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Abstract: This paper explores Ampère’s circuital law (ACL) from an educational perspective. The interchangeability of the
ampèrian loop with the current loop, an intrinsic symmetry of ACL that is seldom addressed in the literature or textbooks,
is illustrated here. It is verified that the symmetry axis of a circular current is an ampèrian loop. The attempt to apply ACL
to a finite wire, a common source of student misunderstanding, is used to highlight the limitations of ACL. The generalisa-
tion of ACL is illustrated using an instructive example where the displacement current is unconfined and not spatially uni-
form. This work is primarily intended for teachers and more advanced undergraduate students, who may benefit from the
ideas that are presented here.

PACS Nos: 03.50.De, 41.20.–q, 01.50.–i, 01.40.–d, 01.40.Fk

Résumé : Nous réétudions ici le théorème d’Ampère, dans une perspective pédagogique. Nous illustrons l’interchangeabilité
de la boucle d’Ampère et la boucle de courant, une symétrie intrinsèque du théorème qui est rarement discutée dans la litté-
rature ou les manuels. Nous vérifions que l’axe de symétrie d’un courant circulaire est une boucle d’Ampère. Afin d’illustrer
les limitations du théorème, nous utilisons l’application du théorème à un fil de longueur finie, une source fréquente de mal-
entendus chez les étudiants. Nous illustrons la généralisation du théorème d’Ampère à l’aide d’un exemple pédagogique où
le courant de déplacement n’est pas confiné ni spatialement uniforme. Ce travail vise surtout les enseignants et les étudiants
des 2e et 3e cycles qui peuvent profiter des idées présentées ici.

[Traduit par la Rédaction]

1. Introduction

Ampère’s circuital law (ACL) is an important topic in elec-
tromagnetism (e.g., see refs. 1–4) partly because of its use in
situations, such as the infinite current wire and the infinite
current plate, where the choice of a suitable symmetrical am-
pèrian loop enables determination of the magnetic field with
greater simplicity than the Biot–Savart law.
While such geometrical symmetries, which are specific to

each situation, have been extensively treated in textbooks, an
intrinsic symmetry of ACL that has received much less atten-
tion is the interchangeability of the ampèrian and current
loops. As far as is known to us, although this topic is pre-
sented in the context of topology and physics [5], it is absent
from electromagnetism textbooks and literature, in spite of its
conceptual and educational relevance.
Moreover, students experience some learning difficulties

with ACL [6–8] and an awareness of the interchangeability
of the ampèrian and current loops may prevent the incorrect
use of ACL in physical problems, such as the finite current
wire, which is a common student misunderstanding.

In order to overcome the limitations of ACL it is necessary
to use the generalized ACL where the key concept is the dis-
placement current, a subtle issue that is normally introduced
to students using the discharging capacitor example. This
study presents an instructive and interesting example that is
not treated in the literature and whose symmetry enables the
determination of the magnetic field while illustrating the con-
cept of displacement current.
The foregoing analysis touches on issues that, as far as is

known to us, are rarely found in the literature and aims to
provide valuable help on this topic to both teachers and
undergraduate students at a more advanced level.

2. Ampèrian and current loops’
interchangeability
ACL [1] relates the circulation of the magnetic field, B,

around a closed curve, C, called hereinafter an ampèrian
loop, to the stationary electric current loop, I, intersecting
any open surface, S, bounded by C. In a vacuum ACL takes
the form
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I
C

B � dl ¼ m0I ð1Þ

where m0 is the magnetic permeability and dl is a vector tan-
gent to curve C with magnitude equal to the length of the in-
finitesimal line element. If the current loop does not intersect
S, the right-hand side of (1) is zero.
Let us consider two arbitrary closed curves, C and C′, as

illustrated in Fig. 1.
If a current I exists in the curve C, each elementary current

Idl produces an infinitesimal magnetic field dB at each ele-
ment dl 0 of the curve C′. Using the Biot–Savart law [1] one
can write dB as

dB ¼ m0I

4p

dl � r

r3
ð2Þ

where r is the position of dl 0 in relation to dl.
Analogously, if current I exists in curve C′, each elemen-

tary current Idl 0 creates a magnetic field dB′ at each element
dl of the curve C, given by

dB0 ¼ m0I

4p

dl 0 � ð�rÞ
r3

ð3Þ

Considering (2) and (3), the inner products dB � dl 0 and
dB0 � dl are, respectively, given by

dB � dl 0 ¼ m0I

4p

dl � r � dl 0
r3

ð4Þ

dB0 � dl ¼ m0I

4p

dl 0 � ð�rÞ � dl
r3

ð5Þ

Because the right-hand sides of (4) and (5) are equal, one
can thus writeZZ

dB0 � dl ¼
ZZ

dB � dl 0 ¼ m0I

4p

ZZ
dl 0 � dl � r

r3
ð6Þ

The last integral in (6) depends only on the geometry of
curves C and C′ and has the value [5]

ZZ
dl 0 � dl � r

r3
¼

4p if C and C0 are interlocked

0 if C and C0 are not interlocked

(

ð7Þ
Therefore, in ACL the roles of current and ampèrian loops

are interchangeable, an interesting symmetry that brings
about further insights into ACL and is illustrated in the next
section with some examples.

3. Instructive examples

Consider two interlocked circumferences of equal radius,
R, as illustrated in Fig. 2 (R is also the distance between their
centres, P and Q). The planes containing the circumferences
are orthogonal and their intersection contains the segment
PQ.
Regardless of knowing relation (6), the present symmetry

allows us to take any one of the circumferences as the current
I and the other one as the ampèrian loop C. However, though
the symmetry guarantees the interchangeability of I and C, it

is not sufficient to determine the magnetic field B along C,
because its magnitude is not constant.
From this initial configuration three singular cases can be

built: the radius of the current loop, R, is made arbitrarily
large, keeping Q at the centre of C (Fig. 3); the ampèrian
loop radius, R, is made arbitrarily large, keeping P at the
centre of I (Fig. 4); and the current and ampèrian loops’
radii, R, are both made arbitrarily large, keeping P and Q in
their respective positions (Fig. 5).
Case 1. Starting from the two circumferences of Fig. 2,

keeping Q at the centre of C, as current radius tends to infin-
ity the infinite current wire is obtained, as shown in Fig. 3.
This problem is widely discussed in undergraduate text-

books. The magnetic field at any point, P, of C can be ob-
tained either by the Biot–Savart law or by ACL, although
the latter is simpler to use owing to symmetry. We have thenI

C

B � dl ¼ 2pRB ¼ m0I ð8Þ

from which one obtains the well-known result for an infinite
current wire

B ¼ m0I

2pR
ð9Þ

Fig. 1. Two arbitrary closed curves C and C′. Any of the curves can
be taken as the electrical current while the other takes the role of the
ampèrian loop.

Fig. 2. Two interlocked circumferences of the same radius, R. Be-
cause of symmetry the roles of the current loop I and the ampèrian
loop C are interchangeable. The choice of current loop as full line
and ampèrian loop as dashed line is also adopted in Figs. 3–5.
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Case 2. If, in Fig. 2, instead of being the radius of I that
tends to infinity, it is the radius of C tends to infinity, keep-
ing P at the centre of I, one gets the situation illustrated in
Fig. 4. The current loop is a circular wire with its axis being
the ampèrian loop, which is the previous situation with cur-
rent and ampèrian loops interchanged.
The magnetic field due to the circular current I at a point

on the axis at a distance x from the centre of the current is
given by [1]

B ¼ m0IR
2

2 R2 þ x2
� �3=2 ð10Þ

The calculation of the line integral of B along C is
straightforwardZþ1

�1
B � dl ¼

Zþ1

�1

m0IR
2

2 R2 þ x2
� �3=2 dx ¼

Zþ1

0

m0IR
2

R2 þ x2
� �3=2 dx ð11Þ

which leads to

Zþ1

�1
B � dl ¼ m0I

R

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=R2

p
" #x¼þ1

x¼0

¼ m0I ð12Þ

The preceding result together with (8) is consistent with
the interchangeability of the current and ampèrian loops,
given by (6), showing that the axis of a circular current can
be taken as an ampèrian loop, an example that as far as is
known to us is ignored in the literature.
Case 3. Finally, from Fig. 2, when the current and ampèr-

ian loops’ radii, R, are both made arbitrarily large, keeping P
and Q in their respective positions, the situation is the one
shown in Fig. 5. Two orthogonal infinite lines separated by
R are obtained, one of them being the current, I, and the
other one the ampèrian loop C.
Using (9) and the geometry of Fig. 5, the magnetic field

component, Bx, in the direction of dl is

Bx ¼ m0I

2pr
cos q ¼ m0IR

2p

1

R2 þ x2
ð13Þ

The line integral of B along C is, therefore,Zþ1

�1
B � dl ¼ m0IR

2p

Zþ1

�1

1

R2 þ x2
dx ¼ m0IR

p

Zþ1

0

1

R2 þ x2
dx ð14Þ

which leads toZþ1

�1
B � dl ¼ m0IR

p

1

R
tan�1 x

R

� �� �x¼þ1

x¼0

¼ 1

2
m0I ð15Þ

The factor 1/2 in (15) is unexpected, as it leads us to con-

Fig. 3. Starting from configuration of Fig. 2, the radius R of current
I is made arbitrarily large, keeping Q at the centre of C, obtaining in
the limit the infinite current wire.

Fig. 4. Keeping the point P at centre of I, the radius of the circular
ampèrian loop C in Fig. 2 is made arbitrarily large, leading in the
limit to the axis of the circular current I.

Fig. 5. From Fig. 2, when the current and ampèrian loops’ radii R
are both made arbitrarily large, keeping P and Q in their respective
positions, two orthogonal infinite lines separated by R are obtained.
One of them is the current I and the other one is the ampèrian
loop C.
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clude that the infinite line does not behave as one ampèrian
loop, but just as half of one. If this is correct, it immediately
raises a question: in the previous example (Fig. 4), an identi-
cal infinite line was taken as an ampèrian loop and in that
case the circulation of B is m0I. What explains this apparent
inconsistency?
Considering an infinitely long line as an ampèrian loop,

such a line closes itself at infinity to form the loop. In situa-
tions like that of Fig. 4, there is no need to concern ourselves
with what happens at infinity, because at infinity the contri-
bution of B to the circulation is zero, as B decreases with x
at 1/x3. Figure 6a gives a different perspective from that of
Fig. 4 and shows that the axis of a circular current when
closed at infinity always encloses the current, I, regardless of
whether this happens through the left or through the right.
However, in the present situation (Fig. 5), how line C

closes at infinity determines whether the ampèrian loop enc-
loses the current or not. Moreover, the circulation of B along
C is independent of the distance from the current I. This is
illustrated in Fig. 6b, which shows that when C closes at in-
finity the circulation of B is either m0I or zero depending on
whether C encloses the current, I, or not. It is instructive to
note that, as the result given by (15) is independent of R,
although B goes to zero as R → ∞, its circulation is nonzero
for R = ∞ (Fig. 6b).
Interestingly, two orthogonal infinite lines can be seen as

two semi-interlocked curves, because in this case the integral
in (7) gives 2p, a result that may be interpreted topologically
as meaning that the translation of one of the orthogonal lines
relative to the other is restricted to half of space.

4. Limitations of ACL
When introducing ACL to students, issues often arise re-

garding its application to specific situations [6–9]. For in-
stance, let us consider the problem of determining the
magnetic field, B, due to a current-carrying finite segment
XY at point P a distance r from it (Fig. 7), where the circular
surface S is bounded by the circular ampèrian loop C.
By symmetry, at every point in C, B would have the same

magnitude and be tangent to C, so thatI
C

B � dl ¼ 2prB ð16Þ

From (1), the magnitude of B would be given by

B ¼ m0I

2pr
ð17Þ

This result would then be the same as that for an infinitely
long wire, as the same symmetry arguments apply. However,
it does not agree with the result obtained from the Biot–
Savart law [1], which depends on the length of the current
segment as

B ¼ m0I

4pr

d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ r2

p þ d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 þ r2

p
 !

ð18Þ

Moreover, ACL must give the same result for any surface
bounded by C, but for a finite current segment one can al-
ways choose a surface S′, as the one shown in Fig. 7, that

does not intersect the current, giving in this case B = 0, in
contradiction with (17). In addition, it is physically impossi-
ble to have a stationary current in an open circuit. It follows
from these considerations that ACL does not apply to a cur-
rent in a finite segment, as a stationary current can only exist
in a closed circuit. To overcome this difficulty, if one regards
the finite current segment as a portion of a stationary current
loop, then the symmetry arguments fail, as they do not take
into account that B is created by the entire current. In other
words, connecting the points X and Y to close the loop
breaks the existing symmetry, that is, it is no longer feasible
to determine B by ACL because of the difficulty of solving
the integral in (1).
As illustrated in Fig. 8, the current, I, can be expressed as

the flux of the current density vector, J, through any open
surface, S, bounded by the ampèrian loop, C, I = ∫ J · da.
The direction of J is given by the direction of I, and the di-
rections of dl and da satisfy the right-hand rule. From a di-
dactical point of view it is thus more instructive write ACL
asI

C

B � dl ¼ m0

Z
S

J � da ð19Þ

Though a stationary current cannot exist in an open circuit
it is, however, possible to establish a transient current in such
a circuit, a situation that requires the generalization of ACL
through the displacement current. An interesting educational
example illustrating the application of Ampère’s generalized
law to an open circuit with an unconfined displacement cur-
rent is given in the next section.

5. Application of generalized ACL
The generalization of ACL is often illustrated in textbooks

with the classic example of the discharging capacitor circuit
[1, 2] shown in Fig. 9, where the decrease in time of the
electric field within the capacitor results in a spatially uni-
form displacement current, ID [10, 11], which is confined to
the region between the plates and is numerically equal to the
conduction current, I. Both of these currents are accounted
for by Ampère’s generalized law [2]

I
C

B � dl ¼ m0

Z
S0

J � daþ 30
d

dt

Z
S0

E � da

0
B@

1
CA

¼ m0ðI þ IDÞ ð20Þ

where 30 is the electrical permittivity, E is the electric field,
and S0 is any open surface bounded by the curve C.
The choice of circuit in Fig. 9 is pedagogically relevant

because it intuitively shows that the displacement current, ID,
across S′ is numerically equal to, and can be taken as a con-
tinuation of, the conduction current, I, so that the circulation
of B along C is always m0I. However, a knowledge of circu-
lation does not enable the determination of B because of lack
of symmetry, unless the wire connecting to the capacitor is
taken to be sufficiently long for the contributions from the
remaining circuit to be negligible.
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It is instructive to consider a different example whose sym-
metry enables the determination of B and that can be used to
illustrate the concept of a displacement current that is both
unconfined and different from the conduction current. Con-
sider two small spherical conductors with initial charges +Q
and –Q (Q > 0) placed at the ends of a finite conducting seg-
ment, as shown in Fig. 10. A transient current I flows
through the segment for a short time until the spheres be-
come uncharged. From symmetry considerations, it is clear

that the magnetic field, B, has the same magnitude at every
point P in C and is tangent to this curve.
Charges +Q and –Q, separated by a distance 2d, create an

electric field E whose field lines begin at +Q and end at –Q,

Fig. 6. (a) In Fig. 4, the infinite axis of circular loop I always encloses the current regardless of whether such closure is through the left or
right. At infinity the contribution of B to the circulation is zero. (b) In contrast, for the straight current I in Fig. 5, how C closes at the infinity
matters.

Fig. 7. Even though there would appear to be symmetry, ACL can-
not be used to find the magnetic field at P owing to a finite current
segment. It only applies to a stationary current, which occurs only in
a closed circuit.

Fig. 8. Geometrical configuration and physical quantities in ACL
(19).

Fig. 9. The discharging capacitor circuit. If the distance between the
plates is small compared to their dimensions, the decreasing electric
field results in a confined displacement current that is numerically
equal to the conduction current, I.

Fig. 10. Transient current I = –dQ/dt is due to charges +Q and –Q
placed at the ends of a conducting segment of length 2d. ACL does
not apply to this open circuit. For simplicity, magnetic field circula-
tion is determined along a curve C equidistant from the two charges.
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as shown in Fig. 10. The flux, fE, of E through S is the sum
of fluxes due to each charge

fE ¼ fþ
E þ f�

E ¼ Q

2p30
U ð21Þ

where U is the solid angle through which charges see sur-
face S.
As I = –dQ/dt, using (20) and (21), and taking into ac-

count that I crosses S, the circulation of B along C is given
byI

C

B � dl ¼ m0I 1� U

2p

	 

ð22Þ

with the displacement current across S being

ID ¼ � U

2p
I ð23Þ

If instead of S, we choose now a surface S′ that does not
intersect the current, the circulation of B along C has only
the contribution of the rate of change of fE across S′. In this
case, while the solid angle through which the charge +Q sees
S′ remains U, for the charge –Q it becomes (4p – U) (see
Fig. 10). Moreover, the flux corresponding to charge –Q is
now negative. ThusI

C

B � dl ¼ m030
d

dt

Q

4p30
U

	 


� m030
d

dt

Q

4p30
ð4p�UÞ

� �
ð24Þ

which, after a straightforward simplification, gives precisely
(22) as one would expect. Evidently, the displacement current
across S′ differs from that across S and is given by

ID ¼ 1� U

2p

	 

I ð25Þ

The geometrical symmetry allows us to calculate the circu-
lation of B along C and the solid angle U,I

C

B � dl ¼ 2prB ð26Þ

U ¼ 2p 1� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r2

p
 !

ð27Þ

which, combined with (22), leads to

B ¼ m0I

2pr

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ r2

p
 !

ð28Þ

The value of B given by (28) is the same as that obtained
from (18) making d1 = d2 = d. Thus, the present example
can be used to illustrate that, although the displacement cur-
rent is used to determine B in (28), the same result is obtain-
able without resorting to the displacement current, using the
Biot–Savart law.

Before closing this discussion, it is instructive to further
compare the present example with the discharging capacitor
circuit. Unlike the present example of the pair-of-charges
(Fig. 10), the discharging capacitor circuit (Fig. 9) does not
enable determination of B at every point in space due to
lack of symmetry. However, in both examples, when r ap-
proaches zero, point P sees the approaching wire as infinitely
long and thus symmetrical giving B = m0I/(2pr), which is the
value of (28) for r ≪ d. For the pair-of-charges example the
displacement current is dependent on r (through U) and is
not spatially confined (e.g., see (23) and (25)) contrasting
with the discharging capacitor example where such a current
is constant, numerically equal to I, and confined within the
plates of the capacitor. Also, by (22) with (27), while for the
pair-of-charges example the effective current Ief = I + ID in
(20) gradually approaches zero as r → ∞, for the discharging
capacitor circuit the effective current has the constant value
of Ief = I, provided that r is not large enough for the dashed
line in Fig. 9 to be intersected by S or S′, a situation beyond
which we obviously have Ief = 0.

6. Conclusion
The ampèrian and current loops’ interchangeability, an in-

trinsic symmetry of ACL that is virtually ignored in text-
books, was discussed and illustrated. The limitations and
generalization of ACL were addressed with instructive exam-
ples, paying particular attention to the concept of displace-
ment current, which is a difficult topic regarding its intuitive
interpretation. As far as is known to us, the discussion car-
ried out here deals with issues that are often disregarded in
textbooks. Given its educational nature, it is hoped that this
paper will be useful for teachers and more advanced students.

References
1. P.A. Tipler and G. Mosca. Physics for scientists and engineers.

5th ed. Freeman, New York. 2004.
2. D.J. Griffiths. Introduction to electrodynamics. 3rd ed.

Prentice Hall, New Jersey. 1999.
3. J.D. Jackson. Classical electrodynamics. 3rd ed. Wiley, New

York. 1999.
4. R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman

lectures on physics. Vol. 2. 6th ed. Addison-Wesley,
Amsterdam. 1977.

5. C. Nash. Topology and physics – a historical essay in history
of topology. Elsevier, Amsterdam. 1999.

6. C.S. Wallace and S.V. Chasteen. Phys Rev. Spec. Top. Phys.
Educ. Res. 6, 020115 (2010). doi:10.1103/PhysRevSTPER.6.
020115.

7. J. Guisasola, J.M. Almudí, J. Salinas, K. Zuza, and M.
Ceberio. Eur. J. Phys. 29, 1005 (2008). doi:10.1088/0143-
0807/29/5/013.

8. C.A. Manogue, K. Browne, T. Dray, and B. Edwards. Am. J.
Phys. 74, 344 (2006). doi:10.1119/1.2181179.

9. H.A. Kalhor. IEEE Trans. Educ. 31, 236 (1988). doi:10.1109/
13.2322.

10. J.A. Heras. Am. J. Phys. 79, 409 (2011). doi:10.1119/1.
3533223.

11. J.W. Arthur. IEEE Antennas Propag. Mag. 51, 58 (2009).
doi:10.1109/MAP.2009.5433097.

72 Can. J. Phys. Vol. 90, 2012

Published by NRC Research Press

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

M
IT

 L
IB

R
A

R
IE

S 
on

 1
1/

26
/1

4
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 


