
There is a high risk associated with poor
cryptographic implementations, as is
shown by frequent (and in some cases
catastrophic) security breaches directly
attributed to implementation errors in
widely used cryptographic libraries
[L1,L2]. One of the causes of these
breaches in widely tested software is the
semantic gap between theoretical cryp-
tographic specifications and their con-
crete implementations. Effectively
closing this gap is a huge challenge,
especially when attackers may exploit
physical vulnerabilities not covered by

the specification, commonly known as
side-channel attacks.

To answer this demand, research in the
crossover area between cryptography
and programming languages has been
growing steadily in the last decade, as
demonstrated by the Computer Aided
Cryptography Engineering (CACE)
EU/FP7 project that focused on devel-
oping tools to automate the production
of high quality cryptographic software
at a lower cost. The CAO cryptographic
domain-specific language [L3,1,2], ini-

tially developed at the University of
Bristol and subsequently re-engineered
within CACE, enables the natural
translation of cryptographic construc-
tions (as found in standards and scien-
tific articles) to high-level prototype
implementations. The driving principle
behind the design of CAO is to support
cryptographic concepts as first-class
features.

CAO adopts some features familiar to
imperative programmers but has a very
simple programming model by design.
For instance, it does not support
input/output, as it is targeted at imple-
menting the core components of crypto-
graphic libraries. Conversely, it offers a
very rich type system tuned to the spe-
cific domain of cryptography. In recent
versions of the language, CAO pro-
grams can be seen as generic specifica-
tions that, like pure theoretical crypto-
graphic constructions, are defined
abstractly for a set of parameters satis-
fying certain base assumptions. The
CAO developer is assisted by an inter-
preter that enables fast prototyping and
debugging, and a type-checker that
enforces strong typing and performs
extensive preliminary validation of the
code, extracting rich crucial informa-
tion for further processing down the
chain. CAO specifications can also be
validated in a fully automatic way for
parameter consistency properties in
later versions of the type checker.

The CAO tool chain (Figure 1) also pro-
vides an optimising compiler for the
automatic generation of high-security
and high-speed cryptographic C imple-
mentations from high-level CAO speci-
fications. The inner workings of the
CAO compilation process mimic those
performed by cryptography practi-
tioners.

ERCIM NEWS 106 July 201614

Special Theme: Cybersecurity

A Tool-Chain for High-Assurance Cryptographic
Software
by José Almeida, Manuel Barbosa, Hugo Pacheco and Vitor Pereira (INESC TEC)

Cryptography is an inherently interdisciplinary area and the development of high-quality cryptographic
software is a time-consuming task drawing on skills from mathematics, computer science and electrical
engineering, only achievable by highly skilled programmers. The challenge is to map high-level
cryptographic specifications phrased using mathematical abstractions into efficient implementations at
the level of C or assembly that can be deployed on a target computational platform, whilst adhering to
the specification both in terms of correctness and security. The High Assurance Software Laboratory at
INESC-TEC maintains a domain-specific toolchain for the specification, implementation and verification
of cryptographic software centred on CAO, a cryptography analyses and operations-aware language.

Figure 1: The CAO toolchain.

The CAO specification is first con-
verted into a canonical CAO subset
through a series of both general and
domain-specific CAO-to-CAO trans-
formation and optimisation steps.

In a second phase, the intermediate
CAO code is compiled into C code in
which CAO native operations are
implemented as a C backend library that
may be either pre-compiled or dynami-
cally generated. This flexibility allows
adapting the CAO compiler to the wide
variety of computational platforms in
which cryptographic code is deployed
in the real world. The CAO compiler
offers a generic C backend supporting
the entire functionality of the CAO lan-
guage and capable of targeting any
computational platform with a C/C++
compiler. In the context of the SMART
ENIAC/JU project, a very specific
backend supporting only a limited
subset of the CAO language has been
developed to target a severely con-
strained proprietary microcontroller
that resides in standalone PCM memo-
ries, while preserving the remaining
high-level infrastructure.

Seeing CAO programs as specifica-
tions, it becomes natural to express the
properties of CAO programs in the

same abstract setting, i.e., directly in the
CAO language. For this reason, the
CAO toolchain also incorporates a
formal verification tool that permits rea-
soning about arbitrarily complex prop-
erties of CAO programs (specified as
in-code annotations) in a semi-auto-
mated environment, by embedding
them in EasyCrypt [L4,3], a tool-
assisted framework for specifying and
verifying the security of cryptographic
constructions. Using EasyCrypt, the
developer is now able to additionally
perform safety, correctness and security
proofs of cryptographic algorithms
written in CAO.

The joint effort across two European
projects brought the CAO toolchain to
life and came to fruition by demon-
strating that a domain-specific high-
level cryptographic language can be
used to guide, validate and automate the
development of low-level high-assur-
ance cryptographic implementations for
diverse computational platforms.
Ongoing and future work will broaden
the applications of the CAO family of
tools by further exploring the integra-
tion with EasyCrypt and developing
new backends. In particular, we envi-
sion the implementation of a backend
for a cryptography-oriented low-level

language such as qhasm, in which
assembly level programs are seen as
first class representations of crypto-
graphic computations.

Links:
[L1] http://heartbleed.com/
[L2] http://resources.infosecinstitute.com/
beast-vs-crime-attack/
[L3] https://hackage.haskell.org/
package/cao
[L4] http://www.easycrypt.info

References:
[1] M. Barbosa, D. Castro, Paulo F.
Silva: “Compiling CAO: From
Cryptographic Specifications to C
Implementations.” POST 2014: 240-
244.
[2] M. Barbosa, et al.: “Type Checking
Cryptography Implementations”,
FSEN 2011: 316-334.
[3] G. Barthe et al.: “Computer-Aided
Security Proofs for the Working
Cryptographer”, CRYPTO 2011: 71-90.

Please contact:
Manuel Bernardo Martins Barbosa
HASLab, INESC TEC and DCC
FCUP
mbb@dcc.fc.up.pt

ERCIM NEWS 106 July 2016 15

Since their appearance in the mid sev-
enties, public key (or asymmetric)
cryptographic primitives have been
notoriously difficult to devise and
only a handful of schemes have
emerged and have survived cryptana-
lytic attacks. In particular, the security
of nearly all public key schemes used
today relies on the presumed diffi-
culty of two problems, namely fac-
toring of large integers and computing
the discrete logarithm over various
groups.

The security of all these schemes was
questioned in 1994 when Shor showed
that a quantum computer could effi-
ciently solve these two problems [1].
We do not know when large enough
quantum computers will be built, but
this will have dramatic consequences
because it will break all popular public-
key cryptosystems currently in use.

Clearly, the cryptographic research
community has to get ready and pre-
pare alternatives. Those alternatives

have to be ready, not only for tomorrow
in case of a scientific advance (which
might even be of a different nature than
those that are foreseen today), but also
for now, in order to provide long term
security – i.e., several decades – to the
data that is encrypted or digitally
signed today. This effort has started
already with PQCRYPTO [L1] of the
European Horizon 2020 program.
Furthermore, in August, 2015, NSA
announced that it is planning to transi-
tion ‘in the not too distant future’ to a

Code-Based Cryptography: New Security
Solutions Against a Quantum Adversary
by Nicolas Sendrier and Jean-Pierre Tillich (Inria)

Cryptography is one of the key tools for providing security in our quickly evolving technological
society. An adversary with the ability to use a quantum computer would defeat most of the
cryptographic solutions that are deployed today to secure our communications. We do not know
when quantum computing will become available, but nevertheless, the cryptographic research
community must get ready for it now. Code-based cryptography is among the few cryptographic
techniques known to resist a quantum adversary.

