Magni - A Framework for Developing
Context-aware Mobile Applications

Ricardo Queirés', Filipe Portela?, and José Machado?

! ESMAD, Polytechnic of Porto, Portugal
2 Algoritmi Research Centre, University of Minho, Portugal.

Abstract. The advent of Internet and ubiquitous technologies has been
fostering the appearance of intelligent mobile applications aware of their
environment and the objects nearby. Despite its popularity, mobile de-
velopers are often required to write large and disorganized amounts of
code, mixing UI with business logic and interact, in a ad-hoc fashion, with
sensor devices and services. These habits hinder the code maintenance,
refactoring and testing, while negatively influencing the consistency and
performance of mobile applications. In this paper we present Magni as an
abstract framework for the design and implementation of personalized
and context-aware mobile applications. The corner stone of the frame-
work is its architectural pattern based on the Model-View-Presenter pat-
tern in the UI layer relying in REST services the majority of the app
features. This paradigm fosters the modular design, implementing the
separation of concerns concept and allowing an easier implementation of
unit tests. In order to validate the framework, we present a prototype for
an healthcare automotive app. The main goal of the app is to facilitate
the access to health related points of interest such as hospitals, clinics
and pharmacies.

Keywords: Web services, Design patterns, Mobile frameworks, Geolo-
calization, Interoperability, Mobile healthcare, Automotive apps

1 Introduction

The increased use of mobile devices and their ubiquitous facet, fostered the
design of context-aware applications that make use of data collected from the
sensors’ device and location services. Based on this data, a context-aware app can
better understand users current situations, and use this information to provide
optimized and customized experiences.

These type of mobile apps are difficult to implement for two reasons: 1) the
challenges of their ubiquitous facet and 2) the absence of a widely accepted
programming model.

In the former, developers must understand that these ubiquitous computing
environments pose challenges regarding communication and interaction due to
constraints such as dynamically changing network addresses and system config-
urations, susceptibility to disconnection and low bandwidth [1].



The later is even more problematic. Despite the existence of multiple context-
aware mobile applications, they remain difficult to develop, with no widely ac-
cepted programming model available. In most cases, developers find themselves
mixing UT aspects with logic and data layers, with no sense of design patterns.
Other developers write a large amount of code locally to recreate existent ser-
vices, increasing redundancy and harming code maintenance and testing.

In order to facilitate the development of such applications, several frame-
works appeared in recent years to help developers to abstract, modularize and
optimize their work. Some frameworks [2], [3], [4] focus on a specific platform
(Android) rather being a multi-platform framework. Other approaches aim to
provide location-specific information and services [5], [6], [7] through a central
information system, which is responsible for storing, maintaining and commu-
nicating all location specific data. Finally, other frameworks [8], [9] are built
as a layered architecture in order for portions of application components to be
adapted based on current contextual information. None of these frameworks is
concerned with software design patterns. In addition, none of them abstracts the
use of ubiquitous platforms such as wearable and automotive platforms.

This paper presents Magni — a framework for developing context-aware mo-
bile applications. Magni suggests the use of software design patterns for code
organization in the UI layer relying on Web services for the majority of the
app supported features. These patterns foster automated unit testing and the
separation of concerns in presentation logic, improving the consistency of the
application. Based on this framework, we created an automotive app prototype
called MyHealth for a healthcare case study.

This work is organized as follows. Section 2 discusses some key concepts
on context-aware frameworks such as the software patterns used, the mobile
platforms supported and the domains adequacy. In Section 3, we present the
Magni framework that was designed to help programmers in the development of
context-aware mobile applications. Section 4 evaluates the proposed framework
through the creation of a prototype for an healthcare case study. Finally, we
enumerate the main contributions of this work and future directions.

2 Mobile framework facets

Mobile frameworks have multiple facets. In this section we detail their design
patterns, supported platforms and domains.

2.1 Software Design Patterns

Nowadays, the majority of mobile applications use an ad-hoc Model-View archi-
tecture. In this context the components of the UI (e.g. Activities or Fragments
in Android) implement logic, handle UI aspects and control the flow between
data objects and UI. Using this approach, UI programmers end up with complex
and massive monolithic code where everything is connected to everything and
the work between the programmers team is chaotic.



In software engineering, a software design pattern is an abstract, general and
reusable solution to a commonly problem. It cannot be transformed directly into
source code, instead, it describes how to solve a problem. Thus, design patterns
are formalized best practices that provide programmers with the tools needed
to solve common problems when designing an application [10]. Other important
advantage of the use of design patterns is that it decouples development allowing
multiple developers to work simultaneously.

There are several software design patterns for implementing user interfaces on
computers, the most popular are: Model-View-Controller (MVC), Model-View-
Presenter (MVP) and Model-View-Viewmodel (MVVM).

MVC was introduced in the 1970s. Although originally developed for the
UI layer, MVC has been widely adopted as an architecture for WWW applica-
tions through several Web frameworks. MVC pattern divides an application into
three major components: Model, View, and Controller. The model component
manages the business and the data model. It also defines the business rules for
data defining how the data can be manipulated. The View represents the user
interface components (e.g. Activity/Fragments in Android, HTML/CSS in Web)
responsible for the data visualization received from the controller. The controller
is the mediator between the View and the Model. It gets the input from users
via the View, then processes the user’s data through the Model, passing back
the results to View.

MVP is an evolution of MVC, wherein the controller is replaced by the
presenter. The Presenter is responsible for addressing all user interface events
on behalf of the view. The View and the Presenter are completely separated,
unlike View and Controller, and communicate to each other by an interface.
The Presenter also doesn’t handle the incoming request traffic like controller.

MVVM pattern supports two-way data binding between View and View-
Model. This fosters automatic propagation of changes between ViewModel and
the View. Generally, the ViewModel uses the observer pattern to inform changes
in the ViewModel to the Model.

Regardless of the pattern choice, the most important is to use a software
design pattern during the design and implementation of a mobile application.

2.2 Platforms

Mobile apps are not confined only to smartphones and tablets. In fact, other
mobile platforms appeared in recent years, synchronized with the technology
and economy evolution of societies. Some important examples are multimedia
devices (e.g. TVs), automotive devices (e.g. cars, plains) and wearable devices
(e.g. watches, fitness trackers).

One emergent industry is the automotive sector. In the United States, 17.5
million vehicles were sold in 2015, and expect to reach 20 million in 2019. Sales
have also improved in the European Union since the financial downturn. In 2015,
new car registrations in the E.U. hits the 12.6 million units.

In fact, the ubiquity of the car, plus the simultaneous convergence of in-
formation and communication technology with both the automobile and some



industries (e.g. healthcare, tourism), now provide some potentially promising op-
portunities for linkups. Based on these facts, automotive companies are investing
in the mobile experience seeking to create a more rich connected car experience
which means including 4G/LTE hotspots in a car so mobile devices can con-
nect to the Internet or creating a closed integration through mirror frameworks
(e.g. Android Auto for Android and Apple CarPlay for Apple) allowing drivers
interact with their mobile devices from the car’s Head Unit.

2.3 Domains

There are several domains where context-aware mobile apps can act. The pre-
dictable choice would be tourism where apps can help tourists to easily locate
and access points of interest based on the user’s location. Other important sec-
tor is healthcare. The health care industry incorporates several sectors that are
dedicated to providing health care services and products.

Mobile Health (ou mHealth) as been defined as a reference to using mobile
communication devices, such as mobile phones and tablet computers, for health
services. A growing percentage of health-related smartphone apps are available,
and some estimates predict 500 million patients will be using such apps by the
year 2015 [11]. Merging with the previous section, the health and automobile
sectors account for an annual 2.7 trillion and 1 trillion dollars respectively in
the United States. Both industries are looking at various ICT-oriented solutions
toward a ”smart-health-oriented” car. With this in mind, the first Smart Seating
applications were mainly related with improving in-car sitting posture. Beyond
that, the automotive industry is now transforming the car into a connected
component to healthcare and wellness services, with apps covering such areas of
health as monitoring diabetes and the drivers heart rate.

3 The Magni Framework

This section presents a proposal for a context-aware mobile framework called
Magni. The Magni framework is an abstract framework that can be used by
developers to create well organized and sophisticated code based on software
design patterns. We believe that the use of these patterns will improve code
maintenance and test and create consistent apps. Magni relies all typical features
of these kind of apps to a network of services (e.g. authentication, location,
storage). In the following subsections the framework is described based on two
models: architectural and integration models.

3.1 Architectural model

The Magni framework is the basis for the design and implementation of Magni
instances as realizations of the framework for specific domains (e.g. healthcare,
tourism, computer programming learning).



The Magni framework suggests the use of a client-server architecture in
which presentation, application processing, and data management functions are
physically separated as a multitier architecture (e.g. three-tier architecture). In
this architecture, Magni emphasizes the UI layer, decoupling tasks through the
Model-View-Presenter (MVP) design pattern (Figure 1). MVP is a user interface
architectural pattern created to facilitate automated unit testing and improve
the separation of concerns in presentation logic. Thus, a Magni instance (mobile
app) will be organized in

— The View is a passive interface that displays data (the model) and routes
user commands (events) to the presenter to act upon that data.

— The Presenter acts upon the model and the view. It retrieves data from
repositories (the model), and formats it for display in the view. The Presenter
is responsible for addressing all user interface events on behalf of the view. It
receives input from users via the View, then process the user’s data through
the Model that passes the results back to the View.

— The Model is an interface defining the data.

Unlike the MVC pattern, in this model the View and the Presenter are com-
pletely separated, from each other and communicate to each other by an inter-
face. This design pattern allows also the systematic use of abstraction mecha-
nisms supporting a variety of implementation options.

user
interaction

View

passes calls to updates

Presenter

manipulates i fires events

Model

Fig. 1. Magni framework pattern Ul Model

3.2 Integration Model

The Magni specification also comprises an integration model. This model recom-
mends specifications for the communication between the Magni instance and the



services. A Magni instance can include several features related with authenti-
cation, location awareness, places discovering, sensing, rating, gamification, and
many others. Instead of implementing all theses features, the Magni framework
suggest that instances should stay small (thin clients) and rely all the ”hard
work” on services in the cloud. Services in the framework are organized in two
groups based on its importance: core and secondary.

Core services are mandatory services that a context-aware app should have.
For instance, one of the unique features of mobile applications is location aware-
ness. Mobile users take their devices with them everywhere, and adding location
awareness to a mobile app offers users a more contextual experience, with auto-
mated location tracking, geofencing, and activity recognition.

Secondary services are complementary services that complement the core
services in a specific task, although its absence does not alter the execution flow
of a feature process. Usually these services do not have graphical interfaces and
are more specialized than the core services. An example of this kind of services
is an adaptation service. Taking the previous example, an adaptation service
could adjust the presentation order in accordance with the effective proximity of
the points of interest. Another example of a secondary service is a social media
service that resides on the cloud and can be used to integrate social features
from a Social Media Platform (SMP) such as Facebook or Twitter in the Magni
framework. In this context, a social service could set/get information to/from
social networks.

This integration model relies on web services for communication among sys-
tems. Web services can be used mostly in two flavors: SOAP and REST. SOAP
web services are usually action oriented, mainly when used in Remote Procedure
Call (RPC) mode and implemented by an off-the-shelf SOAP engine such as Axis.
Web services based on the REST style are object (resource) oriented and imple-
mented directly over the HTTP protocol mostly to put and get resources. Both
specifications have matured in distinct periods and they coexist nowadays: SOAP
started earlier and now the trend is REST as stated from a directory of 3200
web APIs listed at ProgrammableWeb (http://www.programmableweb.com/).
Regardless of these trends, the Magni specification does not encourage the use of
any flavor in the communication specifications detailed in the following subsec-
tions. As far as possible, Magni tries to keep an equidistant position from both
flavors.

This section analyses the communication specifications for the interaction
with three core services typically found in context-aware apps: authentica-
tion/storage services, location services and social services.

Authentication/storage services User authentication is an important re-
quirement for most mobile apps today. By being able to securely authenticate
users and identify them your app can offer users a customized experience based
on their interests and preferences. At the same time, data persistence is crucial.
Despite some data can be stored in the device itself (e.g. user preferences, bi-
nary files and small databases emulating caching features), other data should



be stored remotely and centrally. In order to not reinvent the wheel, many apps
rely on cloud services for this bureaucratic work.

A Backend-as-a-service (BaaS) is a cloud computing service model acting
as a middleware component that allows developers to connect their Web and
mobile applications to cloud services via application programming interfaces
(API) and software developers kits (SDK). BaaS features include cloud storage,
push notifications, server code, user and file management and user authentication
and management as well as many other backend services. These services have
their own API, allowing them to be integrated into applications in fairly simple
way. One impressive example is the Firebase BaaS that offers free services such
as analytics, crash reporting, user authentication, and cloud messaging.

Location services One of the unique features of mobile applications is location
awareness. Mobile users take their devices with them everywhere, and adding
location awareness to a mobile app offers users a more contextual experience. For
instance, the location APIs available in Google Play services facilitate adding
location awareness to mobile apps with automated location tracking through the
Location API. Other features are supported by this API, such as the geofenc-
ing and activity recognition. The former combines the awareness of the user’s
current location with awareness of the user’s proximity to locations that may
be of interest. In this case, it is possible to define and adjust the proximity for
the location, through coordinates (latitude and longitude) and a radius. These
data define a geofence, creating a circular area, or fence, around the location of
interest. For each geofence, the Location Services send entrance and exit events,
or it can be specified a duration within the geofence area to wait, or dwell, before
triggering an event. The later offers developers a powerful tool to augment the
user experience. By getting information about the user’s activity, apps can make
intelligent decisions catering the application experience. For example, by asking
if the user is starting to exercise so you can keep track of it with a fitness app
(e.g. Google Fit), or preventing notifications from being sent when the user is
driving.

Social media services OpenSocial is a set of three programming interfaces
(APIs) for web-based social network applications created by Google. The OpenSo-
cial APT covers a broad range of capabilities such as, profile information (user
data), relationships information (social graph) and activities (e.g. news feed).
The main goal of OpenSocial is to provide a common framework to be used
by developers to guarantee interoperability across several social networks on
the Internet, which act as containers for each OpenSocial-compliant applica-
tion. This specification provides a REST and RPC API communication flavours
through which OpenSocial-compliant applications and containers interact with
each other, transmitting user data, friend lists and activities. These protocols
support various data exchange formats such as XML, JSON and ATOM. In or-
der to authorise access to data stored in social networks, these APIs rely on the
OAuth specification. The lack of adoption by major players such as Facebook



affects negatively the OpenSocial adoption. In order to get around with this issue
other alternatives can be used. A well known approach is to build API wrap-
pers that map the OpenSocial API to the native APIs. In 2015, W3C and the
OpenSocial Foundation announced that OpenSocial standards will take place in
the W3C Social Web Working Group, of which the OpenSocial Foundation is a
founding member.

4 Evaluation

In order to validate the framework, we instantiate it through the creation of a
prototype for a health-care case study called MyHealth.

MyHealth is a healthcare automotive app whose main goal is to facilitate the
access to points of interest related to health (e.g. hospitals, clinics, pharmacies).
Through a map and GPS, the user can see, in the car, available POIs nearby
(sorted by various filters) and make the choice through voice recognition. The
application will suggest the best directions and, using a rating functionality, the
patient can post and access the feedback from other patients, ensuring quality
and community building, while helping to improve the service.

Based on the framework, MyHealth relies all the authentication and storage
stuff in the Baas Firabase. In order to add location awareness it uses the Loca-
tion API from Google Play Services. Finally, the integration with Facebook and
Twitter is ensured with the OpenSocial API. Figure 2 illustrates the integration
model of the automotive app:

Location and |
Firebase API Places API | OpensSocial API

v v .
Auth Location Social Media
Services Services Services

Fig. 2. MyHealth integration Model

Figure 3 illustrates the mockup of the app’s main view:

5 Conclusion

This paper presents Magni as a framework for the development of context-aware
mobile applications. Magni differs from current frameworks by its emphasis on



= MyHealth (o}

Hospitals
Hospital S. Joao i
near by 350 meters
Hospital da Prelada e
near by 1250 meters
=] do R

Fig. 3. Mockup on the main view of the MyHealth app



software design patterns and abstraction to different platforms. The architec-
tural model of Magni is based on the MVP pattern in the UI layer and the
remain components are accessed via REST services. This type of model will po-
tentiate the maintenance and testing of the app’s code. In order to validate the
framework, an instance of Magni was created for the healthcare domain. The
validation is still unfinished since only the mockups were created. Thus, the fu-
ture work will be, to finish the prototype. In addition, there are other projects,
in the tourism domain, that can be used to test and tune the framework.

References

1.

2.

G. H. Forman and J. Zahorjan: The challenges of mobile computing Computer 4,
38-47 (1994)

Lillian B. R. de Oliveira and Antonio A. F. Loureiro: CodeDroid: A Framework to
Develop Context-Aware Applications MOBILITY — The First International Con-
ference on Mobile Services, Resources, and Users (2011)

Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kielmann, and Henri Bal:
ContextDroid: An Expression-Based Context Framework for Android In PhoneSense
(2010)

Alf Inge Wang and Qadeer Khan Ahmad: IASTED — International Conf. on Software
Engineering and Applications (2010)

Tummala, H., Jones, J.: Developing Spatially-Aware Content Management Sys-
tems for Dynamic, Location-Specific Information in Mobile Environments 3rd ACM
international workshop on Wireless mobile applications and services on WLAN
hotspots, Mobility support and location awareness pp. 14-22, ACM, Cologne, Ger-
many (2005).

Lpez-de-Ipia, D., Vazquez, J.I., Abaitua, J.: A Context-aware Mobile Mash-up Plat-
form For Ubiquitous Web 3rd IET International Conference on Intelligent Environ-
ments pp. 116123, IEEE, Ulm, Germany (2007)

Challiol, C., Rossi, G., Gordillo, S., De Cristfolo, V.: Designing and Implementing
Physical Hypermedia applications ICCSA 2006, UWSI 2006 pp. 148-157, Springer
Berlin / Heidelberg (2006)

William Van Woensel, Sven Casteleyn and Olga De Troyer: SCOUT: A Framework
for Personalized ContextAware Mobile Applications ICWE 2009 Doctoral Consor-
tium (2009)

Williams, Elizabeth and Gray, Jeff: Contextion: A Framework for Developing
Context-aware Mobile Applications Proceedings of the 2Nd International Workshop
on Mobile Development Lifecycle 27-31 (2014)

10. Martin, Robert C.: Design Principles and Design Patterns (2000)
11. Adibi, Sasan, ed.: Mobile Health: A Technology Road Map Springer (2015)



