
Collection of state information in live digital
forensics

Fábio Freitas1 and António Pinto2

1 GCC, CIICESI, ESTG, Politécnico do Porto, Portugal
8080176@estgf.ipp.pt

2 GCC, CIICESI, ESTG, Politécnico do Porto
and CRACS & INESC TEC, Porto, Portugal

apinto@inesctec.pt

Abstract. In a digital forensic investigations, the investigator usually
wants to get as much state information as possible. Examples of such
scenarios are households with wireless networks connecting multiple de-
vices where a security incident occurs. USB devices present themselves
as interesting vehicles for the automated collection of state information,
as it can store the applications that collect the information, can store
the results and can also facilitate the information collection by enabling
its automatic operation. This paper proposes a USB solution to facil-
itate the collection of state information with integrity guarantees and
multi-platform operation. Moreover, the proposed solutions is the only
one that performs an extensive and homogeneous artifact collection, in-
dependently of the underlying operating system.

Keywords: Digital forensics; Live; State information.

1 Introduction

In Incident Response (IR) [1] situations, the investigator tries to collect
as much information as possible. The goal of an IR investigation can
be to confirm the existence of the incident, to provide rapid detection
and containment, to identify facts and collect information, to minimize
business interruption or network operation, to recover from the incident,
to manage the public perception of the incident, to collect evidence that
enables legal or civil action against the perpetrators, to inform the top
management, or, finally, to improve the organization’s reaction to future
security incidents [4].
State information can be included within the collectible information and
its analysis emerges as an important aspect of digital forensics, espe-
cially when dealing with IR situations that involve multiple networked
equipment.This type of procedure is usually named as live forensics. The
objective of this type of forensic analysis is to collect volatile data before
shutting down the system to be analyzed. In live forensics, one collects in-
formation such as a copy of Random Access Memory (RAM) memory or
the list of running processes. State information is volatile and will be lost
once the equipment is turnoff. State information may contain artifacts



of interest to the analyst, such as [12]: the list of running processes; the
history of commands executed on the console; recently used passwords
(some in readable text); instant messages; IP addresses; who is logged on
to the system; which network ports and applications are listening for IP
connections; system information; list and history of connected devices,
among others.
The collection of state information in live forensics should not be seen as
a substitute of traditional forensic analysis. Instead, it should be seen as
complementary. Live forensics will collect information that is not avail-
able otherwise. Traditional forensic analysis involves the bit-by-bit copy-
ing of data stored in media and its subsequent analysis. Such bit-by-bit
copy and analysis is typically performed on a reduced set of equipment
since it is a lengthy process. On the other hand, the collection of state
information, which can be automated, becomes a source of complemen-
tary information that can be very useful. It enables the identification of
the connections established between various devices and, hence, check
for viruses, spyware, malware or other malicious programs that use the
network to communicate with a control server, for example.
Universal Serial Bus (USB) storage devices are interesting vehicles for
building an automated mechanism that collects state information by stor-
ing both the applications required for collecting the information and the
collection result. These are also easily transportable, can have large stor-
age capabilities and facilitate the automatic collection after insertion into
the PC.
Live forensic procedures are not risk-free. On the one hand, in order to
collect state information, we are required to use the system under analysis
that may be compromised and, possibly, may compromise the collected
information. On the other hand, the collection of state information is
an intrusive process, in the sense that the collection of state informa-
tion changes the state of the system being analyzed. Traditional digital
forensic analysis focuses on avoiding changes to the analyzed system.
This article is organized in sections. Section 2 describes and compares
the existing applications that perform artifact collection in the context of
digital forensic investigations or of incident response situations. Section
3 details the proposed solution. Section 4 presents the tests carried out
in order to validate de proposed solution and, Section 5, concludes this
paper.

2 Related work

Multiple applications that collect artifacts in the context of live digital
forensics and incident response are available online and can be obtained
freely. Examples being: the ir-triage-toolkit (ITT) [13], the IRKIT [11],
the TR3Secure (TR3S) [3], the TR3Secure’s fork by Neely (NTR3S) [9],
the Live Response Collection (LRC) [5], and the Live Response Scripts
(LRS) [6].
The ITT consists of a set of small applications and scripts. The author
includes applications of other entities in his set, but states that no license
agreements or copyright restrictions are broken. These scripts aim to



automate the collection of artifacts to facilitate their subsequent analysis,
as well as, the screening of events in incident response scenarios. It can be
used in Windows and Linux Operating Systems (OS). It also provides
copies of RAM and includes scripts to create tool kits for Linux and
Windows.
The IRKIT was created by Bill Dean for his own use. He put together
a set of free applications that collect volatile data in a script. All appli-
cations should fit on a USB storage medium and be ready for use in IR
situations. Can only be used in systems with the Windows OS.
The TR3S is yet another set of scripts for collecting digital artifacts on
connected systems. It was developed by Corey Harrell and is made avail-
able in his blog Journey Into Incident Response. Harrell needed a set
of applications to respond to systems during attack simulations and one
of the applications had to quickly collect volatile data. The commands
required for the proper functioning of TR3S are not made available di-
rectly due to copyright limitations. Can only be used in systems with
the Windows OS. The NTR3S is a fork of the TR3S project by Neely.
The motivation behind this fork was related to the need to adapt TR3S
to the way that Neely’s response and screening team worked in malware
detection situations.
The LRC was developed by Brimor Labs and consists of a collection
of commands and scripts for the collection of artifacts in digital forensic
investigation scenarios. This has the particularity of being able to be used
in multiple OS, such as Windows, Linux and macOS. The application was
tested on a wide variety of OS versions.
The LRS takes the form of three scripts for the collection of artifacts in
digital forensic investigation scenarios, one script for each reference OS.
Scripts for Linux and macOS do not depend on external applications.
Table 1 compares the tools identified. Three main factors were considered
in this comparison: the multi-platform support, the amount of informa-
tion collected, and if the collected information was homogeneous among
the various supported OS. The table shows the percentage of artifacts
collected by each tool, organized by information groups and by client OS
(Windows (W), Linux (L) and macOS (M)). Each percentage was ob-
tained by calculating the number of artifacts each tool collected over the
total number of artifacts collected by all tools, per information group.
The network information group considers artifacts such as: the network
interfaces configuration, IP and MAC addresses, routing table, ARP ta-
ble, DNS cache, network connections, and associated processes. The sta-
tus information group considers artifacts such as: open files, running
processes (process identification number, running time), and a complete
list of files in the file system. The system information group considers
artifacts such as: the system date and time, including the time zone, OS
version, list of services and programs configured to automatically run at
startup, system configuration, and the list of installed software. The user
information group considers artifacts such as: the list of tasks scheduled
to run automatically, the list of local user and group accounts, and the
history of system accesses. Device information group considers artifacts
such as: the loaded drivers and modules, memory capacity, hard disk
information, and the list of mounted file systems. Integrity information



Table 1. Collected artifacts by information group (in %)

ITT IRKIT TR3S NTR3S LRC LRS

Information W L M W L M W L M W L M W L M W L M

Network 60 20 - 80 - - 100 - - 100 - - 60 80 100 80 60 60

State 67 67 - 67 - - 67 - - 67 - - 100 67 67 67 67 67

System - 50 - 75 - - 50 - - 50 - - 100 50 50 75 50 50

User 33 67 - 100 - - 100 - - 100 - - 67 33 33 33 67 67

Devices 100 50 - 100 - - 50 - - 50 - - 100 50 100 - 100 100

Integrity 100 100 - - - - - - - - - - 100 100 100 - - -

Logs - - - - - - 100 - - 100 - - 50 100 100 - - -

Autorun - - - - - - - - - - - - - - - - - -

RAM copy 100 100 - 100 - - 100 - - 100 - - 100 - 100 - - -

group considers artifacts such as: result of multiple cryptographic hash
functions (MD5 [10], SHA1 [7], SHA512 [8]) over all collected artifacts
and the tool itself. Finally, the log information group considers artifacts
such as: the Operating System (OS) and application logs [4].

In conclusion, none of the identified tools performs an extensive and
homogeneous artifact collection that is independent of the underlying
OS.

3 Digital Forensic and Incident Response USB

In a digital forensic investigation, or in a response to a computer secu-
rity incident, the investigator must comply with standardized procedures
that include the use o specific applications and the validation of the in-
tegrity of the collected artifacts. The proposed solution, named Digital
Forensic and Incident Response USB (DFIRU), aims to provide the in-
vestigator with an application that enables him to automatically collect
artifacts in a standardized way and with integrity validation. Moreover,
the artifact collection must be extensive, homogeneous, independent of
the underlying operational system, portable and automatically executed
when possible.

Initial 
Script

Java 
DFIRU

Network
Script

Status
Script

System
Script

User
Script

Device
Script

Logs
Script

Integrity
Script

Makes use of

Fig. 1. DFIRU architecture



The proposed solution, depicted in Figure 1, consists of a main appli-
cation, developed in Java, that runs OS specific collection scripts. The
scripts are arranged in 7 information groups. In turn, these scripts will
execute commands that will perform the artifact collection on the target
system. The DFIRU application is stored in a USB drive. The storage
device can be formatted in multiple formats, in the prototype the Ex-
tended File Allocation Table (exFAT) [2] format was selected due to its
native read and write support in the target operating systems (Windows,
Linux and macOS). Moreover, the exFAT supports files larger than 4GB,
which are expected if memory dumps are performed. The automatic ex-
ecution of the proposed solution is implemented using the USB autorun
functionality. This feature has native supported on both Windows and
Linux. In macOS, and newer versions of the Windows OS, the user is
required to manually launch the proposed solution because the autorun
functionality is being deprecated due to security considerations.

Network

ipcong /all

netstat -rn

arp.exe -a

ipcong /displaydns

netstat -ano

State

OpenedFilesView.exe /stext x.txt

pslist.exe /accepteula

dir /S /B /AHD %HOMEDRIVE%

System

time/T

date/T

w32tm /tz

ver

wmic /Output:"x.txt" startup list full

wmic /Output:"x.txt" product get Name, Version

User

schtasks /query /fo LIST /v

dumpsec.exe /rpt=users /saveas=xed /outle=x.txt

logonsessions.exe /accepteula

NetUsers.exe /h /v

Devices

wmic.exe /Output:"x.txt" diskdrive list brief /format:list

di.exe

Logs

psloglist.exe /accepteula

RawCopy.exe %WINDIR%\System32\winevtnLogs\Application.evtx %LOGS%

Integrity

md5deep.exe -r ficheiro(s)

sha1deep.exe -r ficheiro(s)

sha256deep.exe -r ficheiro(s)

winpmem 2.1.exe -o ficheiro

Fig. 2. Sample commands per information group (Windows)

Figure 2 presents a sample of the commands that are used by the scripts
in the multiple information groups for the Windows OS. In order to
collect artifacts of all information groups, 21 scripts were created, which
were distributed by groups as follows: 2 for network, 2 for state, 2 for
system, 2 for user, 2 for devices, 2 for logs, 8 for integrity, and one
additional script that is used to prepare the output files and folders
needed to save the collected artifacts. The need for 2 scripts per group
is related to the level of privileges of the user that initiates the artifact
collection (with or without administrator privileges). The integrity group
required additional scripts because the application (see Figure 3) has
extra features for this group. These were then duplicated for users with
or without administrator privileges.



Fig. 3. Main window of the DFIRU java application

4 Validation

The proposed solution was installed on a USB storage device using a
device setup script that was develop for that purpose. The installation
script includes the formatting of the USB storage device, the copying of
the java application and associated scripts to the correct folders within
the USB storage device, and the copying or downloading of the utili-
ties required by the various scripts. Some utilities, due to distribution
restrictions imposed by their developers, are downloaded at this time.
The installation script has variants for the various supported operating
systems (Linux, Windows and macOS). This script also facilitated the
process of validating the proposed solution.

In particular, the proposed solution was validated in terms of its over-
all functionality, portability and self-execution. A USB device was setup
successfully with the proposed solution in all the reference operating
systems. The USB device, after setup, was then disconnected and recon-
nected to test the autorun functionality. The autorun was successful in
older versions of Windows and some Linux distributions, such as Fedora,
but failed in recent versions of macOS and Windows 10. Moreover, the
artifact collection with all available options selected was tested multiple
times in all reference operation systems. The artifacts were correctly col-
lected, resulting in a USB device containing the proposed solution and
the collected artifacts. The proposed solution successfully registered its
own activity and calculated cryptographic hash values of the collected
artifacts and generated files.



5 Conclusion

The proposed solution consists of an application developed in Java that
collects state information that is both extensive and homogeneous in all
supported operating systems. Both the solution and the information col-
lected are stored on a portable storage medium. Whenever allowed by the
operating system, the proposed solution makes use of the self-execution
mechanisms to automate the process of collecting artifacts. The proposed
solution registers its own activity and calculates cryptographic hash val-
ues of the collected information and of the generated files. To the best
of our knowledge, the proposed solutions is the only one that performs
an extensive and homogeneous artifact collection, independently of the
underlying operating system.

References

1. Al-Zarouni, M., Al-Hajri, H.: A proof-of-concept project for utilizing
U3 technology in Incident Response. In: Australian Digital Forensics
Conference. p. 15 (2007)

2. Hamm, J.: Extended FAT file system. Tech. rep., Paradigms Solu-
tions (2009)

3. Harrell, C.: TR3Secure. http://journeyintoir.blogspot.pt/2011/12/jiir-
updates.html (2011)

4. Luttgens, J.T., Pepe, M., Mandia, K.: Incident response & computer
forensics. McGraw-Hill Education Group (2014)

5. Moran, B.: Live response collection.
https://www.brimorlabs.com/tools/ (2015)

6. Musick, E.: Live response scripts. http://erikmusick.com/live-
response-scripts/ (2011)

7. National Institute of Standards and Technology: Secure Hash Stan-
dard (SHS). FIPS 180-1, NIST (April 1995)

8. National Institute of Standards and Technology: Secure
Hash Standard (SHS). FIPS 180-4, NIST (August 2015),
http://dx.doi.org/10.6028/NIST.FIPS.180-4

9. Neely, K.: Tr3secure volatile data collection kit.
https://github.com/ktneely/Tr3Secure (2014)

10. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321, RFC
Editor (April 1992), http://www.rfc-editor.org/rfc/rfc1321.txt

11. Sanabria, A., Compton, A., Dean, B.: Free volatile data collec-
tion kit. https://www.swordshield.com/2010/09/free-volatile-data-
collection-kit/ (2010)

12. Shipley, T.G., CFE, C., Reeve, H.R.: Collecting evidence from a
running computer. SEARCH, The National Consortium for Justice
and Internationals Standards p. 6 (2006)

13. Shipp, R.: ir-triage-toolkit. https://github.com/rshipp/ir-triage-
toolkit (2013)


