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Abstract
Rationale, aims and objectives Traditional complexity measures are used to capture the
amount of structured information present in a certain phenomenon. Several approaches
developed to facilitate the characterization of complexity have been described in the related
literature. Fetal heart rate (FHR) monitoring has been used and improved during the last
decades. The importance of these studies lies on an attempt to predict the fetus outcome,
but complexity measures are not yet established in clinical practice. In this study, we
have focused on two conceptually different measures: Shannon entropy, a probabilistic
approach, and Kolmogorov complexity, an algorithmic approach. The main aim of the
current investigation was to show that approximation to Kolmogorov complexity through
different compressors, although applied to a lesser extent, may be as useful as Shannon
entropy calculated by approximation through different entropies, which has been success-
fully applied to different scientific areas.
Methods To illustrate the applicability of both approaches, two entropy measures,
approximate and sample entropy, and two compressors, paq8l and bzip2, were considered.
These indices were applied to FHR tracings pertaining to a dataset composed of 48
delivered fetuses with umbilical artery blood (UAB) pH in the normal range (pH � 7.20),
10 delivered mildly acidemic fetuses and 10 moderate-to-severe acidemic fetuses. The
complexity indices were computed on the initial and final segments of the last hour of
labour, considering 5- and 10-minute segments.
Results In our sample set, both entropies and compressors were successfully utilized to
distinguish fetuses at risk of hypoxia from healthy ones. Fetuses with lower UAB pH
presented significantly lower entropy and compression indices, more markedly in the final
segments.
Conclusions The combination of these conceptually different measures appeared to
present an improved approach in the characterization of different pathophysiological states,
reinforcing the theory that entropies and compressors measure different complexity fea-
tures. In view of these findings, we recommend a combination of the two approaches.

Introduction
Researchers and clinicians recognize that many unsolved medical
problems, as the prediction of fetal outcome, are due to the appli-
cation of conventional mathematics methods to describe biological
complex systems [1]. More recently, a different approach based on
non-linear dynamics, chaos and complexity has been considered,

which recognizes irregularity, subjectivity and uncertainty as
intrinsic and fundamental [2].

Complexity is a property of every system that quantifies the
amount of structured information. Shannon demonstrated how the
information within a signal could be quantified with absolute pre-
cision [3] as the amount of unexpected data contained in the
message (designated ‘entropy’). Subsequently, the Kolmogorov
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complexity was proposed to quantify information on individual
objects as the size of its smallest representation [4]. The Shannon
information theory measures the average information from a
random source, unlike Kolmogorov complexity that presents a
form of absolute information [5].

Increasing use of entropy in medicine has accompanied theo-
retical improvements over the years. In 1991, Pincus suggested the
use of Approximate Entropy (ApEn) to classify complex systems
[6]. Following its application to quantify the creation of informa-
tion in a time series, ApEn has since been used in the analysis of
a wide range of signals, such as electroencephalography (EEG)
and electrocardiography (ECG). The sample entropy (SampEn)
concept appeared later in 2000 with the objective of reducing the
ApEn bias [7], and was subsequently employed in the analysis of
biomedical signals. In 2004, Ohmeda [8] developed an anaesthesia
EEG analyser with an entropy module that calculates the charac-
teristics of the biosignal with analysis of time-frequency balanced
spectral entropy. The index, based on EEG and electromyography
(EMG) activity (Entropy), is an indicator of the hypnotic effects of
propofol, thiopental, isoflurane, sevoflurane and desflurane [9]. In
2002, Costa et al. [10] proposed the multiscale entropy (MSE)
technique applicable in the analysis of physiologic time series.

Compression is a measure of system complexity, but has been
used to a lower extent in the analysis of biomedical signals. Many
types of compressors exist. Traditionally, the different available
compressors are divided in two classes, specifically, lossless and
lossy compressors. With lossless compression, every bit of data
originally in the file remains after the file is uncompressed,
whereas in lossy compression, the file is reduced by permanently
eliminating certain information, particularly redundant informa-
tion. The Lempel–Ziv is a compression algorithm introduced in
1977 [11], used as a measure of complexity in EEG and ECG.
Jean-Loup Gailly and Mark Adler subsequently developed gzip
[12], which is a combination of Lempel–Ziv and Huffman coding
[13]. Julian Seward developed bzip2 using the Burrows–Wheeler
block sorting text compression algorithm [14] and Huffman
coding. PAQ is a series of lossless data compressors that uses a
context-mixing algorithm. PAQ8L was released on 8 March 2007
by Matt Mahoney [15].

Cardiotocography is a technical means of recording the heart
rate of the fetus (FHR) and uterine contractions, and is widely used
for fetal monitoring during labour. The value of cardiotocography
lies in its ability to predict newborn outcomes. Timely prediction
of newborn outcome in the intrapartum period, that is, immedi-
ately before delivery, may lead to a decrease in perinatal mortality
and morbidity. The FHR is measured in beats per minute and an
external sensor attached on the mother’s abdomen acquires it.
FHR alterations are used to evaluate the fetal health condition and
allow the obstetrician to intervene to prevent potential compromise
and irreversible damage. However, studies have shown significant
differences in inter- and intra-observer in FHR analysis and inter-
pretation [16–18]. On the other hand, new signal processing and
pattern recognition techniques have paved the way towards auto-
mated approaches.

One of the most widely accepted measures of newborn outcome
is umbilical artery blood (UAB) pH, as it represents an active
measure of fetal oxygenation.Alow UAB pH indicates the presence
of acidemia occurring during labour and delivery, presenting higher
risk of perinatal death or neurological injuries from hypoxia [19].

In the particular case of fetal heart rate (FHR) tracings, several
entropy measures have been widely used to detect different
pathologies. ApEn and SampEn statistics are the most used
entropy metrics, followed more recently by MSE. Despite the
successful application of Lempel–Ziv and gzip compressors to
FHR tracings to detect pathologies, compressors have been used
only to a limited extent in the analysis of biological signals to date
[20,21].

In the current study, we aimed to show that compression can be
effectively applied as an alternative measure of complexity to the
widely used entropy in biological signals. An example of FHR
tracings was applied to demonstrate the utility of these non-linear
indices [22].

Methods
Complexity is a property of every system that quantifies the
amount of structured information. The quantification of informa-
tion within a signal may be achieved using entropy or compression
[7–9]. In this section, we briefly describe the entropy and com-
pression approaches and their related indices as well as the dataset
composed by FHR tracings used to evaluate the two approaches.

Entropy

In 1948, Shannon introduced the first approach for measuring
‘information’ [3]. This new measure, known as Entropy (Shannon
entropy), attempts to determine how random a message is expected
to be within a given distribution, and takes into account the
minimum number of bits to transmit a message from a random
source of known characteristics through an error-free channel
(Grunwald, P. D. & Vitanyi, P. M. B unpublished data).

Let X be a random variable, taking values in Y with distribution
P(X = x) = px. The Shannon entropy of the random variable X is
given by

H X p
p

x
xx

( ) =
∈
∑ log

1

Y

The logarithm is base 2, so that entropy is measured in bits and
lim log
x

x x
→

=
0

0 ; and thus, traditionally it is conventioned that

0log0 = 0.
With the goal of ‘quantification of the amount of regularity in

(heart rate) time-series data’, Pincus presented the ApEn statistic
in 1991 [6]. It can be estimated through the family of statistics
ApEn (N, m, r), given N points, and is approximately equal to the
negative average natural logarithm of the conditional probability
that two sequences similar for m points remain similar within
tolerance, r, at the next point. Accordingly, a low ApEn value is
associated with high degree of regularity.

SampEn was introduced in 2000 with the same objective as
ApEn by Richman and Moorman [7] to evaluate biological time
series, particularly heart rate. The authors highlighted two draw-
backs in ApEn properties, stating that ‘First, ApEn is heavily
dependent on the record length and uniformly lower than expected
for short records. Second, it lacks relative consistency. That is, if
ApEn of one dataset is higher than that of another, it should, but
does not remain higher for all conditions tested’ [7]. In order to
overcome these limitations, the group proposed a new family of
statistics, SampEn (m, r), which, among other differences, elimi-
nates self-matches.
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Regarding the necessary parameters to the evaluation of ApEn
and SampEn, Pincus and Goldberger [23] concluded that m = 2,
r values between 0.1 and 0.25 of the standard deviation and N
value of 10m, or preferably 30m, will yield statistically reliable
and reproducible results. In the particular case of FHR analysis,
segments of 5 or 10 minutes (i.e. 600 or 1200 points for 2 Hz
sampling) are adequate and can make a difference in sensi-
tivity and specificity [22], since in smaller segments some pat-
terns may not be detected, whereas in larger segments some
patterns may get lost.

Compression

In 1958 [24], Kolmogorov connected the dynamic systems theory
with information theory. Based on his work, Sinai [25] introduced
the Kolmogorov–Sinai entropy that generalizes the probabilistic
definition of entropy, allowing the use of entropy in time-series
data.

The ‘algorithm information theory’ was proposed years later
independently by Solomonoff in 1960/1964 [26,27], Kolmogorov
in 1965 [4] and Chaitin in 1969 [28], which considers the amount
of information in an object as the length of the smallest description
of the object. The Kolmogorov complexity attempts to answer how
‘random’ an individual object is in terms of the number of bits
necessary to describe it.

In [29] Kolmogorov claimed ‘The ordinary definition of entropy
uses probability concepts, and thus does not pertain to individual
values, but random values, i.e. probability distributions within a
given group of values’.

The Kolmogorov complexity of a finite object is defined as the
length of its shortest effective description (Grunwald, P. D. &
Vitanyi, P. M. B unpublished data). This measure is not comput-
able, but can be easily approximated using compressors. Good
results were obtained using this approach in different areas,
including languages tree, genomics, optical character recognition,
literature [30], music [31], computer virus and Internet traffic
analysis [32] and FHR anomaly detection [21]. In fact, Keogh [33]
showed that when clustering heterogeneous data and anomaly
detection in time sequences, the compression approach outper-
forms every known data-mining method.

In 1952, Huffman [13] developed an algorithm to use a short bit
stream for characters that appear more often. In 1977, Ziv and
Lempel introduced the Lempel–Ziv algorithm based on ‘the
concept of encoding future segments of the source output via
maximum-length copying from a buffer containing the recent past
output’ [11]. Recently, the Lempel–Ziv algorithm has been widely
used in the field of medicine. However, numerous compressors can
be used with the same purpose.

The main point of data compression is the encoding of infor-
mation using fewer bits than the original data. Gailly and Adler
created the first version of gzip [12], representing a combination of
Lempel–Ziv and Huffman coding. Seward developed bzip2 [14] in
1996, which was more effective than Lempel–Ziv and gzip, but
considerably slower. A similar compressor was successfully used
in 2006 to cluster FHR [21]. PAQ8 [15] represents a series of
lossless compressors with the world’s highest compression ratio.
PAQ8L, based on Dynamic Markov compression [34], was
released in 2007. We believe that these compressors can be suc-
cessfully used in the medical field as well.

Example of fetal heart rate

Most clinical decisions in the intrapartum period, in countries with
the best maternal and perinatal indicators, are strongly based on
FHR monitoring [16,18,19]. However, conventional visual analy-
sis of FHR recordings suffers from unacceptable intra- and inter-
observer variation [17–19]. To overcome this shortcoming,
computer systems for bedside analysis of FHR recordings have
been developed [35]. These systems have provided important
progresses in FHR monitoring, but there is still room for their
improvement, namely using methods for complexity analysis of
FHR variability [22,36], which remains one of the most challeng-
ing tasks in the analysis of FHR recordings [17,19,37].

In this study, we analysed 68 FHR intrapartum traces consecu-
tively selected from a pre-existing database of term singleton
gestations, with at least 60 minutes of tracing. Of the 68 cases,
48 delivered fetuses with UAB pH in the normal (N) range
(pH � 7.20), 10 delivered with UAB pH between 7.10 and 7.20,
mildly acidemic (MA) fetuses and 10 moderate-to-severe aci-
demic (MSA) fetuses with UAB pH � 7.10. All traces were
resampled at a frequency of 2 Hz after pre-processing, based on
an algorithm described in previous studies. A more detailed
description of the data and pre-processing algorithm is presented
in [22].

Results
The non-linear methods, entropy (ApEn and SampEn) and com-
pression (paq8l and bzip2), were calculated in the first and last 5
and 10 minutes of the tracings. The median and interquartile (IQ)
range, as well as the statistical significance of the non-parametric
Kruskal–Wallis test, are presented in Tables 1 and 2.

The mean running times for entropy (ApEn), paq8l compressor
and bzip2 compressor in 10-minute segments were 4.2, 0.9 and
0.006 seconds, while those in 5-minute segments were 1.2, 0.5 and
0.003 seconds, respectively.

Considering the outcome MSA and the last 5-minute segments,
entropy measures tend to have less discriminatory power (lower
areas under the ROC curve ranging from 0.584 to 0.705) than
compressors (areas under the ROC curve between 0.773 and
0.797). Considering the last 10-minute segments, entropy meas-
ures tend to have greater discriminatory power (higher areas under
the ROC curve ranging from 0.797 to 0.855) than compressors
(areas under the ROC curve between 0.676 and 0.699).

A comparison between the initial and final 5 minutes of FHR
tracings was performed for each complexity measure and each
group of fetuses (MSA, MA and N). The same procedure was
performed for comparison between the initial and final 10 minutes
of FHR tracings, and significance results of the non-parametric
Mann–Whitney test are presented in Table 3.

As expected, SampEn was highly correlated with ApEn, with
the correlation coefficient ranging between 0.928 and 0.955
(for similar values of r). Moreover, the two compressors were
highly correlated with a correlation coefficient of 0.888.
However, the correlation values between the considered com-
pression and entropy metrics were lower, ranging between 0.316
and 0.414.

Figure 1 depicts a non-linear relationship between entropy
(ApEn) and compression measures (paq8l). The correlation

T. Henriques et al. Measures of complexity

© 2013 John Wiley & Sons, Ltd. 1103



Table 1 Median, first quartile (Q1) and third quartile (Q3) of complexity measures of fetal heart rate tracings from moderate-to-severe acidemic
(MSA), mildly acidemic (MA) and normal (N) fetuses in the final 5-minute segments

MSA MA N

PMedian (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

Entropy
ApEn(2,0.1) 0.585 (0.525, 0.733) 0.738 (0.686, 0.774) 0.682 (0.555, 0.739) 0.207
ApEn(2,0.15) 0.496 (0.291, 0.738) 0.642 (0.561, 0.792) 0.607 (0.490, 0.702) 0.304
ApEn(2,0.2) 0.351 (0.251, 0.553) 0.582 (0.469, 0.795) 0.516 (0.420, 0.627) 0.044

SampEn(2,0.1) 0.476 (0.325, 0.658) 0.598 (0.540, 0.985) 0.541 (0.402, 0.615) 0.149
SampEn(2,0.15) 0.309 (0.172, 0.636) 0.459 (0.403, 0.632) 0.434 (0.320, 0.549) 0.338
SampEn(2,0.2) 0.231 (0.172, 0.307) 0.369 (0.308, 0.637) 0.341 (0.256, 0.404) 0.036

Compression
paq8l 234.0 (211.0, 279.0) 355.0 (306.0, 393.0) 335.0 (293.5, 372.5) 0.009

bzip2 283.5 (270.0, 382.0) 444.0 (404.0, 501.0) 426.5 (362.5, 488.0) 0.017

Further details on the complexity measures may be found in the Entropy and Compression sections. Boldfaced numerals correspond to P
values < 0.05.

Table 2 Median, first quartile (Q1) and third quartile (Q3) of complexity measures of fetal heart rate tracings from moderate-to-severe acidemic
(MSA), mildly acidemic (MA) and normal (N) fetuses in the final 10-minute segments

MSA MA N

Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) P

Entropy
ApEn(2,0.1) 0.533 (0.376, 0.611) 0.837 (0.727, 0.930) 0.751 (0.604, 0.877) 0.003

ApEn(2,0.15) 0.392 (0.298, 0.541) 0.687 (0.667, 0.907) 0.613 (0.506, 0.739) 0.002

ApEn(2,0.2) 0.328 (0.243, 0.403) 0.593 (0.553, 0.662) 0.516 (0.408, 0.613) 0.001

SampEn(2,0.1) 0.342 (0.234, 0.397) 0.682 (0.534, 0.815) 0.572 (0.375, 0.678) 0.009

SampEn(2,0.15) 0.215 (0.152, 0.316) 0.498 (0.425, 0.770) 0.422 (0.286, 0.522) 0.002

SampEn(2,0.2) 0.194 (0.114, 0.238) 0.398 (0.349, 0.489) 0.317 (0.226, 0.406) 0.002

Compression
paq8l 511.0 (452.0, 537.0) 648.5 (570.0, 692.0) 592.0 (515.5, 647.5) 0.019

bzip2 658.0 (616.0, 719.0) 814.0 (726.0, 850.0) 716.0 (667.5, 814.0) 0.032

Further details on the complexity measures may be found in the Entropy and Compression sections. Boldfaced numerals correspond to P
values < 0.05.

Table 3 Comparison of the complexity
measures computed in the initial and final
minutes of fetal heart rate tracings with
respect to moderate-to-severe acidemic
(MSA), mildly acidemic (MA) and normal (N)
fetuses

Initial versus final 5 minutes Initial versus final 10 minutes

MSA MA N MSA MA N

Entropy
ApEn(2,0.1) 0.074 0.028 <0.001 0.050 0.017 <0.001

ApEn(2,0.15) 0.386 0.203 <0.001 0.028 0.386 <0.001

ApEn(2,0.2) 0.285 0.386 <0.001 0.017 0.028 <0.001

SampEn(2,0.1) 0.059 0.114 <0.001 0.005 0.009 <0.001

SampEn(2,0.15) 0.285 0.169 <0.001 0.005 0.203 <0.001

SampEn(2,0.2) 0.203 0.203 <0.001 0.005 0.022 <0.001

Compression
paq8l 0.114 0.878 0.272 0.878 0.541 0.024

bzip2 0.575 0.333 0.001 0.241 0.139 <0.001

Values provided in the table correspond to P values of the Mann–Whitney test. Further details on the
complexity measures may be found in the Entropy and Compression sections. Boldfaced numerals
correspond to P values < 0.05.
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coefficient between ApEn (2,0.15) and paq8l for all cases was
0.414, and the same measure for the MSA, MA and N groups
were 0.648, 0.219 and 0.214, respectively. Similar results were
obtained with other possible combinations in the final 5- and
10-minute segments. Despite both being complexity measures,
the poorcorrelation between them shows that entropy and com-
pression are using algorithms that seek and emphasize different
characteristics and patterns of each time series. Therefore, the
combination of both measures may improve the classification of
a FHR tracing.

Conclusions
We have shown that entropy and compression measures allow for
the characterization of different pathophysiological conditions of
the fetus – distinguishing fetuses at risk of hypoxia from their
healthy counterparts and between different stages of labour –
through the analysis of the FHR signal.

The use of compression as a measure of complexity has rarely
been applied in the analysis of biological signals. However, we
have shown that compressors can be effectively used as an alter-
native to the widely used entropy measures to quantify complexity
in biological signals.

By using entropy and compression approaches, one can quantify
different features of a system complexity, as shown by the low/
moderate correlations between the entropy and compression meas-
ures. Accordingly, further research is required in order to study the
different complexity features captured by either entropy or com-
pression, as well as in exploring different combinations of the two
strategies.

The small computational time associated with both measures,
particularly the compressors, allows for considering their inclusion

in existing FHR monitoring systems. In this way, the information
on the fetus complexity obtained from the FHR signal may provide
important auxiliary information to clinicians, in the diagnostic of
the fetal state and help in consequent clinical decisions.
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