary axioms. Section V intro-
duces the new concept of schedulability analysis using MTL-

∫
and timed execution traces. Section VI exemplifies how to use
runtime monitors through a practical application of the method
of schedulability analysis that we propose. Finally, Section VII
draws some conclusions and points to further work directions.

II. RELATED WORK

So far, not many alternative approaches for schedulability
analysis of real-time systems have been proposed nor specific
formalisms for tests have emerged. We will describe an al-
ternative schedulability analysis based on timed automata [9],
[14] and process algebraic [20].

A. Automata-based
One interesting research effort that discards the classic

schedulability analysis is the one proposed by Fersman et
al. [9], [10]. They use timed automata extended with real-
time tasks to specify the system behavior plus the scheduler
behavior. Basically, the authors rewrite any hard real-time
system into these type of automaton which is further coupled
with another automaton that behaves according to a particular
scheduling policy (e.g., RM, or EDF). In this sense, the
schedulability test remains a reachability analysis problem
which is normally solved by model checker tools such as
UPPAAL [2] or NuSMV [6]. In order to check the model, this
type of automaton shall be translated into one similar timed
automaton.

B. Task Automata
The schedulability of a task automaton is undecidable [11],

[15]. Recently, some progress has been made to show that only
a small class of task automata is undecidable. Yi et al. [9]
proved that task automata for a single-processor system that
have preemption, variable task execution time (i.e., the best
case execution time is different from the worst-case execution
time) and feedback (i.e., the precise finishing time of a task
may influence the new task releases) are undecidable. Then,
it is shown that (even with only one processor) schedulability
becomes undecidable if a task automaton holds these proper-
ties. In turn, it was also shown that if there is no preemption,
the problem becomes decidable. The same holds if there is no
variable execution time. The open question remained, whether
schedulability is decidable holding a non-feedback property.

For multi-processor systems [14] the last presented variant
has also been proven decidable for certain types of schedulers,
but there is no result for the general case and therefore
for multi-processor systems. It is shown, in [14], that the
schedulability for multi-processor system is possible for non-
preemptive schedulers and preemptive scheduler with constant
execution time.

C. Other Approaches
Another interesting research effort was the process algebraic

approach for schedulability analysis as initially proposed by
Ben-Abdallah et al [3]. Philippou et al [20] formalizes the
problem of compositional hierarchical scheduling by intro-
ducing a process algebraic framework for modeling resource
demand and supply. This was inspired in the timed process
algebra.

Timed petri nets (TPNs) are presented in [25] as a model for
schedulability analysis in real-time systems. The authors prove
that schadulability analysis is reduced to a state reachability
problem. The authors describe that timing and behavioral
properties should be formalized in different levels. Zonghua
and Shin [13] describes a translation from TPN to timed
automata.

III. PRELIMINARIES

In this section we introduce the main concepts that support
our proposal.

A. Basic Notions
In the rest of the paper we will assume tasks sets Γ =
{τ1, τ2, ..., τn}, such that n ∈ N+ is the number of tasks τi =
(pi, ei) where pi and ei are, respectively, the period and the
worst-case execution time of τi. Each task τi ∈ τ is periodic.
A periodic resource model ω = (τ, π, θ, rm), where τ ⊆ Γ ,
π is the replenishment period, θ is the server budget, and rm
is the RM scheduling algorithm. The set of periodic resource
models is denoted by Ω.

The outputs of a resource model ω are sequences of
events. Considering a par (ω, τi) with ω ∈ Ω and τi ∈ τ ,
each event can be of one of the following types: a release-
event erelease(ω, τi); a start-event estart(ω, τi); a sleep-event

3

esleep(ω, τi); a resume-event eresume(ω, τi); or a stop-event
estop(ω, τi). In addition, we assume a parameterized event
ε(ωj , τi, id) that denotes the critical events of a task, where
id is the event identifier, and erenewal(ω) denotes the budget
release of a resource model. We denote sets of events by E .

A sequence of events, also known as execution trace, is an
infinite sequence

ρ = (e1, t1)(e2, t2) · · ·

of time-stamped events (ei, ti) with ei ∈ E and ti ∈ R+. The
sequence satifies monotonicity and progresses, i.e., ti ≤ ti+1

for all i ∈ N+, and for all t ∈ R+ there is some i > 0 such
that ti > t, respectively.

B. Schedulability Analysis of Periodic Resource Models

The schedulability analysis for periodic resource models is
provided by Shin and Lee [23], [24]. The authors formulate
an analysis based on resource model supply. The supply bound
function sbfω(t) is defined to calculate the minimum resource
supply for every interval of length t as follows:

sbfω(t) =

{
t− (k + 1)(p− e) if t ∈ I,
(k − 1)e otherwise,

where I = [(k+ 1)p− 2e, (k+ 1)p− e]. The value k is given
by

k =

{
x if x > 1

1 otherwise
,

where x =
⌈
t−(p−e)

p

⌉
.

Lehoczky et al. [17] proposed a demand-bound function
dbfRM (τ, t, i) for RM that computes the worst-case cumu-
lative response demand of a task τi ∈ τ for any interval of
length t. It is defined by

dbfRM (τ, t, i) =
∑

τk∈γτ (i)

⌈
t

pk

⌉
. ek,

where γτ (i) = {τ1, ..., τi} is a function that returns a set of
tasks with higher-priority (and including) than task τi. The
demand-bound function for resource models is the same since
the set of tasks is schedulable using the RM policy. This means
that the supply of a resource model shall be greater than the
demand of the set of tasks that a resource model contains.

The tasks set τ of a resource model is said schedulable
according to a RM policy if, and only if,

∀τi ∈ τ, ∃ti ∈ [0, pi] s.t. dbfRM (τ, ti, i) ≤ sbfω(ti).

This approach is the state of the art on schedulability
analysis for periodic resource models. We will subsume this
approach with one based on timed temporal logics. Our
approach allows to ensure response time guarantees about the
composition with runtime monitors without employing great
efforts to find more adequate optimization techniques to find
the schedulability answer.

Operator Abbreviation Equivalent Formula
Eventually �∼αφ true U∼α φ

Always �∼αφ ¬(�∼α¬φ)
Next ©φ1

φ2 φ1 U∼∞ φ2

Implies Next φ1
©

=⇒ φ2
¬φ1 ∨©φ1

φ2

Table III: Syntactic abbreviations for RMTL-
∫

IV. RESTRICTED METRIC TEMPORAL LOGIC WITH
DURATIONS

In this section we introduce the RMTL-
∫

, a fragment of
MTL-

∫
[16] where the evaluation is carried out with respect

to sequences of events produced by resource models.
The main motivation for proposing RMTL-

∫
comes from

the fact that restricting some terms and relations over terms,
the logic is suitable for generation of runtime monitors as well
as to thinking statically over real-time constraints. The main
difference between RMTL-

∫
and MTL-

∫
is that the former

uses only the relation ≤, <, and = over terms, and excludes
functions from the language of terms. This restriction allows
us to turn our logic terms always Riemann integrable.

Definition 1 (RMTL-
∫

): Let P be a set of propositions and
V a set of logical variables (interpreted over R). The syntax of
RMTL-

∫
is inductively defined according to the rules depicted

in Table I, where δ are terms,
∫ δ
ϕ is the duration of the

formula ϕ in the interval [0, δ], x ∈ V , p ∈ P , ρ ∈ R≥0,
∼∈ {<,≤,=}, and α ∈ R.

We are now able to define the semantic of the MTL-
∫

.
The semantic of MTL-

∫
is separated in two parts: terms and

formulas. The semantic of terms is defined using the notation
T JτK(σ, ϑ)t in Table II. All terms represent numerical values
in R+

0 . The term
∫ δ
ϕ is the integral over the Boolean function

Bφ(σ,ϑ)(t) (whose return value is 1 if (σ, ϑ, t) |= φ, and 0
otherwise). Since Bφ(σ,ϑ)(t) behaves as a step function, it
is always Riemann integrable. The same is not true in the
MTL-

∫
logic. The semantic of the MTL-

∫
formula is defined

inductively in Table II, where the satisfability of a formula φ
in a model (σ, ϑ) at time t is defined by (σ, ϑ, t) |= φ.

Along the remaining of the paper we will frequently refer
to the abbreviations presented in Table III in order to ease the
presentation of specific schedulability related specification. For
illustrative purposes, we now introduce a pratical example of
the expressive power of RMTL-

∫
’s language.

Example 1: To ensure that a task responds in a bounded
response time, the formula ψ1 =⇒ �≤α ψ2 is sufficient. The
proposition ψ1 describes a set of events that may violate the
system, the proposition ψ2 describes the task invocation, and
α is the maximum expected response time bound. Informally,
the formula means that if a fault event occurs, then the task
executes within α time units.

V. SCHEDULABILITY ANALYSIS USING MTL-
∫

Our schedulability analysis consists in the evaluation of a
logic formula over a trace (or a set of traces) produced by a pe-
riodic resource model. Regarding these our approach remains

4

Language of RTML-
∫

terms

δ ::= α | x |
∫ δ
ϕ

Language of RTML-
∫

formulae

ϕ ::= p | δ1 ∼ δ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼ρ ϕ2 | ϕ1 S∼ρ ϕ2 | ∃xϕ

Table I: Syntax of RMTL-
∫

Evaluation of RMTL-
∫

terms

T JαK(σ, ϑ)t = α
T JxK(σ, ϑ)t = ϑ(x)

T J
∫ δ
φK(σ, ϑ)t =

{∫ t+T JδK(σ,ϑ)t
t

Bφ(σ,ϑ)(t∗) dt∗ if T JδK(σ, ϑ)t ≥ 0

0 otherwise

Evaluation of RMTL-
∫

formulas

(σ, ϑ, t) |= p iff σ(p)(t) = true and t < |σ|
(σ, ϑ, t) |= δ1 ∼ δ2 iff T Jδ1K(σ, ϑ)t ∼ T Jδ2K(σ, ϑ)t
(σ, ϑ, t) |= φ1 ∨ φ2 iff (σ, ϑ, t) |= φ1 or (σ, ϑ, t) |= φ2

(σ, ϑ, t) |= ¬φ iff (σ, ϑ, t) 6|= φ
(σ, ϑ, t) |= φ1 U∼ρ φ2 iff ∃t′ ∈ R≥0 st. t ≤ t′ ∼ t+ ρ ∧ (σ, ϑ, t′) |= φ2, and st. ∀t′′ ∈ R≥0, t ≤ t′′ < t′, (σ, ϑ, t′′) |= φ1

(σ, ϑ, t) |= φ1 S∼ρ φ2 iff ∃t′ ∈ R≥0 st. t− ρ ∼ t′ ≤ t ∧ (σ, ϑ, j) |= φ2, and ∀t′′ ∈ R≥0, t
′ < t′′ ≤ t, (σ, ϑ, t′′) |= φ1

(σ, ϑ, t) |= ∃xϕ iff ∃v ∈ R st. (σ, ϑvx, t) |= φ

Table II: Semantic of RMTL-
∫

a model-checking problem [7], where the model checks a set
of logic properties, and otherwise generates counter-examples.

In order to decrease the state space search we can assume
for uni-processor systems the critical instant theorem [18]. This
assumption reduces our problem to just one trace acceptance
for a set of logic properties. This assumptions allows us to
identify the relevant traces and combine our approach with
the foundational real-time systems theory.

We will describe the encoding of the schedulability test for
periodic resource models [23], [24] as well as their composi-
tion using our MTL-

∫
fragment.

A. Encoding Notations

To ease the encoding of schedulability analysis properties
we first introduce some syntactical notations and formulae
abbreviations. Let ω be a resource model in Ω and let τi be a
task in τ . The set of tasks with higher-priority (and including)
than τi for ω is denoted by γτiω . The set of resource models
with higher-priority (and excluding) than ω is denoted by γωΩ.
For events, we have the following notations: ε(ω, ·) denotes the
set of events that can be generated by the resource model ω;
evs+(ωj , τi) specifies all events that a task τi in the resource
model ωj can trigger. It is defined by

evs(ωj , τi) ∨ estop(ωj , τi) ∨ ε(ωj , τi, ·) ∨ erelease(ωj , τi),

with evs(ωj , τi)
def

= estart(ωj , τi) ∨ eresume(ωj , τi) ∨
erenewal(ω); evs−(ωj , τi) denotes the formula resulting from
the removal of the erelease(ωj , τi) and estop(ωj , τi) events
from evs+(ωj , τi); and evs∗(ωj , τi) denotes the formula re-
sulting from the removal of the estart(ωj , τi) and estop(ωj , τi)
events from evs+(ωj , τi).

For event occurrences we establish a MTL-
∫

formula that
specifies the exact number of times that a proposition p holds
through the following recurrent function:

occur(p, n)
def

=

{
�¬e if n = 0

¬eU (eU occur(p, (n− 1))) otherwise ,

where p ∈ P and n ∈ N is the number of occurrences to check.
Furthermore, we also introduce the definition of a function that
restricts occur in the sense that it captures the period for the
event under consideration. Such function is the following:

µ(e, te, pe, 0)
def

= �¬e,

µ(e, te, pe, (n+ 1))
def

= ¬eU=(pe−te) (eU≤te o(e, te, pe, n)),

where te is the time that event e consumes, and pe the period of
the event e. This definition allows us to restrict the occurrence
of e by a the period pe. In the following we introduce an
example to give, using MTL-

∫
, the occurrences of a certain

event in a trace.

5

Example 2: Suppose that we require to minimize the pa-
rameter z of the following formula

�≤α occur(ε(ω, τi, ·), z).

Informally, the formula indicates that there exists at most z
occurrences of ε(ω, τi, ·) until α time units. The maximal value
to which z can be assigned is the positive infinity (∞). We
select this maximum for z as the initial point, and decrease
successively the variable z until a the formula holds or zero is
achieved. This allows to find a value for z in the interval [0,∞)
and to obtain the exact number of events that a trace contains.
Note that this is not trivially solved, and some assumptions
about the trace must be made, such as the number of events
that are required to minimize z in practice (e.g.,∞ is replaced
by |ρ|, the length of trace ρ).

B. Encoding Periodic Resource Models
Schedulability analysis over the language of RMTL-

∫
is

divided in two parts: the encoding of the scheduler’s behavior
– including their scheduling policy and workload parameters –
and the consequent schedulability test. With both parts holding,
we are able to evaluate if a given set of workload parameters is
enough to be schedulable over a certain scheduler policy. We
begin by detailing the encoding phase and the schedulability
test.

The behavior of the scheduler is specified by several formu-
las within capture the budget supply, the schedulability policy,
the task durations, and some intrinsic settings of the scheduler.
Assuming a correct release of events, the budget supply is
specified by the formula

φ(ω) ≡ �≤∞ (erenewal(ω) =⇒ rp(ω)) ,

where

rp(ω) ≡
(
�=π erenewal(ω)

)
∧
∫ π ∨

τi∈τ
evs+(ω, τi) ≤ θ,

ω is one resource model, π and θ their renewal period and bud-
get, and erenewal(ω) is the budget renewal event. This formula
states that for each occurrence of the event erenewal(ω) in the
resource model ω, the duration of the other events until π time
units does not overpasses the budget θ per period π.

For the partial order of the task releases we introduce the
MTL-

∫
formula

η(ω) ≡ �≤∞
∧
τi∈τ

(
erelease(ω, τi)

©
=⇒ sq(ω, τi)

)
,

where
sq(ω, τi) ≡ ev(ω, τi) U≤pi estop(ω, τi),

ev(ω, τi) ≡

 ∨
τk∈γ

(τi−1)
ω

evs+(ω, τk)

 ∨ evs−(ω, τi)

and γ(τi−1)
ωj denotes the set of higher-priority tasks, excluding

events triggered by the task τi. This formula means that for ev-
ery event erelease(ω, τi) there is always an event estop(ω, τi),

and that the events occuring before estop(ω, τi) should be any
event from τi’s higher-priority tasks.

The duration of tasks allocated to one resource model is
specified by the formula

ψ≤(ω) ≡ �≤∞
∧
τi∈τ

(
erelease(ω, τi)

©
=⇒ du≤(ω, τi)

)
,

where

du≤(ω, τi) ≡
∫ pi ∨

τk∈γ
(τi)
ω

evs+(ω, τk) ≤ ei.

Note that the ≤ operator could be changed to ≥ in order to
specify the absolute WCET of the task set. We denote the
duration of a task by the ≥ operator as ψ≥(ω).

In order for our formalization to work, we still specify some
other features such as the precedence of the event estop(ω, τi)
(i.e., each event estart(ω, τi) is always followed by an event
estop(ω, τi), and vice-versa), the number of release events, and
the time period at which the release of events its triggered. The
precedence of the event estop(ω, τi) is specified by the formula

ξ1(ω) ≡
∧
τi∈τ

(
estop(ω, τi)

©
=⇒ pr(ω, τi)

)
,

where

pr(ω, τi) ≡ es(ω, τi) S≤pi estart(ω, τi),
and

es(ω, τi) ≡

 ∨
τk∈γ

(τi−1)
ω

evs+(ω, τk)

 ∨ evs∗(ω, τi).
The release of events is captured by the recursive function

µ(e, te, pe, n). To ensure the periodicity of all events (erelease
and r∗) for certain t time units, we introduce the formula

ξ2(ω, t) ≡ oc(ω, t) ∧ µ
(
erenewal(ω), π, 0,

⌊
t

π

⌋)
,

where

oc(ω, t) ≡
∧
τi∈τ

µ

(
erelease(ω, τi), pi, 0,

⌊
t

pi

⌋)
,

⌊
t
π

⌋
is the number of occurrences of erenewal(ω) in t,

⌊
t
pi

⌋
is the number of occurrences of erelease(ω, τi) in t, π is the
period of the budget renewal of the resource model ω, and pi
is the period of the task τi. Note that this formula is able to
specify the number of events that can be released in t units of
time for a task or a periodic resource model.

The encoding of the periodic resource model is given by

PRM(ω, t) ≡ φ(ω) ∧ η(ω) ∧ ψ≥(ω) ∧ ξ1(ω) ∧ ξ2(ω, t),

where ω is defined according to certain parameters and a
workload, which allows us to unroll the sub-formulas. This
concludes the formalization of the periodic resource model’s
behavior in RMTL-

∫
.

6

C. Encoding Coupled Periodic Resource Models
Here we propose an encoding of coupled periodic resource

models and an analysis that ensures non-interference, and
avoids priority inversion between resource models due to
WCET violations.

The budgets that each resource model is allowed to use is
specified by the formula

φΩ(t) ≡
∧
ω∈Ω

(
φ(ω) ∧ µ

(
erenewal(ω), π, 0,

⌊
t

π

⌋))
.

With this formula, each periodic resource model meets the
settings assigned to it for a given time t.

Other two definitions need to be formulated. One describes
the fixed priority behavior of the periodic resource models, and
the other describes the execution time allowed to a given set
of resource models and their respective task sets.

The partial order of the task events for a set of resource
models Ω is specified by the formula

η(Ω) ≡ �≤∞
∧
τi∈τ

∧
ω∈Ω

(
erelease(ω, τi)

©
=⇒ or(Ω, ω, τi)

)
,

where

or(Ω, ω, τi) ≡
(
re(Ω, ω, τi) ∨ evs−(ω, τi)

)
U≤pi estop(ω, τi),

and

re(Ω, ω, τi) ≡
∨
ω∈γωΩ

∨
τj∈τ

evs+(ω, τj)∨
∨

τk∈γ
(τi−1)
ω

evs+(ω, τk).

The formula re(Ω, ω, τi) describes the resource events that can
occur befor an event estop(ω, τi) event.

The execution time allowed for a set of resource models Ω
is defined by

ψ≤Ω (t) =
∧
ω∈Ω

(
ψ≤(ω) ∧ oc(ω, t)

)
.

To specify the worst-case we can use ψ≥(ω) instead of ψ≤(ω).
Substituting the above formula we have ψ≥Ω (t).

The composition of periodic resource models is encoded by
the RMTL-

∫
formula

CPRM(Ω, t) ≡ φΩ(t) ∧ η(Ω) ∧ ψ≤Ω (t) ∧

(∧
ω∈Ω

ξ1(ω)

)
.

D. Schedulability Test
To provide schedulability tests for our encodings we need

to find a model that satisfies the PRM formula for resource
models, and the CPRM formula for a composition of resource
models. By the semantic definition of RMTL-

∫
we need to

find an observation, a logical environment, and a duration
in accordance with the specified properties. This behavior is
formulated by the following definitions.

Definition 2: Let ω be a resource model in Ω. The resource
model ω is schedulable if and only if, there exists a trace ρ of

duration t such that PRM(ω, t) is satisfied, and the duration
of ρ is greater or equal to the maximum value of pi in τ .

Definition 3: Let Ω be a set of resource models, and ω a
resource model in Ω. The composition of resource models Ω is
schedulable if and only if, there exists a trace ρ with duration
t such that CPRM(Ω, t) holds and t of trace ρ is greater or
equal than the maximum pi ∈ τ , of all resource models in ω.

Summarizing our definitions states that the our schedula-
bility decision problem is a satisfiability problem of a trace
regarding a RMTL-

∫
formula.

E. Feasible Tests
Enconding the schedulability test is not enough to ensure

that we always obtain a positive or negative answer. In order
to cope with this problem, we make the necessary assumption
on the structure of traces so that their evaluation indeed
produces some verdict, i.e., if the system under consideration
is schedulable or not.

To find the worst execution trace we begin by the introduc-
tion of the following definition.

Definition 4: The worst execution of a resource model is
a trace that complains the budgets supply, the schedulability
policy, the WCET of a task set, and a restricted set of intrinsic
formulas.

To generate the worst execution trace we can adopt two
distinct strategies. On one hand, we can assume some theorem
that gives freely and by construction the worst trace that a
system can generate (e.g., for uni-processor systems we could
adopt the critical instant theorem [18]). On another hand, we
can rewrite our schedulability decision test into a Boolean
satisfability problem. In this paper we will focus only the first
one, and address the second one to further work. However,
we believe that the second one is able to extend schedulability
analysis for multi-processor systems.

Given a worst execution trace we are able to evaluate such
formula using our semantics which decides if the trace is valid
or invalid among the logic formulas that describe the scheduler
behavior. The process remains the check of the logical formula
PRM or CPRM for a given trace.

VI. EXEMPLIFICATION OF OUR SCHEDULABILITY
ANALYSIS

Our schedulability analysis for several period resource mod-
els relax the truth notion of the WCET. This means that
the WCET of a task (or several tasks) can be erroneously
estimated, and ensures that the remain resource models are
schedulable. In the following, we present an example of how
to use the Definition 2 and Definition 3 for periodic resource
models, and a composition of resource models, respectively.

To demonstrate in practice the schedulability analysis using
our logic fragment, a synthetic workload will be described.
Suppose, for example, a workload composed by three compo-
nents, four tasks, and two monitors as depicted in Table IV. By
Definition 3 we may conclude that the workload is schedulable
if there exists a trace that complaints our logic restrictions.

Before introducing the example we need to make two
notes. Our schedulability analysis does not strongly assume the

7

RS-A

RS-C

ts1
εidle

Pts1 Pts1Pts1 Pts3Pts2Pts3Pts2

εidle
ts1

Pts1 Pts2

Pattern C

ts1 ts1ts2 ts3 ts3

estart(ωC , τ1) eresume(ωC , τ1)

ts2 ts3

estart(ωA, τ1)

ts3 ts2 ts1 ts2 εidle

Pattern A

Pts1

ρ

estart(ωA, τ1) estart(ωA, τ1)
estart(ωA, τ2)

estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2) estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2)

estart(ωA, τ1)
eresume(ωA, τ2)

eresume(ωC , τ1)

estop(ωC , τ1)estop(ωA, τ1)
estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ3)

esleep(ωC , τ1)

estop(ωA, τ1)

estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ1)

estop(ωA, τ3)

esleep(ωC , τ1)
esleep(ωA, τ2)

estop(ωA, τ1)

estop(ωA, τ2)

εidle εidlets1
ts3 ts1 ts3

estart(ωA, τ3)

esleep(ωC , τ1)

estart(ωC , τ1)

Figure 1: Example of patterns and the global trace generated by the composition of resource models defined in the Table IV

Resource Model Task
Priority

π θ id period priority WCET

RS-A 10 8
ts1 14 1 3

2ts2 20 2 5
ts3 27 3 7

RS-C 5 1 ts1 33 1 6 1

Table IV: A synthetic workload scheme

behavior of the scheduler (e.g., the periodic resource model),
and if the decision is negatively affirmed, a counter-example
is returned (i.e., a trace). We can also state that for every trace
generated by a scheduler if the behavior does not correspond to
the specified one then the scheduler is not a periodic resource
model.

We will introduce our example assuming the critical instant
theorem. Assuming this theorem we can find the worst exe-
cution trace for a certain workload settings. This problem is
converted to an acceptance problem. We only need to apply
our evaluation of RMTL-

∫
formulas to draw a verdict about

the schedulability.

A. Unfold the RMTL-
∫

formulas

Our schedulability analysis provides two definitions for
schedulability testing. According to Figure 1, we will explain
step-by-step how the evaluation is performed. Beginning by
unfolding the φ(ω) of the PRM formula for the resource
model RS-C, we have the formula on Table V. The example is
for a trace with duration 4 but the truth value is the same for the
Figure 1. Note that this formula needs to be fed with traces

whose durations are multiples of 5. Otherwise the meaning
of the formula is false due to the eventually operator. The
ψ≥(ω) formula ensures that the task can be executed by their
WCET. Since the resource model RS-C only contains one
task, we need to ensure the worst duration for this task as
specified in Table V. We evaluate the formula with a trace of
duration 10. The remaining formulas η(ω), ξ1(ω), ξ2(ω, t) are
trivially satisfied since we have only one task in our resource
model RS-C. Note that the release events of the periodic
resource models and the tasks are not considered in trace ρ to
decrease the trace complexity, but they are considered when
the formulas are evaluated.

Considering the resource model RS-A, which has a more
elaborated formula after its unfolding, we are able to exemplify
why the composition of two schedulable resource models are
not schedulable when coupled. In Figure 1 we have generated
a counter-example, namely, the trace ρ. Applying the formula
CPRM for the composition, the formula η(Ω) does no hold
since it is impossible to force the consumption of the WCET of
a task until its next period (only five units can be assigned until
the period of the next execution). If we change the period of the
task τ1 in RS-C to value 50 instead of 33 our composition of
resource models RS-A and RS-C is schedulable. We can check
this informally by looking at Figure 1, unfold our formula
CPRM and draw a verdict for each formula of the resulting
conjunction.

VII. CONCLUSION AND FURTHER WORK

In this paper we have introduced a novel approach to
schedulability analysis based on timed temporal logics. Com-
pared with classical methods, our approach has a built-in

8

φ(RS-C) True �≤4

(
erenewal(ω) =⇒

(
�=5 erenewal(ω)

)
∧
∫ 5 evs+(RS− C, τ1) ≤ 1

)
ψ≥(RS-C) True �≤10¬ (erelease(RS-C, τ1)) ∨

(
¬ (erelease(RS-C, τ1)) U≤1

∫ p1 evs+(RS-C, τ1) ≥ e1
)

Trace
erenewal(RS-A), erenewal(RS-C), estart(RS-A, τ1), estop(RS-A, τ1), estart(RS-A, τ2), erenewal(RS-C), estop(RS-A, τ2), estart(RS-A, τ3),

erenewal(RS-A), erenewal(RS-C), esleep(RS-A, τ3), · · ·

Table V: Unfold of the formulas φ(RS-C) and ψ≥(RS-C) and their truth value in accordance with trace ρ.

scheduler behavior; avoids the rate approximations of events
as experienced in [26], allows us to extend this analysis for
runtime monitoring architectures by ensuring the maximum
detection delay of the monitors with a simple response time
RMTL-

∫
formula; and supplies a predictable trace set of traces

that can be analyzed prior to the execution and provide counter-
examples.

In terms of future work, our aim is to implement a veri-
fication platform that incorporates the ideas presented in this
paper with primary focus on the automatic synthesis of RMTL-∫

specifications into runtime monitors and corresponding
program instrumentation. Alternatively, we are also interested
in encoding our schedulability test into reachability analysis
and use model checking tools such as e.g. the NUSMV model
checker tool [6] to check them, or by using statistical methods
to solve such issue, which is commonly natural in cases where
the previous methods do not have enough resources to do
the job. Yet another alternative is to encode our language
in some formal verification framework, such as the Why3 or
BoogiePL [8] intermediate verification languages, and rely on
their backend provers to improve the chances of automatically
proving the properties.

VIII. ACKNOWLEDGMENTS

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Technol-
ogy) and by ERDF (European Regional Development Fund)
through COMPETE (Operational Programme ’Thematic Fac-
tors of Competitiveness’), within projects Ref. FCOMP-01-
0124-FEDER-022701 (CISTER), FCOMP-01-0124-FEDER-
015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486
(AVIACC).

REFERENCES

[1] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings.
Fixed priority pre-emptive scheduling: an historical perspective. Real-
Time Syst., 8(2-3):173–198, March 1995.

[2] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks. UPPAAL 4.0. QEST ’06, pages 125–126, 2006.

[3] H. Ben-Abdallah, J. Choi, D. Clarke, Y. S. Kim, I. Lee, and H. Xie.
A process algebraic approach to the schedulability analysisof real-time
systems. Real-Time Syst., 15(3):189–219, 1998.

[4] F. Bobot, J. C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd
Your Herd of Provers. In Boogie 2011: First International Workshop
on Intermediate Verification Languages, pages 53–64, 2011.

[5] A. Burns and T. M. Lin. An engineering process for the verification of
real-time systems. Form. Asp. Comput., 19(1):111–136, 2007.

[6] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a
new symbolic model checker. International Journal on Software Tools
for Technology Transfer, 2(4):410–425, 2000.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[8] Robert Deline, K. Rustan, and M. Leino. Boogiepl: A typed procedural
language for checking object-oriented programs. Technical report, 2005.

[9] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedula-
bility, decidability and undecidability. Inf. Comput., 205(8):1149–1172,
2007.

[10] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability
analysis of fixed-priority systems using timed automata. Theor. Comput.
Sci., 354(2):301–317, 2006.

[11] E. Fersman, P. Pettersson, and W. Yi. Timed Automata with Asyn-
chronous Processes: Schedulability and Decidability. TACAS ’02, pages
67–82, 2002.

[12] C. J. Fidge. Real-time schedulability tests for preemptive multitasking.
Real-Time Syst., 14(1):61–93, January 1998.

[13] Z. Gu and K. G. Shin. Analysis of event-driven real-time systems with
time petri nets: A translation-based approach. DIPES ’02, pages 31–40,
2002.

[14] P. Krčál, M. Stigge, and W. Yi. Multi-processor schedulability analysis
of preemptive real-time tasks with variable execution times. FOR-
MATS’07, pages 274–289, 2007.

[15] P. Krčál and W. Yi. Decidable and undecidable problems in schedula-
bility analysis using timed automata. volume 2988 of TACAS’04, pages
236–250. Springer-Verlag, 2004.

[16] Y. Lakhneche and J. Hooman. Metric temporal logic with durations.
Theor. Comput. Sci., 138(1):169–199, 1995.

[17] J. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real
Time Systems Symposium, pages 166–171, 1989.

[18] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–61,
January 1973.

[19] Dillon Pariente and Emmanuel Ledinot. Formal Verification of Indus-
trial C Code using Frama-C: a Case Study. FoVeOOS’10, 2010.

[20] Anna Philippou, Insup Lee, Oleg Sokolsky, and Jin-Young Choi. A
process algebraic framework for modeling resource demand and supply.
FORMATS’10, pages 183–197, 2010.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: a hard real-
time runtime monitor. RV’10, pages 345–359, 2010.

[22] S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand, A. Rollet, and
O. Nguena Timo. Runtime enforcement of timed properties. RV’13,
pages 229–244. 2013.

[23] I. Shin and I. Lee. Periodic Resource Model for Compositional Real-
Time Guarantees. RTSS ’03, pages 2–13, 2003.

[24] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embed. Comput. Syst., 7(3):30:1–30:39,
2008.

[25] J. P. Tsai, S. J. Yang, and Y. Chang. Timing constraint petri nets
and their application to schedulability analysis of real-time system
specifications. IEEE Trans. Softw. Eng., 21(1):32–49, 1995.

[26] H. Zhu, M. B. Dwyer, and S. Goddard. Predictable Runtime Monitoring.
ECRTS ’09, pages 173 –183, 2009.

[27] H. Zhu, S. Goddard, and M.B. Dwyer. Selecting server parameters for
predictable runtime monitoring. RTAS’10, pages 227–236, 2010.

