Data Stream Clustering: A Survey

JONATHAN A. SILVA, ELAINE R. FARIA, RODRIGO C. BARROS,
EDUARDO R. HRUSCHKA, and ANDRE C. P. L. F. DE CARVALHO
University of Sdo Paulo

and

JOAO P. GAMA

University of Porto

Data stream mining is an active research area that has recently emerged to discover knowledge
from large amounts of continuously generated data. In this context, several data stream cluster-
ing algorithms have been proposed to perform unsupervised learning. Nevertheless, data stream
clustering imposes several challenges to be addressed, such as dealing with non-stationary, un-
bounded data that arrive in an online fashion. The intrinsic nature of stream data requires the
development of algorithms capable of performing fast and incremental processing of data objects,
suitably addressing time and memory limitations. In this paper, we present a survey of data
stream clustering algorithms, providing a thorough discussion of the main design components of
state-of-the-art algorithms. In addition, this work addresses the temporal aspects involved in data
stream clustering, and presents an overview of the usually-employed experimental methodologies.
A number of references is provided that describe applications of data stream clustering in different
domains, such as network intrusion detection, sensor networks, and stock market analysis. Infor-
mation regarding software packages and data repositories are also available for helping researchers
and practitioners. Finally, some important issues and open questions that can be subject of future
research are discussed.

Categories and Subject Descriptors: 1.5.3 [Pattern Recognition]: Clustering—Algorithms
General Terms: Algorithms

Additional Key Words and Phrases: Data stream clustering, online clustering.

1. INTRODUCTION

Recent advances in both hardware and software have allowed large-scale data ac-
quisition. Nevertheless, dealing with massive amounts of data poses a challenge for
researchers and practitioners, due to the physical limitations of the current compu-
tational resources. For the last decade, we have seen an increasing interest in man-
aging these massive, unbounded sequences of data objects that are continuously
generated at rapid rates, the so-called data streams [Aggarwal 2007; Gama and
Gaber 2007; Gama 2010]. More formally, a data stream S is a massive sequence
of data objects x!,x2,....,x", i.e., § = {x*}}¥,, which is potentially unbounded

The authors would like to thank Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior
(CAPES), Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq), Fundagéo
de Amparo & Pesquisa do Estado de Sao Paulo (FAPESP), and Foundation for Science and
Technology (FCT) project KDUDS - Knowledge Discovery from Ubiquitous Data Streams (ref.
PTDC/EIA/098355/2008) for funding this research.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0004-5411/20YY /0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1-37.

2 . Jonathan A. Silva et al.

(N — o0). Each data object! is described by an n—dimensional attribute vector
x! = [xz];‘:l belonging to an attribute space (2 that can be continuous, categorical,
or mixed.

Applications of data streams include mining data generated by sensor networks,
meteorological analysis, stock market analysis, and computer network traffic mon-
itoring, just to name a few. These applications involve data sets that are far too
large to fit in main memory and are typically stored in a secondary storage device.
From this standpoint, and provided that random access is prohibitively expensive
[Guha et al. 2003], performing linear scans of the data is the only acceptable access
method in terms of computational efficiency.

Extracting potentially useful knowledge from data streams is a challenge per se.
Most data mining and knowledge discovery techniques assume that there is a fi-
nite amount of data generated by an unknown, stationary probability distribution,
which can be physically stored and analyzed in multiple steps by a batch-mode algo-
rithm. For data stream mining, however, the successful development of algorithms
has to take into account the following restrictions:

(1) Data objects arrive continuously;

(2) There is no control over the order in which the data objects should be pro-
cessed;

(3) The size of a stream is (potentially) unbounded;

(4) Data objects are discarded after they have been processed. In practice, one
can store part of the data for a given period of time, using a forgetting mech-
anism to discard them later;

(5) The unknown data generation process is possibly non-stationary, i.e., its prob-
ability distribution may change over time.

The development of effective algorithms for data streams is an effervescent re-
search issue. This paper is particularly focused on algorithms for clustering data
streams. Essentially, the clustering problem can be posed as determining a finite
set of categories (clusters) that appropriately describe a data set. The rationale
behind clustering algorithms is that objects within a cluster are more similar to
each other than they are to objects belonging to a different cluster [Fayyad et al.
1996; Arabie and Hubert 1999]. It is worth mentioning that batch-mode clustering
algorithms have been both studied and employed as data analysis tools for decades.
The literature on the subject is very large — e.g. see [Kogan 2007; Gan et al. 2007;
Xu and Wunsch 2009] — and out of the scope of this paper.

Clustering data streams requires a process able to continuously cluster objects
within memory and time restrictions [Gama 2010]. Bearing these restrictions in
mind, algorithms for clustering data streams should ideally fulfill the following re-
quirements [Babcock et al. 2002; Barbard 2002; Tasoulis et al. 2006; Bifet 2010]:
(i) provide timely results by performing fast and incremental processing of data
objects; (ii) rapidly adapt to changing dynamics of the data, which means algo-
rithms should detect when new clusters may appear, or others disappear; (iii) scale
to the number of objects that are continuously arriving; (iv) provide a model rep-
resentation that is not only compact, but that also does not grow with the number

n this paper we adhere to this most commonly used term, but note that the terms element,
example, instance, and sample are also used.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 3

of objects processed (notice that even a linear growth should not be tolerated);
(v) rapidly detect the presence of outliers and act accordingly; and (vi) deal with
different data types, e.g., XML trees, DNA sequences, GPS temporal and spatial
information. Although these requirements are only partially fulfilled in practice, it
is instructive to keep them in mind when designing algorithms for clustering data
streams.

The purpose of this paper is to survey state-of-the-art algorithms for clustering
data streams. Surveys on this subject have been previously published, such as
[Mahdiraji 2009; Kavitha and Punithavalli 2010; Khalilian and Mustapha 2010]. In
[Mahdiraji 2009], the authors present a very brief description of only five algorithms.
In [Kavitha and Punithavalli 2010], a short description of clustering algorithms for
time series data streams is presented. Lastly, in [Khalilian and Mustapha 2010], the
authors discussed some challenges and issues in data stream clustering. Differently
from previous papers, we offer an extensive review of the literature, as well as com-
prehensive discussions of the different design components of data stream clustering
algorithms. As an additional contribution of our work, we focus on relevant sub-
jects that have not been carefully considered in the literature, namely: i) providing
a taxonomy that allows the reader to identify every surveyed work with respect to
important aspects in data stream clustering; ii) analyzing the influence of the time
element in data stream clustering; iii) analyzing the experimental methodologies
usually employed in the literature; and iv) providing a number of references that
describe applications of data stream clustering in different domains, such as sensor
networks, stock market analysis, and grid computing.

The remainder of this paper is organized as follows. In Section 2, we describe
a taxonomy to properly classify the main data stream clustering algorithms. Sec-
tion 3 presents the components responsible for online management of data streams,
namely: data structures (Section 3.1), window models (Section 3.2), and outlier
detection mechanisms (Section 3.3). The offline component of data stream cluster-
ing algorithms is presented in Section 4. We provide the complexity analysis of the
main data stream clustering algorithms in Section 5. Relevant issues regarding the
temporal aspects of data stream clustering are addressed in Section 6. Afterwards,
in Section 7, we present an overview of the most usual experimental methodolo-
gies employed in the literature. In Section 8, we review practical issues in data
stream clustering, such as distinct real-world applications, publicly-available soft-
ware packages, and data set repositories. Finally, we indicate challenges to be faced
and promising future directions for the area in Section 9.

2. OVERVIEW OF DATA STREAM CLUSTERING

In this section, we provide a taxonomy that allows the reader to identify every
surveyed work with respect to important aspects in data stream clustering, namely:

(1) data structure for statistic summary;
(2) window model;

(3) outlier detection mechanism;

(4) number of user-defined parameters;
(5) offline clustering algorithm;

(6) cluster shape;

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 . Jonathan A. Silva et al.

Data Stream

Data Abstraction
Step

(online component)

Data Structure for
Statistic Summary,

time

Clustering
Step

(offline component)

Data Partition

Fig. 1. Object-based data stream clustering framework.

(7) type of clustering problem.

The application of clustering algorithms to data streams have been concerned
with either object-based clustering or attribute-based clustering, with the former
being far more common.

Object-based data stream clustering algorithms can be summarized into two
main steps [Cao et al. 2006; Aggarwal et al. 2004a; Yang and Zhou 2006; Zhou
et al. 2008], namely: data abstraction step (also known as online component) and
clustering step (also known as offline component), as illustrated in Figure 1. The
online abstraction step summarizes the data stream with the help of particular data
structures for dealing with space and memory constraints of stream applications.
These data structures summarize the stream in order to preserve the meaning of the
original objects without the need of actually storing them. Among the commonly-
employed data structures, we highlight the feature vectors, prototype arrays, coreset
trees, and data grids (details in Section 3.1).

For summarizing the continuously-arriving stream data and, at the same time,
for giving greater importance to up-to-date objects, a popular approach in object-
based data stream clustering consists of defining a time window that covers the
most recent data. Among the distinct window models that have been used in the
literature, we highlight the landmark model, sliding-window model, and damped
model — all covered in Section 3.2.

Still regarding the data abstraction step, data stream clustering algorithms should
ideally employ outlier detection mechanisms that are able to distinguish between
actual outliers and cluster evolution, considering that the data stream distribution
may vary over time. Outlier detection mechanisms can be divided in statistical-
based approaches and density-based approaches, both covered at Section 3.3.

After performing the data abstraction step, data stream clustering algorithms
obtain a data partition via an offline clustering step (offline component). The offline
component is utilized together with a wide variety of inputs (e.g., time horizon,
and number of clusters) to provide a quick understanding of the broad clusters in
the data stream. Since this component requires the summary statistics as input,

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey . 5

Multiple Streams

Statistic Summaries

)
IR T T T L 3 steam

. > Manager —» Stream partition

Fig. 2. Attribute-based data stream clustering framework.

it turns out to be very efficient in practice [Aggarwal et al. 2003]. Based on this
assumption, traditional clustering algorithms (like DBSCAN [Ester et al. 1996] and
k-means [MacQueen 1967; Lloyd 1982]) can be used to find a data partition over
the summaries, whose size is relatively small compared to the entire data stream.
Note that the cluster shape will be directly related to the clustering algorithm
being employed. For instance, k-means generates hyper-spherical clusters, whereas
DBSCAN allows the discovery of arbitrarily-shaped clusters. We present the offline
clustering step in Section 4.

Even though most data stream clustering algorithms aim at performing object
clustering, there are works that perform attribute clustering (also known as variable
clustering). Attribute clustering is usually considered a batch offline procedure, in
which the common strategy is to employ a traditional clustering algorithm over the
transposed data matrix. However, for online processing of data streams, it is not
possible to transpose the (possibly infinite) data matrix. Clearly, there is the need
of developing attribute clustering algorithms for data streams, whose objective is
to find groups of attributes (e.g., data sources like sensors) that behave similarly
through time, under the constraints assumed in a data stream scenario. Examples
of algorithms that perform attribute clustering are Online Divisive-Agglomerative
Clustering (ODAC') [Rodrigues et al. 2006; 2008] and DGClust [Gama et al. 2011].
Figure 2 depicts the general scheme of data stream attribute clustering, in which
we have one data stream per attribute and a manager that processes data from the
distinct streams. Considering that each attribute constitutes a different stream,
attribute clustering may benefit from parallel and distributed systems, which is
precisely the case of DGClust [Gama et al. 2011].

Table I classifies the 13 most relevant data stream clustering algorithms to date
according to the dimensions defined by our taxonomy. They are:

BIRCH [Zhang et al. 1997];

CluStream [Aggarwal et al. 2003];

ClusTree [Kranen et al. 2011];

D-Stream [Chen and Tu 2007];

DenStream [Cao et al. 2006];

DGClust [Gama et al. 2011];

ODAC [Rodrigues et al. 2006; 2008];
Scalable k-means [Bradley et al. 1998];
Single-pass k-means [Farnstrom et al. 2000];
Stream [Guha et al. 2000];

—~
N =
~—

[

S O 00 OOk W
NN AN A AN NN

—~

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 . Jonathan A. Silva et al.

Table I. Analysis of 13 data stream clustering algorithms.

Algorithm Data Window Outlier Number of
Structure Models Detection Parameters
(1) BIRCH feature vector landmark density-based 5
(2) CluStream feature vector landmark statistical-based 9
(3) ClusTree feature vector damped 3
(4) D-Stream grid damped density-based 5
(5) DenStream feature vector damped density-based 4
(6) DGClus grid landmark — 5
(7) ODAC correlation matrix landmark — 3
(8) Scalable k-means feature vector landmark — 5
(9) Single-pass k-means feature vector landmark — 2
(10) Stream prototype array landmark — 3
(11) Stream LSearch prototype array landmark — 2
(12) StreamKM++ coreset tree landmark — 3
(13) SWClustering prototype array landmark — 5
Algorithm Cluster Cluster Cluster
Algorithm Shape Problem
(1) BIRCH k-means hyper-sphere object
(2) CluStream k-means hyper-sphere object
(3) ClusTree k-means/DBSCAN arbitrary object
(4) D-Stream DBSCAN arbitrary object
(5) DenStream DBSCAN arbitrary object
(6) DGClust k-means hyper-sphere attribute
(7) ODAC hierarchical clustering hyper-ellipsis attribute
(8) Scalable k-means k-means hyper-sphere object
(9) Single-pass k-means k-means hyper-sphere object
(10) Stream k-median hyper-sphere object
(11) Stream LSearch k-median hyper-sphere object
(12) StreamKM++ k-means hyper-sphere object
(13) SWClustering k-means hyper-sphere object

(11) Stream LSearch [O’Callaghan et al. 2002];
(12) StreamKM++ [Ackermann et al. 2012];
(13) SWClustering [Zhou et al. 2008].

Note that parameters related to distance measures and to the offline
phase of data stream clustering algorithms were not included in Table 1.
A deeper discussion about the parameters of each clustering algorithm
is presented in the next sections.

We notice that most data stream clustering algorithms neglect an important
aspect of data stream mining: change detection. It is well-known that the data
generation of several stream applications is guided by non-stationary distributions.
This phenomenon, also known as concept drift, means that the concept about which
data is obtained may shift from time to time, each time after some minimum per-
manence. The current strategy of most data stream clustering algorithms is to
implicitly deal with non-stationary distributions through window models. An ex-
ception is ODAC [Rodrigues et al. 2006; 2008], which explicitly provides change
detection mechanisms. A discussion on temporal aspects is presented in Section 6.

3. DATA ABSTRACTION STEP

As we have previously seen, most data stream clustering algorithms summarize the
data in an abstraction step. In this section, we detail important aspects involved in
data abstraction: (i) data structures; (ii) window models; and (iii) outlier detection
mechanisms.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 7

3.1 Data Structures

Developing suitable data structures for storing statistic summaries of data streams
is a crucial step for any data stream clustering algorithm, specially due to space-
constraints assumptions made in data stream applications. Considering that the
entire stream cannot be stored in the main memory, special data structures must
be employed for incrementally summarizing the stream. In this section, we present
four data structures commonly employed in data abstraction step: (i) feature vector;
(ii) prototype array; (iii) coreset trees; and (iv) grids.

3.1.1 Feature Vector. The use of a feature vector for summarizing large amounts
of data was first introduced in the BIRCH algorithm [Zhang et al. 1996]. This
vector, named CF, from Clustering Feature vector, has three components: N, the
number of data objects, LS, the linear sum of the data objects, and S.S, the sum
of squared the data objects. The structures LS and SS are n-dimensional arrays.
These three components allow to compute cluster measures, such as cluster mean
(Equation (1)), radius (Equation (2)), and diameter (Equation (3)).

LS
id = — 1
centroid N (1)

radius - (*jf - (65)) ®)

‘ 2N % 5SS — 2% LS?
diameter = \/< NN—1) > (3)

The CF vector presents important incrementality and additivity properties, as
described next:
(1) Incrementality: A new object x/ can be easily inserted into vector CF by
updating its statistic summaries as follows:
LS + LS +xJ
SS + SS + (x7)?
N+ N+1
(2) Additivity: Two disjoint vectors CF; and CFy can be easily merged into
CF3 by summing up their components:
N3 = Nj + N,
LSy = LS + LS,
S83 =551 + 555
The other data structure employed in BIRCH is a height-balanced tree, named
CF tree, where each non-leaf node contains at most B entries, having each a CF
vector and a pointer to a child-node. Similarly, every leaf node contains at most L
entries, where each entry is a CF vector. Figure 3 depicts the CF tree structure,
where every non-leaf node represents a cluster consisting of sub-clusters (its entries).
In the initial phase of BIRCH, the data set is incrementally scanned to build a CF
tree in-memory. Each leaf node has a maximum diameter (or radius) represented

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 . Jonathan A. Silva et al.

Root Node
B
 —
CFi1| ... |CF8
Inner Node / \
B
—
CF1| ... |CFs e
Leaf Node J Leaf Node
CFk1 CF1
CF2 s aan o |CR2
crs | |1 crs | | L
CFL CFL

Fig. 3. CF tree structure.

by a user-defined parameter, T'. The value of this parameter defines whether a new
data object may be absorbed by a CF vector. Thus, T determines the size of the
tree, where higher values of T lead to smaller trees.

When a new object arrives, it descends the CF tree from the root to the leaves by
choosing in each non-leaf node its closest CF entry (closeness is defined by the
Euclidean distance between new objects and the centroids of CF entries
in non-leaf nodes). In a leaf node, the closest entry is selected and tested to verify
whether it can absorb the new object. If so, the CF vector is updated, otherwise
a new CF entry is created — at this point it only contains this particular object.
If there is no space for a new CF entry in the leaf node (i.e., there are already L
entries within that leaf), the leaf is split into two leaves and the farthest pair of CF
entries is used as seed to the new leaves. Afterwards, it is necessary to update each
non-leaf node entry in the path until the root. Updating a tree path is a necessary
step for every new insertion made in the CF tree. When the value of T is so low
that the tree does not fit in memory, BIRCH makes use of different heuristics to
increase the value of T so that a new CF tree that fits in memory can be built.

The CF vector from BIRCH has been employed by different algorithms. Scalable
k-means [Bradley et al. 1998], for instance, employs a CF vector structure to enable
the application of the k-means algorithm in very large data sets. The basic idea is
that the objects in the data set are not equally important to the clustering process.
From this observation, Scalable k-means employs different mechanisms to identify
objects that need to be retained in memory. Through the CF vectors, it discards
objects that were previously statistically summarized. Scalable k-means stores new
data objects in a block (buffer) in the main memory. The block size is a user-defined
parameter. When the block is full, an extended version of k-means is executed

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 9

over the stored data. The clustering algorithm used is an extension of the k-means
algorithm, named Fxtended k-means, which can cluster both single data objects and
sufficient statistics of summarized data. Based on the first generated partition, two
compression phases are applied to the data objects that are continuously arriving
and stored in the buffer.

In the primary compression phase, data objects that are unlikely to change their
membership to a cluster in future iterations are discarded. To detect these objects,
two strategies are employed, namely: PDC1 and PDC2. PDCI finds the p% ob-
jects that are within the Mahalanobis radius [Bradley et al. 1998] of a cluster and
compresses them — p is an input parameter. Only sufficient statistics are stored
for these objects and, after computed, they are discarded. Next, PDC2 is applied
to the objects that were not compressed by PDC1 (those outside the radius of its
closest cluster). Therefore, for every remaining object x/, PDC2 finds its closest
centroid according to the Mahalanobis distance [Maesschalck et al. 2000], say the
centroid of cluster C;; afterwards, the centroid of C; is perturbed and moved the
farthest away from x? (within a pre-calculated confidence interval). In addition,
the centroid of the second-closest cluster to x7 is moved to be as close as possible
(within a confidence interval) to it. If x7 still lies within the radius of cluster C;, the
sufficient statistics of x7 are stored in the corresponding CF vector, and the object
is discarded. Otherwise, x/ is kept to be processed by the secondary compression
phase. Note that PDC2 is actually creating a “worst case scenario” by perturbing
the cluster means within computed confidence intervals.

The secondary compression phase is applied to those objects that were not dis-
carded in the primary compression. The objective of this phase is to release space
in memory to store new objects. The objects that were not discarded are clustered
by k-means into a user-defined number of clusters, ko. Each one of the ko clusters is
evaluated according to a compactness criterion that verifies whether the variance of
a cluster is below a threshold 8 (input parameter). The statistical summary (CF
vector) of the clusters that meet this criterion are stored in the buffer, together
with the CF vectors obtained from the primary compression. The CF vectors of
those clusters that do not attend to the compactness criterion may be permanently
discarded [Bradley et al. 1998].

Farnstrom et al. [2000] present a simplification of Scalable k-means, named Single-
pass k-means. In an attempt to improve computational efficiency, their work does
not employ the compression steps of Scalable k-means. Instead, in each iteration of
the algorithm, all objects in the buffer are discarded after the summary statistics
are computed, and only the summary statistics of the k-means clusters are kept in
the buffer.

The CF vector concept was extended and named micro-cluster in the CluStream
algorithm [Aggarwal et al. 2003]. Each micro-cluster has five components. Three of
them (N, LS, and S5) are the regular components of a CF vector. The additional
components are the sum of the timestamps (LST) and the sum of the squares
of the timestamps (SST). The online phase stores ¢ micro-clusters in memory,
where ¢ is an input parameter. Figure 4 shows the CluStream structure. Each
micro-cluster has a maximum boundary, which is computed as the standard de-
viation of the mean distance of the cluster objects to their centroids multiplied

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 . Jonathan A. Silva et al.

micro1 |micro2 | micros microq

L

|

N2
LS2
SS2

LST2
SST2

Fig. 4. Micro-cluster structure used in the CluStream algorithm [Aggarwal et al. 2003].

by a factor f. For each new object, the closest micro-cluster (according
to the Euclidean distance) is selected to absorb it. For deciding whether
a cluster should absorb a new object or not, it is verified if the distance between
the new object and the closest centroid falls within the maximum boundary. If so,
the object is absorbed by the cluster and its summary statistics are updated. If
none of the micro-clusters can absorb the object, a new micro-cluster is created.
This is accomplished by either deleting the oldest micro-cluster or by merging two
micro-clusters. The oldest micro-cluster is deleted if its timestamp exceeds a given
threshold § (input parameter). Thus, the CluStream algorithm finds the arrival
time (known as the relevance time) of the m/(2N;)*" percentil of the N; objects in
a micro-cluster ¢, whose timestamps are assumed to be normally distributed. When
the relevance time of a given micro-cluster is below a user-specified threshold, the
micro-cluster is deemed to be an outlier and therefore removed.Otherwise, the
two closest micro-clusters are merged, using the additivity property of
the CF vectors, which takes O(¢?) time. The ¢ micro-clusters are stored in
a secondary storage device from time to time, ¢.e., in time intervals that
decrease exponentially — !, where o and [are user-defined parameters
— the so-called snapshots. These snapshots allows the user to search for
clusters in different time horizons, h, through a pyramidal time window
concept [Aggarwal et al. 2003].

Similar to CluStream, the authors in [Zhou et al. 2008] propose the
SWClustering algorithm, which uses a Temporal CF vector (TCF). TCF
holds the three components of the original CF-Vector, plus the times-
tamp ¢ of its most recent object. SWClustering also proposes a new
data structure called EHCF (Exponential Histogram of Cluster Feature),
which is defined as a collection of TCFs. Each EHCF is distributed in
levels that contain at most % 4+ 1 TCFs, where 0 < € < 1 is a user-defined
parameter. The number of objects in a given T'CF; is the same or twice
as much of the number of objects in TCF}, for ¢ > j. Initially, the first
TCF contains only one object. The center of EHCF is computed as
the mean of the LS of all TCFs from an EHCF. When a new object
x arrives, the nearest EHCF § is selected (according to the Euclidean

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 11

distance between the object and the center of EHCF). If h can absorb
X, t.e., dist(z,h) < Rx* (3, where R is the radius of h and f is a threshold
radius (8 > 0), then x is inserted in h. Else, a new EHCF is created.
However, it is necessary to check if the maximum number of allowed
EHCFs is reached. If so, the two nearest EHCF are merged. Then, the
expired records of the EHCF are deleted, leaving only the most recent
N timestamps.

DenStream [Cao et al. 2006] is a density-based data stream clustering algorithm
that also uses a feature vector based on BIRCH. In its online phase, two structures
— p-micro-clusters (potential clusters) and o-micro-clusters (a buffer for aiding
outlier detection) — are provided to hold all the information needed for clustering
the data. Each p-micro-cluster structure has an associated weight w that indi-
cates its importance based on temporality (micro-clusters with no recent objects
tend to lose importance, i.e. their respective weights continuously decrease over
time in outdated p-micro-clusters). The weight of the micro-cluster, w, at time
T is computed according to Equation (4), where ¢!, ...,#/ are the timestamps, and
the importance of each object decreases according to the fading function in Equa-
tion (5), parameterized with)\, a user-defined parameter.

w = Z f(T_tj)v (4)

jEp-micro-cluster

fey=2"" ()

Two other statistics are stored for each p-micro-cluster: the weighted linear sum
of objects (WLS) and the weighted sum of squared of objects (WWSS), computed
according to Equations (6) and (7), respectively. From these equations, it is possible
to compute the radius r of each p-micro-cluster (Equation (8)) as well as its mean.

WLS = > F(T —t7)x? (6)
JjEp-micro-cluster
WSS = 3> F(T —t9)x7” (7)

jEp-micro-cluster

. Z”: (WiSj - (WiSJ‘)2> @®

Jj=1

Each o-micro-clusters structure is defined in a similar way. The timestamp of
creation for each o-micro-cluster, Ty,;, is also stored.

When a new object x/ arrives, the algorithm tries to insert it into its nearest
p-micro-cluster by updating the cluster summary statistics. The insertion will be
successful if its updated radius is within a pre-defined boundary e (input param-
eter). Otherwise, the algorithm tries to insert x7 into its closest o-micro-cluster
by updating its summary statistics. In this case, the insertion is successful if its
updated radius is within €. Moreover, if the updated o-micro-cluster weight ex-
ceeds B X p, this o-micro-cluster has grown into a potential p-micro-cluster. Both

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 . Jonathan A. Silva et al.

£ and p are input parameters. § controls the threshold level, whereas u
is the integer weight of a given p-micro-cluster. If x/ was not absorbed by
its closest o-micro-cluster, then a new o-micro-cluster is created to absorb x7.

At delimited time periods T, (given by Equation(9)), the set of p-micro-clusters
is checked to verify whether a p-micro-cluster should become an o-micro-cluster.
Similarly, o-micro-clusters may become p-micro-clusters after the analysis of their
corresponding weights. If the parameter values of A, 5 and pu suggested
by the authors [Cao et al. 2006] are employed, this clean-up task is
performed quite often, i.e., T}, < 4, leading to a high computational cost.

1
1, = los(5 Q
Similar to Denstream, the ClusTree algorithm [Kranen et al. 2011] also
proposes to use a weighted CF-vector, which is kept into a hierarchical
tree (R-tree family). Two parameters are used to build this tree: the
number of entries in a leaf node and the number of entries in non-leaf
nodes. ClusTree provides strategies for dealing with time constraints
for anytime clustering, i.e., the possibility of interrupting the process
of inserting new objects in the tree at any moment. This algorithm
makes no apriort assumption on the size of the clustering model, since
its aggregate and split operations adjust the size of the model automat-
ically. The objects that were not inserted due to an interruption are
temporarily stored in the buffer of the immediate sub-tree entry. When
the sub-tree is accessed again, these objects are taken along as a “hitch-
hiker”, and the operation of object insertion in a leaf node continues.
ClusTree can also adapt itself to fast and slow streams. In fast streams,
ClusTree aggregates similar objects in order to do a faster insertion in
the tree. In slow streams, the idle time is used to improve the quality
of the clustering.

3.1.2 Prototype Array. Some data stream clustering algorithms use a simplified
summarization structure, hereby named prototype array [Domingos and Hulten
2001; Shah et al. 2005]. It is an array of prototypes (e.g., medoids or centroids)
that summarizes the data partition.

For instance, Stream [Guha et al. 2000] employs an array of prototypes for sum-
marizing the stream by dividing the data stream into chunks of size m = N¢,
0 < € < 1. Each chunk of m objects is summarized in 2k representative objects by
using a variant of the k-medoids algorithm [Kaufman and Rousseeuw 1990] known
as Facility Location [Charikar and Guha 1999; Meyerson 2001]. The process of
compressing the description of the data objects is repeated until an array of m pro-
totypes is obtained. Next, these m prototypes are further compressed (clustered)
into 2k prototypes and the process continues along the stream (see Figure 5).

Stream LSearch [O’Callaghan et al. 2002] uses a similar summarizing structure.
This algorithm assumes that the objects arrive in chunks X7, Xs, ..., Xz, where each
chunk X; (i € [1,Z]) can be clustered in the memory, thus producing k clusters.
At the i'" chunk of the stream, the algorithm retains O(i x k) medoids. However,
as Z — 00, it is not possible to keep the O(i x k) medoids in memory. Therefore,

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 13

e

Fig. 5. Overview of Stream [Guha et al. 2000], which makes use of a prototype array.

when the main memory is full, Stream LSearch clusters the O(i x k) medoids and
keeps in memory only the k£ medoids obtained by this process.

3.1.3 Coreset Tree. A significantly different summary data structure for data
stream clustering is the coreset tree employed in Stream KM ++ [Ackermann et al.
2012]. This structure is a binary tree in which each tree node i contains the following
components: a set of objects, F;; a prototype of E;, xP; the number of objects in
E;, N;; and the sum of squared distances of the objects in E; to xP*, SSE;. E;
only has to be stored in the leaf nodes of the coreset tree, because the objects of
an inner node are implicitly defined as the union of the objects of its child nodes.

The coreset tree structure is responsible for reducing 2m objects to m objects.
The construction of this structure is defined as follows. First, the tree has only
the root node v, which contains all the 2m objects in F,. The prototype of the
root node x?v is chosen randomly from E, and N, = |E,| = 2m. The computation
of SSE, follows from the definition of xPv. Afterwards, two child nodes for v are
created, namely: v; and va. To create these nodes, it is necessary to choose an
object from FE, with probability proportional to %’W,vxﬁv € FE,, i.e., the
object that is farthest away from xP» has the highest proubability of being selected.
We call the selected object x%. The next step is to distribute the objects in E,, to
E,, and E,,, such that:

E,,={x" € E,|Dist(x",xP") < Dist(x",x%)} (10)
E,,=E\FE,,. (11)

Later, the summary statistics of child node v, are updated, i.e., xP1 = xPv,
N,, =|E,,| and SSE,, follows from the definition of xP»:. Similary, the summary
statistics of child node vy are updated, but note that xPv2 = x9%. This is the
expansion step of the tree, which creates two child nodes for a given inner node.
When the tree has many leaf nodes, one has to decide which one should be expanded
first. For such, it is necessary to start from the root node of the coreset tree and
descend it by iteratively selecting a child node with probability proportional to

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 . Jonathan A. Silva et al.

SSEchild
SSEparent
coreset tree expansion stops when the number of leaf nodes is m.

StreamKM++ [Ackermann et al. 2012] is a two-step algorithm, i.e., merge-and-
reduce. The reduce step is performed by the coreset tree, considering that it
reduces 2m objects to m objects. The merge step is performed by another data
structure, namely the bucket set, which is a set of L buckets (also named buffers),
where L is an input parameter. Each bucket can store m objects. When a new
object arrives, it is stored in the first bucket. If the first bucket is full, all of its
data are moved to the second bucket. If the second bucket is full, a merge step is
computed, i.e., the m objects in the first bucket are merged with the m objects
in the second bucket, resulting in 2m objects, which, by their turn, are reduced
by the construction of a coreset tree, as previously detailed. The resulting m
objects are stored in the third bucket, unless it is also full, and then again a new
merge-and-reduce step is needed. This procedure is illustrated by the pseudo-code
in Figure 6.

, until a leaf node is reached for the expansion step to be re-started. The

Input: New object x7, bucket set B = UiL:1 B;, size m.
Output: Updated bucket set B.

1: Bg «+ BoU{Xj}

2: if |Bo| > m then

3: create temporary bucket Q.

4 Q +— Bo

5: Bo < @

6: 141

7: while B; # () do
8: Q < coreset Reduction(B; U Q)
9: Bl‘ < 0

10: i1+ 1

11: end while

12: B; +— Q

13: Q<+ 0

14: end if

Fig. 6. Pseudo-code for the insertion of a new object into the bucket set [Ackermann et al.
2012]. Function coresetReduction(AU B) (line 8) receives 2m objects and returns m summarized
objects.

3.1.4 Grids. Some data stream clustering algorithms perform data summariza-
tion through grids [Cao et al. 2006; Park and Lee 2007; Chen and Tu 2007; Gama
et al. 2011], 7.e., by partitioning the n-dimensional feature space into density grid
cells. For instance, D-Stream [Chen and Tu 2007] maps each data stream object into
a density grid cells. Each object at time ¢ is associated to a density coefficient that
decreases over time, as shown in Equation (12), where A € (0,1) is a decay factor.
The density of a grid cell g at time ¢, D(g,t), is given by the sum of the adjusted
densities of each object that is mapped to g at or before time t (E(g,t)), as shown in
Equation (13). Each grid cell is represented by a tuple < t4,t,,, D, label, status >,
where t, is the last time the grid cell was updated, t,, is the last time the grid cell
was removed from the hash table that holds the valid grid cells, D is the grid cell

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 15

density at its last update, label is the class-label of the grid cell and status indicates
whether the grid cell is NORMAL or SPORADIC; as will be explained later.

D(x7,t) = At (12)

D(gat) = Z D(xat) (13)

z€E(g,t)

The grid cells maintenance is performed during the online phase. A grid cell
can become sparse if it does not receive new objects for a long time. In contrast,
a sparse grid cell can become dense if it receives new objects. At fixed intervals
of time (dynamic parameter gap), the grid cells are inspected with regard to their
status. Considering that the number of grid cells may be large, specially in high-
dimensional streams, only the grid cells that are not empty are stored. Additionally,
grid cells with few objects are treated as outliers (status = SPORADIC). Sporadic
grid cells are periodically removed from the list of valid grid cells. Also, during
the online phase, when a new n-dimensional object arrives, it is mapped into its
corresponding grid cell ¢g. If ¢ is not in the list of valid grid cells (structured as a
hash table), it is inserted in it and its corresponding summary is updated.

DGClust [Rodrigues et al. 2008; Gama et al. 2011] is an algorithm for distributed
clustering of sensor data that also employs grid cells for summarizing the stream.
It receives data from different sensors — where each sensor produces a univariate
data stream. The data are processed locally in each sensor and when there is an
update in a local grid cell (state change), this is communicated to the central site.
The local site communicates the local state change by sending the number of the
grid cell that was updated. The global state is a combination of the local states
(grid cells) of each sensor. Each local site i keeps two layers of discretization with
p; and w; bins, respectively, where k < w; < p;. The discretization algorithm used
for generating the bins for each layer is Partition Incremental Discretization (PID)
[Gama and Pinto 2006], which assumes grid cells of equal width. Each time a new
value z! is read, the counter of the corresponding bin is incremented in both the
first and second layers. The number of bins in the first layer may change, given
that the following condition is met: if the value of the counter associated to a bin
in the first layer is larger than a user-defined threshold, «, the bin is split into
two. The second layer discretizes the p; bins into w; bins, i.e., it summarizes the
information of the first layer in a higher granularity. The object counter of a bin
in the second layer is incremented when the corresponding bin in the first layer is
incremented. Next, a communication with the central site is performed to send the
update information, so that the global state is updated at each timestamp. If there
was a split, all bins of the second layer are sent to the central site, otherwise only
the updated bin is sent to the central site.

3.2 Window Models

In most data stream scenarios, more recent information from the stream can reflect
the emerging of new trends or changes on the data distribution. This information
can be used to explain the evolution of the process under observation. Systems

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 . Jonathan A. Silva et al.

that give equal importance to outdated and recent data do not capture the evolving
characteristics of stream data [Chen and Tu 2007]. The so-called moving window
techniques have been proposed to partially address this problem [Barbard 2002;
Babcock et al. 2003; Gama 2010]. There are three commonly-studied models in
data streams [Zhu and Shasha 2002]: i) sliding windows; ii) damped windows; and
iii) landmark windows.

3.2.1 Sliding Window Model. In the sliding window model, only the most recent
information from the data stream are stored in a data structure whose size can be
variable or fixed. This data structure is usually a first in, first out (FIFO) structure,
which considers the objects from the current period of time up to a certain period in
the past. The organization and manipulation of objects are based on the principles
of queue processing, where the first object added to the queue will be the first one
to be removed. In Figure 7, we present an example of the sliding window model.

Hm 0000000000000
tN00000000000 0
200000000000 0

Window length

Fig. 7. Sliding window model.

Several data stream clustering algorithms find clusters based on the sliding win-
dow model, e.g. [Babcock et al. 2003; Zhou et al. 2008; Ren and Ma 2009]. In
summary, these algorithms only update the statistic summaries of the objects in-
serted into the window. The size of the window is set according to the available
computational resources.

3.2.2 Damped Window Model. Differently from sliding windows, the damped
window model, also referred to as time-fading model, considers the most recent
information by associating weights to objects from the data stream [Jiang and
Gruenwald 2006]. More recent objects receive higher weight than older objects,
and the weight of the objects decrease with time. An illustrative example of the
damped window model is presented in Figure 8, in which the weight of the objects
exponentially decays from black (most recent) to white (expired).

(w)

Fig. 8. Damped window model.

This model is usually adopted in density-based clustering algorithms [Cao et al.
2006; Chen and Tu 2007; Isaksson et al. 2012]. These algorithms usually assume

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 17

an exponential decay function to weight the objects from the stream. In [Cao et al.
2006], e.g., the adopted decay function follows the exponential function given by
Equation (5), where the A > 0 parameter determines the decay rate and ¢ is the
current time. The higher the value of A, the lower the importance of the past
data regarding the most recent data. The D-Stream algorithm [Chen and Tu 2007]
assigns a density coefficient for each element that arrives from the stream, whose
value decreases with the object’s age. This density coefficient is given by Af~te,
where t. is the instant in time that the object arrived from the stream.

3.2.3 Landmark Window Model. Processing a stream based on landmark win-
dows requires handling disjoint portions of the streams (chunks), which are sepa-
rated by landmarks (relevant objects). Landmarks can be defined either in terms of
time, (e.g., on daily or weekly basis) or in terms of the number of elements observed
since the previous landmark [Metwally et al. 2005]. All objects that arrived after
the landmark are kept or summarized into a window of recent data. When a new
landmark is reached, all objects kept into the window are removed and the new
objects from the current landmark are kept in the window until a new landmark is
reached. Figure 9 illustrates an example of landmark window.

H 0000000000000
000000000000
200000000000 0

Landmark at time (t-13)

Fig. 9. Landmark window for a time interval of size 13.

Data stream clustering algorithms that are based on the landmark window model
include [O’Callaghan et al. 2002; Bradley et al. 1998; Farnstrom et al. 2000; Ack-
ermann et al. 2012; Aggarwal et al. 2003]. In [O’Callaghan et al. 2002], e.g., the
Stream algorithm adopts a divide-and-conquer strategy based on a landmark win-
dow whose landmark is defined at every m number of objects. Note that, in this
kind of window model, the relationship between objects from neighboring windows
is not considered.

The problem in using any fixed-length window scheme is in finding out the ideal
window size to be employed. A small window guarantees that the data stream
algorithm will be able to rapidly capture eventual concept drifts. At the same time,
in stable phases along the stream, it may affect the performance of the learning
algorithm. On the other hand, a large window is desirable in stable phases, though
it may not respond rapidly to concept drifts [Gama et al. 2004].

3.3 Outlier Detection Mechanisms

Besides the requirements of being incremental and fast, data stream clustering
algorithms should also be able to properly handle outliers throughout the stream
[Barbard 2002]. Outliers are objects that deviate from the general behavior of a

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 . Jonathan A. Silva et al.

data model [Han and Kamber 2000], and can occur due to different causes, such as
problems in data collection, storage and transmission errors, fraudulent activities
or changes in the behavior of the system.

Density-based approaches look for low-density regions in the input space, which
may indicate the presence of outliers. For instance, the BIRCH algorithm [Zhang
et al. 1996] has an optional phase that scans the CF tree and stores leaf entries with
low density on a disk. The number of bytes reserved to store outliers on the disk is
specified by the user. The CF vectors with low density — estimated according to a
threshold value — are considered to be outliers. The threshold value is specified by
the average size of the CF vectors on leaf nodes. Periodically, the algorithm checks
whether the CF vectors stored on the disk (outlier candidates) can be absorbed by
the current CF tree (kept in main memory). This monitoring occurs when either
the disk runs out of space or the entire stream (assuming a finite one) has been
processed. Potentially, this optional phase can be used to monitoring changes in
the data distribution when more data are absorbed by the CF vectors.

The DenStream algorithm [Cao et al. 2006] introduces the notion of outlier-buffer.
The online phase of DenStream keeps the statistical summaries of the stream by
means of p-micro-clusters. Every T, time periods — see Equation (9) — the online
phase of DenStream checks the p-micro-clusters to identify potential outliers, the so-
called o-micro-clusters. These are described by the tuple < W LS, WSS, w,Tr,; >,
where T7,; is the timestamp of their creation. A p-micro-cluster becomes an o-
micro-clusters if its weight (w) is below the outlier threshold (w < Bu), where 8 and
v are user-defined parameters. Note that keeping all o-micro-clusters in memory
may become prohibitive after some time. Hence, some o-micro-clusters need to be
removed. The idea is to keep in the outlier-buffer only the o-micro-clusters that
may become p-micro-clusters (i.e., o-micro-clusters whose weight increases over
time). In order to safely remove the “real” outliers, at every 7T, time period, the
weights of the o-micro-clusters are checked, and all those whose weight is below the
limit are removed. The limit is captured by Equation (14), where T is the current
time.

27>\(T7T1ni+Tp)71
g(Ta Tlni) =

2—AT, _ 1 (14)

The D-Stream algorithm [Chen and Tu 2007] identifies and removes low-density
grid cells that are categorized into sporadic grid cells. Such sporadic grid cells
(outlier candidates) can occur for two reasons: i) grid cells that have been receiving
very few objects; and ii) crowded grid cells that have their densities reduced by
means of the decay factor. The goal is to remove sporadic grid cells that occur by
the first reason. A hash table stores the list of grid cells, and the algorithm checks
periodically which grid cells in the hash table are sporadic. To do so, at every
gap time interval (Equation (16)), the grid cells whose density is below a given
threshold are labeled as sporadic grid cells. If; in the next gap time period, the
grid cells are still labeled as sporadic, they are removed from the hash table. The
threshold to determine grid cells with low density (D(g,t) < m(t4,t)) is calculated
according to Equation (15), where ¢ is the current time, ¢, is the last update time
(t > ty), C; and C,, are user defined parameters, G is the number of grid

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 19

cells and X €(0, 1) is a constant called decay factor. We note that by
employing the parameter values suggested by the authors [Chen and Tu
2007], the grid cells are inspected every gap < 2 objects, which may be
quite computationally costly.

Cy(1 — At—tatl)
G(1-\)

e =

4. OFFLINE CLUSTERING STEP

In this section, we discuss the clustering step, which typically involves the applica-
tion of a standard clustering algorithm to find clusters on the previously generated
statistical summaries.

One of the most popular algorithms for data clustering is k-means [MacQueen
1967] due to its simplicity, scalability and empirical success in many real-word appli-
cations [Wu et al. 2007]. Not surprisingly, k-means and its variants are widely used
in data stream scenarios [Bradley et al. 1998; Farnstrom et al. 2000; O’Callaghan
et al. 2002; Aggarwal et al. 2003; Zhou et al. 2008; Ackermann et al. 2012].

A powerful idea in clustering data streams is the use of CF vectors [Gama 2010],
as previously discussed in Section 3.1. Some k-means variants have been proposed
for dealing with CF vectors. In [Zhang et al. 1997], e.g., the authors suggest three

ways to adapt the k-means algorithm to handle CF vectors:

(1) Calculate the centroid of each CF vector — L—A}g — and consider each centroid

as an object to be clustered by k-means.

(2) Do the same as before, but weighting each object (CF vector centroid) pro-
portionally to N, so that CF vectors with more objects will have a higher
influence on the centroid calculation process performed by k-means.

(3) Apply the clustering algorithm directly to the CF vectors, since their com-
ponents keep the sufficient statistics for calculating most of the required dis-
tances and quality metrics.

m(tg,t) = (15)

The first and third strategies are commonly used by clustering algorithms based
on CF vectors. The first strategy is the simplest one to be used in practice, since
no further modification of the clustering algorithm is needed. This strategy is sug-
gested by the ClusTree algorithm [Kranen et al. 2011] to group the leaf nodes (CF
entries) in order to produce k clusters. The third strategy requires the modifica-
tion of the clustering algorithm to properly handle the CF vectors as objects. In
CluStream [Aggarwal et al. 2003], the employed k-means variant uses an adapted
version of the second strategy that chooses the initial prototypes with a probability
proportional to the number of objects in a micro-cluster (expanded CF vector).
This variant is presented in Figure 10.

In [Bradley et al. 1998], another k-means variant for dealing with CF vectors is
presented. This variant, named FEztended k-means, uses both the CF vectors of
the data that have been processed and new objects as input to find k clusters. It
also considers the CF vector as an object weighted by N. This is similar to the

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 . Jonathan A. Silva et al.

Input: Number of clusters k, and set of micro-clusters Q = {Q1,Q2, ..., Qq}-
Output: Data partition with k clusters.
: Consider each micro-cluster centroid, %S, as an object.
: Initialization: k initial prototypes are sampled with probability proportional to N.
repeat
Partitioning: compute the distance between prototypes and micro-clusters.
Updating: the new prototype is defined as the weighted centroid of the objects in a cluster.
until Prototypes get stabilized.

Sa e whr

Fig. 10. k-means variant to handle statistical summaries [Aggarwal et al. 2003].

idea presented in Figure 10, but it contains an additional step to handle empty
clusters. After convergence (step 6), clusters are verified in order to detect empty
groups. An empty cluster has its center set to the farthest object from it and the
Ezxtended k-means algorithm is called again to update the new prototypes [Bradley
and Fayyad 1998]. In [Farnstrom et al. 2000], the Extended k-means algorithm is
also used in the Single-pass k-means framework.

Yet another k-means variant to handle statistical summaries is presented in [Ack-
ermann et al. 2012]. This clustering algorithm, named k-means++, can be viewed
as a seeding procedure for the original k-means algorithm. As detailed in Sec-
tion 3.1, the authors in [Ackermann et al. 2012] propose a way of summarizing the
data stream by extracting a small set of objects, named coreset [Badoiu et al.
2002; Agarwal et al. 2004]. Recall that a coreset is a small (weighted) set of
objects that approximates the objects from the stream regarding the k-means opti-
mization problem. The algorithm proposed in [Ackermann et al. 2012] extracts the
coreset from the stream by means of a merge-and-reduce technique [Har-Peled and
Mazumdar 2004] and finds k clusters through the k-means++ algorithm, described
in Figure 11.

Input: Number of clusters k£ and coreset M.

Output: Data partition.

1: Choose an initial center ¢; uniformly at random from M.

2: for i=2 to k do

3: Let d(x7) be the shortest distance from an object xJ € M to its closest center already

chosen {ci,...,ci—1}

4: Choose the next center ¢; = xt € M with probability d(x?)?/ ijeM d(x7)2.

5: end for

6: Proceed with the standard k-means algorithm.

Fig. 11. k-means++ algorithm [Arthur and Vassilvitskii 2007].

The LSearch algorithm [O’Callaghan et al. 2002] uses the concept of facility loca-
tion [Meyerson 2001] to find a solution to the k-medoids optimization problem. The
main idea is to find the facility location (cluster medoid) that represents objects
from the stream by minimizing a cost function. Each facility (medoid) has an asso-
ciated cost to be opened on a given location and a service cost to attend demanding
objects. The cost function is the sum of the associated costs to open facilities and
the service costs. Thus, it is a combination of the sum of squared errors (SSE) and
a cost to insert a medoid within a partition, providing more flexibility to find the
number of clusters. Nevertheless, the user still needs to provide an initial estimate

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 21

of k before running the algorithm. LSearch searches for a data partition with the
number of clusters between [k, 2k]. Ackermann et al. [2012] observe that LSearch
does not always find the pre-specified k£ and that usually the difference lies within
a 20% margin from the value of k chosen in advance.

Besides k-means, density-based clustering algorithms, like DBSCAN [Ester et al.
1996], are also used in the offline clustering step. In [Cao et al. 2006], the authors
present the DenStream algorithm, which uses a feature vector approach for sum-
marizing the data and a DBSCAN variant for performing data clustering. This
variant receives as input the p-micro-clusters (feature vectors) and two parameters
— ¢ and u, previously presented in Section 3.1 — to partition the data. Each p-
micro-cluster structure is seen as a virtual object with center equals to Vé—i, where
W A, is the weighting area of objects in a given neighborhood. Even though the
user does not need to explicitly specify the number of clusters, the definition of €
and p has a strong influence on the resulting data partition.

As seen in Section 3.1, another paradigm for clustering data streams partitions
the data space into discretized grid cells. Typically, these algorithms create a grid
data structure by dividing the data space into grid cells followed by the use of a
standard clusterer to cluster these cells. As an example, the offline component of
D-Stream [Chen and Tu 2007] adopts an agglomerative clustering strategy to group
grid cells. The algorithm starts by assigning each dense cell to a cluster. Afterwards,
an iterative procedure merges two dense cells that are strongly correlated into a
single cluster. This procedure is repeated until no changes in the partition can be
performed. A parameter whose value is defined by the user determines if two grid
cells are strongly correlated.

Based on adaptive grid cells, the Distributed Grid Clustering algorithm (DG-
Clust) [Rodrigues et al. 2008; Gama et al. 2011] is an online 2-layer distributed
clustering algorithm for sensor data. DG Clust reduces data dimensionality by mon-
itoring and clustering only frequent states. As previously mentioned, the DG Clust
algorithm is composed of local and central sites, and each sensor is related to a uni-
variate stream whose values are monitored in a local site. The goal of the central
site is to find k clusters and keep the data partition continuously updated. In order
to reduce its computational complexity, DG Clust keeps only the top-m (m > k)
most frequent global states. The central object of each of the most frequent global
states will be used in the final clustering. As soon as the central site finds the
top-m set of states, a simple partitioning algorithm can be applied to the most fre-
quent states, to minimize the cluster radius (or equivalently the cluster diameter).
The Furthest Point algorithm [Gonzalez 1985] is used for this task. It selects an
initial object as the seed to the first cluster and iteratively selects the next object
as the center cluster if its distance to the remaining clusters is maximized. In or-
der to dynamically adjust the data partition, the algorithm operates in one of two
possible conditions: converged or mon-converged. If the system is operating in the
non-converged condition, when a new state s(t) is reached, it updates the centers
of the clusters according to the top-m states. If the system has already converged
and the current state has effectively become a part of the top-m states, the system
updates the centers and changes its status to non-converged.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 . Jonathan A. Silva et al.

5. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the data stream clus-
tering algorithms regarding their processing time, i.e., our focus will be on time
complexity.

We start by analyzing the time complexity of the pioneering BIRCH algorithm
[Zhang et al. 1996; 1997]. It employs a B+ tree to store the summarized statistics.
The cost for (re)inserting an object in a B+ tree is O(n x B x H), where B is
the number of entries in an inner node and H is the maximum height of the tree.
Recall that n is the data dimensionality.

In the ClusTree algorithm, the process of inserting a new object in a
R-Tree takes O(log(q)), where ¢ is the number of CFs. The merge process
requires O(M?), where M is the number of entries in a leaf node. The
clustering result can be obtained by applying any clustering algorithm,
such as k-means or DBSCAN, over the CFs stored in the leaf nodes.

As previously seen, Scalable k-means [Bradley et al. 1998] adopts the divide-
and-conquer strategy for processing chunks of the stream. Each chunk holds m
n-dimensional objects that are clustered by k-means into k clusters during the
primary compression step, taking O(m x n X k X v) time, where v is the number
of k-means iterations. There are theoretical papers that provide the upper
bound on its running time [Vattani 2009; Arthur and Vassilvitskii 2006],
which can be exponential even for low-dimensional data. Nevertheless,
we assume in here that its number of iterations is linear on v.

In order to identify data objects that will be discarded, a version of the Maha-
lanobis distance [Maesschalck et al. 2000] — known as normalized Euclidean dis-
tance, which allows simplifying the covariance matrix inversion — is employed, tak-
ing O(m x n) time. Finding the discard radius for all & clusters takes O(m x logm)
if sorting is used. The total time complexity for the first method of primary com-
pression is O(m(n + logm)), whereas the second method of primary compression
(cluster means perturbation) takes O(m x k x n). In the secondary compression
step, all objects that did not meet the requirements for being clustered in the first
step (the worst case is m objects) are grouped into ks > k clusters, thus taking
O(mxnxkyxv). The ko clusters are checked again to verify if their covariances are
bounded by the threshold 8. The clusters that do not meet this criterion are merged
with the k clusters obtained in the first compression step by using a hierarchical
agglomerative clustering, whose time complexity is O(k3 x n). The algorithm total
time complexity is therefore O(m xn x kxv) + O(m(n+logm)) + O(m x kxn) +
O(m xn x kg xv) + O(k3 x n), which can be reduced to O(m x n x ka x v). Single-
pass k-means [Farnstrom et al. 2000], which is a simplified version of the Scalable
k-means algorithm with no compression steps, takes O(m x k xn x v+m x logm).

For the online phase of CluStream [Aggarwal et al. 2003], the cost of creating
micro-clusters is O(q X Nyfirse X 1 X v), where ¢ is the number of micro-clusters
and Nyjre is the number of objects used to create the initial micro-clusters. Next,
for each new data object that arrives, updating micro-clusters requires three steps:
i) find the closest micro-cluster, which takes O(g x n) time; ii) possibly discarding
the oldest micro-cluster, also taking O(q) time; and iii) possibly merging the closest
micro-clusters, which takes O(g? x n). The offline step runs the traditional k-means

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 23

algorithm over the micro-clusters, which takes O(g x n x k x v) time.

Similary to CluStream, the SWClustering algorithm has time com-
plexity of O(¢ xn) to insert a new object into the nearest EHCF, where ¢
is the number of EHCFs. In addition, it takes O(¢* x n) to merge the two
nearest EHCFs, O(q) to update the EHCF containing expired objects,
and O(g x n X k x v) to cluster the EHCF's using the k-means algorithm.
SWClustering does not require the creation of an initial summary struc-
ture like CluStream.

DenStream [Cao et al. 2006] is a density-based algorithm that is also executed
in two phases. In the online phase, the cost for creating micro-clusters through
DBSCAN [Ester et al. 1996] is O(Ny;ps X log Nﬁrst)Z. For each new object of the
stream, one of the ¢ p-micro-clusters is updated according to the following three
steps: 1) finding the closest p-micro-cluster, which takes O(gq x n); (ii) possibly
finding the closest o-micro-cluster, which also takes O(q x n); and iii) possibly
verifying if an o-micro-cluster is a potential p-micro-cluster, which once again takes
O(gxn). Hence, the cost for updating micro-clusters for each new object is O(gxn).
The periodical analysis of outdated p-micro-clusters also takes O(g x n), whereas
the offline phase that employs the DBSCAN algorithm over the g p-micro-clusters
takes O(q x log q).

StreamKM ++ [Ackermann et al. 2012] maintains a summary of the stream us-
ing the merge-and-reduce technique [Har-Peled and Mazumdar 2004; Agarwal et al.
2004; Bentley and Saxe 1980]. Basically, it maintains log % buckets in main mem-
ory, where each bucket ¢ stores only m objects. Each bucket represents 2 xm objects
from stream. In [Ackermann et al. 2012], the merge-and-reduce technique imple-
ments a coreset tree that organizes the data in a binary tree (reduce step). The
time complexity for a single step of the merge-and-reduce technique is O(m? x n)
(or O(m x n x logm) to a balanced coreset tree). In order to obtain a coreset
tree of size m for the union of all buckets, the merge-and-reduce of all buckets is
executed in O(m? x n x log %) The k-means++ algorithm is applied on the final
bucket to find k clusters, whose time complexity is O(m X k x n X v). Summing
up, the overall time complexity of StreamKM++ is O(m? x n x log %)

Stream [Guha et al. 2000] runs the Facility Location algorithm [Charikar and
Guha 1999; Meyerson 2001] over chunks with B objects to find 2k clusters, which
takes O(B x n X k) to execute. Similarly, Stream LSearch [O’Callaghan et al.
2002] also assumes that a chunk of B objects will be clustered into 2k clusters,
though this time the clustering algorithm employed is LSearch. First, LSearch
creates an initial solution with & < k clusters, which takes O(B x n x k). Next, a
binary search is performed to partition the B objects into k clusters, which takes
O(B x n x k x logk). Hence, the overall time complexity of Stream LSearch is
O(B xnx k' 4+ B xnxkxlogk), which can be simplified to O(B x n x k x logk).

DGClust [Rodrigues et al. 2008; Gama et al. 2011] operates both in local and
central sites. Considering the time complexity of a local site, after the bins for the
two layers of discretization have been created, the cost of inserting a new object
is O(logp;), where p; is the number of bins of the first layer, i.e., it is the cost
of searching the proper bin for inserting the object. Since each local site operates

2Considering a DBSCAN implementation that employs KD-trees [Bentley 1975].

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 . Jonathan A. Silva et al.

in a parallel fashion, the time complexity for the local sites is O(logp), where
p = max;(p;) and i € 1,2,..,n. Recall that n is the number of dimensions of the
stream, and thus the number of local sites for DGClust. The central site keeps
the top-m most frequent global states. Searching a state in the list of states takes
O(m). Clustering the top-m most frequent global states takes O(m x n x k).

D-Stream [Chen and Tu 2007] is a grid-based stream clustering algorithm. In
the worst-case scenario, at each iteration of D-Stream there are p™ grid cells in
memory, where p is the number of partitions in each dimension. However, as
already noted in [Chen and Tu 2007; Amini et al. 2011], although in theory the
number of possible grid cells grows exponentially with n, empty or infrequent grid
cells can be discarded, under the assumption that the data space is sparse.

6. TEMPORAL ASPECTS

Besides the time and space constraints that distinguish batch-mode clustering from
data stream clustering, the influence of time is a very important issue when clus-
tering data streams. Indeed, there are several works in the literature that stress
the importance of considering the time element when designing a data stream clus-
tering algorithm. We highlight the following temporal aspects one should consider
when designing a new algorithm: (i) time-aware clustering; (ii) outlier-evolution
dilemma; and (iii) cluster tracking. We detail them next.

6.1 Time-aware Clustering

The inherent time element in data streams should be properly exploited by data
stream clustering algorithms. For instance, these algorithms should be able to
implicitly or explicitly consider the influence of time during the clustering pro-
cess (time-aware clustering). Current data stream clustering algorithms perform
time-aware clustering by either assigning different levels of importance to objects
(considering that recent data is more relevant than old data) or by modeling the
behavior of the arriving data in such a way that objects can be clustered regarding
different temporal patterns instead of a traditional spatial-based approach.

In the first case, the clustering process is affected by the age of objects, which is
explicitly modeled by a decay function [Aggarwal et al. 2003; Cao et al. 2006; Chen
and Tu 2007; Kranen et al. 2011], as previously mentioned in Sections 3.2 and 3.3.
For the second case, a typical example is the Temporal Structure Learning for
Clustering Massive Data Stream in Real Time (TRACDS) algorithm [Hahsler and
Dunham 2011]. It is essentially a generalization of the Extensible Markov Model
(EMM) algorithm [Dunham et al. 2004; Hahsler and Dunham 2010] for data stream
scenarios. In TRACDS, each cluster (or micro-cluster) is represented by a state of a
Markov Chain (MC) [Markov 1971; Bhat and Miller 2002], and the transitions rep-
resent the relationship between clusters. With the MC model, TRACDS can model
the behavior of the objects that continuously arrive through state-change proba-
bilities, in which the time element is implicitly considered through the different
temporal patterns of the sequences of objects.

6.2 Outlier-Evolution Dilemma

As previously seen in Section 3.3, outlier detection mechanisms can be modeled
with the help of decay functions [Zhang et al. 1997; Aggarwal et al. 2003; Cao

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 25

et al. 2006; Chen and Tu 2007]. These functions evaluate the relevance of clusters
according to their age, assuming that clusters that are seldom updated should be
deemed as outliers. Nevertheless, we observe that there is a thin line between outlier
detection and cluster evolution, and correctly distinguishing between them may be
an application-dependent procedure. In certain applications, objects deemed as
outliers may actually be the indication of a new emerging cluster. For instance,
Barbard [2002] cites an example of a weather data application, in which sufficient
outliers indicate a new trend that needs to be represented by new clusters.

There are cases in which outliers actually redefine the boundaries of existing
clusters. An example is a data stream of spotted cases of an illness, in which
outliers indicate the spread of the epidemics over larger geographical areas [Barbard
2002]. Finally, there are scenarios in which objects deemed as outliers are indeed
noise produced by uncalibrated sensors or improper environmental influence during
data collection. An uncalibrated sensor may give the false impression that a new
emerging cluster is arising when there is actually a large amount of spurious objects
that should not be considered during clustering.

For the cases in which there are changes in the data probability distribution (e.g.,
real-time surveillance systems, telecommunication systems, sensor networks, and
other dynamic environments), the data stream clustering algorithm should ideally
be able to detect these changes and adapt the clusters accordingly. Aggarwal [2003]
proposes a framework towards efficient change detection that enables the diagnostic
of fast and multidimensional data streams. It allows visualizing and determining
trends in the evolution of the stream, according to a concept called velocity density
estimation. This mechanism creates temporal and spatial velocity profiles, which
in turn can be used to predict different types of data evolution. Even though this
framework is not meant particularly for clustering applications, it can help users to
understand the nature of the stream, and perhaps give new insight to researchers
for developing change detection mechanisms for data stream clustering algorithms.

6.3 Cluster Tracking

The exploration of the stream over different time windows can provide the users
a better comprehension about the dynamic behavior of the clusters. Hence, data
stream clustering algorithms must provide to the user a way to examine clusters
occurring in different granularities of time (e.g., daily, monthly, yearly). Statistics
summary structures like CF vectors are a powerful tool to help in the cluster
exploration due to its additivity and subtractive properties.

In addition, clusters upon the data of many real applications are affected by
changes the underlying data suffers with time. Whereas many studies have been
devoted to adapting clusters to the evolved data, we believe it is necessary to
encompass tracing and understanding of cluster evolution itself, as a means of
gaining insights on the data and supporting strategic decisions. In other words,
it is necessary to provide insights about the nature of cluster change: is a cluster
disappearing or are its members migrating to other clusters? Does a new emerging
cluster reflect a new profile of objects (novelty detection) or does it rather consist
of old objects whose characteristics have evolved?

Following the necessity of tracking and understanding cluster evolution, MONIC
[Spiliopoulou et al. 2006] is an algorithm that was proposed for modeling and track-

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 . Jonathan A. Silva et al.

ing clustering transitions. These transitions can be internal, related to each cluster,
or external, related to the clustering process as a whole. MONIC categorizes in-
ternal transitions into three types: i) changes in compactness; ii) changes in size;
and iii) changes in location. For external transitions, five outcomes are possible:
i) the cluster survives; ii) the cluster is split into multiple clusters; iii) the cluster
is absorbed by another cluster; iv) the cluster disappears; and v) a new cluster
emerges. The transition tracking mechanism is based on the degree of overlapping
between two clusters. Overlapping is defined as the number of common objects
weighted by the age of the objects.

Another algorithm that performs cluster tracking is MEC [Oliveira and Gama
2010; 2012], which traces the evolution of clusters over time through the identi-
fication of the temporal relationship among them. It aims at identifying hidden
behavioral patterns and developing knowledge about the evolution of the phenom-
ena. Unlike MONIC, MEC employs different metrics to detect changes and provide
techniques to visualize the cluster evolution. A bipartite graph structure is used to
visualize the clusters evolution and to formalize the definition of transition. This
structure is used to compute the conditional probabilities for every pair of possible
connections between nodes of a bipartite graph (clusters) obtained at consecutive
time points.

7. ASSESSING CLUSTER STRUCTURES

An issue that arises when one proposes a new data stream clustering algorithm is
how to properly assess its effectiveness. Determining suitable criteria to validate
new and even existing algorithms is particularly important.

The literature on data clustering is very large, and due to the inherent subjec-
tivity of the clustering task, several methodologies and clustering validity measures
have been proposed in the past decades. Works on data stream clustering usually
adopt well-known evaluation criteria. For instance, the most commonly employed
criteria to evaluate the quality of stream data partitions are the sum of squared
errors (SSE) and the so-called purity. The former is an internal validity criterion,
whereas the latter is an external validity criterion, in which the true labels (groups)
of the data are available and are compared with the data partition obtained by a
clustering algorithm.

The SSE criterion evaluates the compactness of clusters. The lower the SSE value,
the more compact the clusters of the resulting partition are. The SSE criterion can
be formally described by Equation (17), where c; is the centroid of cluster C;. SSE
decreases monotonically as the number of clusters increase. Hence, it cannot be
used to estimate the optimal value of k, because it tends to find the trivial solution,
namely: N singletons.

K
Yo kel (17)

1=1 X eC;

The purity is related to the entropy concept. In order to compute the purity
criterion, each cluster is assigned to its majority class, as described in Equation (18),
where v; is the number of objects in cluster C; from class 7. The purity is the sum

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 27

of v; over all clusters, as captured by Equation (19).

1 .
V=N argmax(IV;) (18)
J K3
&N,
Purity = Z Wi (19)
j=1

Note that criteria like SSE and purity are usually employed in a sliding window
model, which means the clustering partition is obtained with data within the sliding
window. However, if the algorithm does not use the sliding window model (e.g.,
if it employs the concept of representative objects), evaluating a partition created
with the most recent objects of the stream may not be a good idea, considering
that representative objects summarize both past and present information.

Another important issue to be addressed in an experimental methodology is
how to validate partitions generated with non-stationary data. For instance, one
needs to verify how the partition has evolved since the last time it was generated.
In this sense, it is not enough to evaluate the quality of the generated partition
(spatial criterion), but it is also necessary to evaluate the changes that occur in the
partition over time (temporal criterion). Even though the quality of the partition
may indicate that changes occurred in the data distribution — e.g., degradation of
quality due to a new emerging cluster —, it is not possible to clearly state what is
causing the quality degradation. Hence, there is a need of combining spatial and
temporal criteria to properly evaluate the quality of partitions and their behavior
over the course of the stream.

There are few efforts towards developing more sophisticated evaluation
measures for data streams. In [Kremer et al. 2011], the authors propose
a external criterion for evaluating clustering algorithms that takes into
account the age of objects, namely CMM (Cluster Mapping Measure).
The CMM measure is a combination of penalties for each one of the
following faults:

(1) Missed objects — clusters that are constantly moving may even-
tually “lose” objects, and thus CMM penalizes for these missed
objects;

(2) Misplaced objects — clusters may eventually overlap over the course
of the stream, and thus CMM penalizes for misplaced objects;

(3) Noise inclusion — CMM penalizes for noisy objects being inserted
in existing clusters.

The CMM measure can reflect errors related to emerging, splitting, or
moving clusters, which are situations inherent to the streaming context.
Nevertheless, note that CMM is an external criterion, and thus requires
a “gold standard” partition, which is not available in many practical
applications.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 . Jonathan A. Silva et al.

8. DATA STREAM CLUSTERING IN PRACTICE

Our discussion so far has concentrated on techniques for data stream clustering and
analysis of existing algorithms. All these are in vain unless data stream clustering
is useful in practice. In this section, we address the applicability of data stream
clustering, tabulating some relevant examples of its use in diverse real-world appli-
cations. We also briefly discuss existing software packages and data set repositories
for helping practitioners and researchers in designing their experiments.

8.1 Applications

Data stream mining is motivated by emerging applications involving massive data
sets. Examples of these data include [Guha et al. 2003]: customer click streams,
telephone records, large sets of Web pages, multimedia data, financial transactions,
and observational science data. Even though there are several interesting and
relevant applications for data stream clustering (see Table IT), most of the studies
still propose evaluating algorithms on synthetic data.

The most notable exception is the public network intrusion data set, known as
KDD-CUP ’09 [Tavallaee et al. 2009], available at the UCI repository [Frank and
Asuncion 2010]. This data set has two weeks of raw TCP dump data for a local area
network and simulates an environment with occasional attacks. It is used in several
experimental studies in data mining, both for classification and clustering. Due to
its large size, it has also been consistently used to assess data stream clustering
algorithms (e.g., [Aggarwal et al. 2003; Aggarwal and Yu 2008; Aggarwal 2010]).
Note that some evaluation measures may not be suitable for this data set.
For instance, the purity measure should not be employed for evaluating
the cluster structures found within KDD-CUP ’09 because the majority
of its objects belong to the same class, resulting in large (and perhaps
misleading) values of purity.

Synthetic data sets are usually preferred because testing hypotheses like noise-
robustness, and scaling for high-dimensionality are easier to perform with synthetic
data. Examples of artificially generated data sets are: (i) data generated by varying
Gaussian distributions [Aggarwal et al. 2003; 2004b; Wan et al. 2008; Dang et al.
2009]; (ii) data generated by the IBM synthetic data generator [Ong et al. 2004];
(iii) data simulating a taxi location tracking application [Cho et al. 2006]; and (iv)
data sets formed by arbitrarily-shaped clusters, like those presented in Figure 12.

In [Serir et al. 2012], the authors propose to group data streams from bearing
prognostics. They employ a platform developed within the Department of Au-
tomatic Control and Micro-Mechatronic Systems of the FEMTO-ST institute to
generate data concerning the test and validation of bearing prognostics approaches.
The platform is able to characterize both the ball bearing functioning and its degra-
dation along its whole operational life (until fault/failure). Vibration and tempera-
ture measurements of the rolling bearing during its functioning mode are collected
by different sensors.

A data set commonly exploited by the data stream clustering research community
is the charitable donation data set (KDD-CUP ’98) [Aggarwal et al. 2003; Cao et al.
2006; Gao et al. 2010}, which contains records of information about people who have
made charitable donations in response to direct mailing requests. In this kind of

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 29

Table II. Application areas of data stream clustering.

Application area

References

Bearing prognostics

Charitable donation (KDD ’98)
Forest cover

Grid computing

Network intrusion detection (KDD ’99)

Sensor networks

Stock market analysis

Synthetic data

Text data
VOIP data

Water distribution networks

[Serir et al. 2012]
[Aggarwal et al. 2003], [Cao et al. 2006],[Gao et al. 2010]

[Aggarwal et al. 2004b; Tasoulis et al. 2006]
[Aggarwal and Yu 2008; Lithr and Lazarescu 2009]

[Zhang et al. 2009; Wang and Wei 2010]

[O’Callaghan et al. 2002; Cao et al. 2006; Guha et al. 2003]
[Aggarwal et al. 2004b; Tasoulis et al. 2006]

[Csernel et al. 2006; Aggarwal et al. 2003]

[Chen and Tu 2007; Aggarwal and Yu 2008]

[Wan et al. 2008; Lithr and Lazarescu 2009]

[Zhu et al. 2010; Ackermann et al. 2012]

[Wang and Wei 2010; Aggarwal 2010; Li and Tan 2011]

[Rodrigues et al. 2006; 2008; Gaber et al. 2010]
[Silva et al. 2011; Gama et al. 2011]

[Kontaki et al. 2008]

[Zhang et al. 1997; Ong et al. 2004; Chen and Tu 2007]
[Guha et al. 2003; Aggarwal et al. 2004b; Dang et al. 2009]
[Wan et al. 2008; Aggarwal et al. 2003; Kontaki et al. 2008]
[Serir et al. 2012; Cho et al. 2006; Aggarwal and Yu 2006]
[O’Callaghan et al. 2002; Cao et al. 2006; Zhu et al. 2010]
[Al Aghbari et al. 2012; Liithr and Lazarescu 2009]
[Aggarwal and Yu 2006; Liu et al. 2008]

[Aggarwal 2010]

[Qiong Li and Xie 2011]

Fig. 12. Arbitrarily-shaped synthetic data sets — adapted from [Lithr and Lazarescu 2009; Chen

and Tu 2007; Serir et al. 2012].

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 . Jonathan A. Silva et al.

application, one possible clustering application is grouping donors that show similar
donation behavior.

Yet another commonly exploited data set in data stream clustering is the forest
cover type data set [Aggarwal et al. 2004b; Tasoulis et al. 2006; Aggarwal and Yu
2008; Lithr and Lazarescu 2009]. It can be obtained from the UCI machine learning
repository website®. This data set contains a total of 581,012 observations with 54
attributes (10 quantitative, 4 binary values for wilderness areas and 40 binary soil
type). Each observation is labeled as one of seven forest cover types.

In [Zhang et al. 2009; Wang and Wei 2010], the authors propose clustering data
streams from real-time grid monitoring. In order to diagnose the EGEE grid (En-
abling Grid for E-SciencE?), they exploited the gLite reports on the lifecycle of the
jobs and on the behavior of the middleware components for providing the summa-
rized information of grid running status.

Clustering data streams collected by sensor networks [Rodrigues et al. 2006;
2008; Silva et al. 2011; Gama et al. 2011] is another typical application. Sensor
networks may be responsible, e.g., for measuring electric power consumption in
a given city. Electricity distribution companies usually set their management op-
erators on SCADA/DMS products (Supervisory Control and Data Acquisition /
Distribution Management Systems). In this context, data is collected from a set
of sensors distributed all around the network. Sensors can send information at
different time scales, speed, and granularity. Data continuously flow eventually
at high-speed, in a dynamic and time-changing environment. Clustering of the
time series generated by each sensor is one of the learning tasks required in this
scenario, considering that it allows the identification of consumption profiles, and
the identification of urban, rural, and industrial consumers. Clustering this kind
of information can help to understand patterns of electrical demand over different
periods of the day.

In [Kontaki et al. 2008], the authors evaluate their method in a stock prices
data set. This data set has 500 time series, with a maximum length of 3,000
objects, collected at http://finance.yahoo.com. Clustering stock prices may
provide insights on the evolution of stocks over time, and may help deciding when
it is the right time for buying or selling stocks.

Clustering documents is also a relevant application area. In [Aggarwal and Yu
2006], the authors utilize a number of documents obtained from a 1996 scan of
the Yahoo! taxonomy, and a stream was synthetically produced from this scan
by creating an order that matched a depth-first traversal of the Yahoo! hierarchy.
Considering that web pages at a given node in the hierarchy are crawled at once, the
web pages are also contiguous by their particular class, as defined by the Yahoo!
labels. In [Liu et al. 2008], a corpus of 20,000 documents [Zhang et al. 2006]
is employed for evaluating the proposed algorithm. Each document was randomly
assigned a timestamp, and three different text data streams with different document
sequences were created. Clustering text data streams is a useful tool with many
applications, such as news group filtering, text crawling, document organization
and topic detection.

Shttp://www.ics.uci.edu/~mlearn.
4http://www.eu-egee.org/, the largest grid infrastructure in the world.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 31

In [Aggarwal 2010], a VOIP system that generates network packets in compressed
G729 format is used. Each network packet contains a snapshot of the voice signal
at a 10-ms interval. Each record contains 15 attributes corresponding to several
characteristics of the speech, vocal tract model, pitch and excitation. The data
set contains voice packets from six speakers and the clustering objective would be
grouping packets from the same speaker together.

Finally, in [Qiong Li and Xie 2011], the authors monitor water distribution net-
works. Considering that evaluating the drinking water quality is a typical large-scale
real-time monitoring application, the authors performed experiments with two dis-
tribution networks of different scales. The first network is a real water distribution
system with 129 nodes [Ostfeld et al. 2008]. The second network, with 920 nodes,
comes from the Centre for Water Systems at the University of Exeter®.

8.2 Data Repositories

We highlight the following public data repositories that may be of interest for
researchers and practitioners of data stream clustering:

(1) UCI Knowledge Discovery in Databases Archive — online repository of large
data sets which encompasses a wide variety of data types, analysis tasks, and
application areas. Available at http://kdd.ics.uci.edu/.

(2) KDD Cup Center — annual Data Mining and Knowledge Discovery competi-
tion organized by ACM Special Interest Group on Knowledge Discovery and
Data Mining. Available at http://www.sigkdd.org/kddcup/.

(3) UCR Time-Series Datasets — maintained by Eamonn Keogh, University Cal-
ifornia at Riverside, US. Available at http://www.cs.ucr.edu/\~eamonn/
time_series_data.

8.3 Software Packages

As we have presented in this paper, several data stream clustering algorithms were
proposed in the specialized literature. We believe it would be useful if the research
community joined forces to develop an unified software environment for implement-
ing new algorithms and evaluation tools for data stream clustering. Recent efforts
towards this objective include the following publicly available software packages:

(1) MOA [Bifet et al. 2010] — java-based software package that contains state-
of-the-art algorithms and measures for both data stream classification and
clustering. It also embodies several evaluation criteria and visualization tools.
Available at http://moa.cs.waikato.ac.nz.

(2) Rapid-Miner [Mierswa et al. 2006] — java-based data mining software package
that contains a plugin for data stream processing. Available at http://
rapid-i.com/.

(3) VFML [Hulten and Domingos 2003] — C-based software package for mining
high-speed data streams and very large data sets. Available at http://www.
cs.washington.edu/dm/vfml/.

5Center for Water System at University of Exeter, http://centres.exeter.ac.uk/cus.

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 . Jonathan A. Silva et al.

9. CHALLENGES AND FUTURE DIRECTION

Probably the greatest challenge in data stream clustering is building algorithms
without introducing ad-hoc critical parameters, such as: i) the expected number
of clusters or the expected density of clusters; ii) the window length, whose size
controls the trade-off between quality and efficiency; and iii) the fading factor of
clusters or objects, which gives more importance to the most recent objects. To
address (i), there are a few recent studies that propose methods to automatically
estimate the number of clusters in k-means based stream clustering algorithms
[de Andrade Silva and Hruschka 2011; de Faria et al. 2012]. Algorithms that assume
a fixed number of clusters generate partitions that do not adapt over time, which
is specially problematic when dealing with non-stationary distributions.

Another challenge that should be handled by data stream clustering algorithms
is the ability of properly dealing with outliers, and also of detecting changes in
the data distribution. The dynamic nature of evolving data streams, where new
clusters often emerge while old clusters fade out, imposes difficulties for outlier
detection. In general, new algorithms should provide mechanisms to distinguish
between seeds of new clusters and outliers. Regarding the challenge of dealing with
non-stationary distributions, the current — and naive — strategy employed by
most available algorithms is to implicitly deal with them through window models.
Even though more robust change detection mechanisms have been implemented
in generic frameworks, we believe future data stream clustering algorithms should
explicitly provide mechanisms for performing change detection.

Dealing with different data types imposes another challenge in data stream clus-
tering. Different data types such as categorical and ordinal values are present within
several application domains. In addition, complex data structures like DNA data
and XML patterns are largely available, thus a more careful attention should be
given to algorithms capable of dealing with different data types. For instance, al-
gorithms such as those described in [Charikar and Guha 1999; Meyerson
2001; Guha et al. 2003; Charikar et al. 2003; Guha 2009] have worked in
this direction, i.e., they are capable of dealing with arbitrary data types.

Considering that the number of mobile applications grows every year, as well
as the volume of data generated by these devices, we believe that clustering data
streams produced by mobile devices will constitute an interesting application in
years to come.

Another interesting future application of data stream clustering is social network
analysis. The activities of social network members can be regarded as a data
stream, and a clustering algorithm can be used to show similarities among members,
and how these similar profiles (clusters) evolve over time. Social network stream
clustering may support services such as intelligent advertisement and custom-made
content. Finally, applications involving real-time distributed systems should also
deserve particular attention from upcoming data stream clustering algorithms.

Bearing in mind that clustering data streams is a relevant and challeng-
ing task, we believe that much effort should be addressed to developing
more sophisticate evaluation criteria, high-quality benchmark data, and
a sound methodology for reliable experimental comparison of new data
stream clustering algorithms.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 33

REFERENCES

ACKERMANN, M. R., MARTENS, M., RaurAcH, C., SWIERKOT, K., LAMMERSEN, C., AND SOHLER,
C. 2012. Streamkm-++: A clustering algorithm for data streams. ACM Journal of Experimental
Algorithmics 17, 1.

AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. R. 2004. Approximating extent measures
of points. Journal of the ACM 51, 4, 606—635.

AGGARWAL, C. 2003. A Framework for Diagnosing Changes in Evolving Data Streams. In ACM
SIGMOD Conference. 575-586.

AGGARWAL, C. 2007. Data Streams — Models and Algorithms. Springer.

AGGArwAL, C., HAN, J., WANG, J., AND YU, P. 2004a. A framework for projected clustering of
high dimensional data streams. In Proceedings of the Thirtieth International Conference on
Very Large Data Dases. 852—-863.

AGGARWAL, C. AND YU, P. 2006. A framework for clustering massive text and categorical data
streams. Proceedings of the Sixth SIAM International Conference on Data Mining, 479.

AGGARWAL, C. AND YU, P. 2008. A framework for clustering uncertain data streams. In IEEE
24th International Conference on Data Engineering (ICDE 2008). 150—159.

AGGARWAL, C. C. 2010. A segment-based framework for modeling and mining data streams.
Knowledge and Information Systems 30, 1 (Nov.), 1-29.

AGGArwAL, C. C., HaN, J., WANG, J., AND YU, P. S. 2003. A framework for clustering evolving
data streams. In Proceedings of the 29th Conference on Very Large Data Bases. 81-92.

AGGARWAL, C. C., HAN, J., WANG, J., AND YU, P. S. 2004b. A framework for projected clustering
of high dimensional data streams. In Proceedings of the VLDB. Vol. 30. 852—863.

AL AGHBARI, Z., KAMEL, 1., AND AWAD, T. 2012. On clustering large number of data streams.
Intelligent Data Analysis 16, 1, 69-91.

AMiINI, A., WaH, T. Y., SAYBANI, M. R.;, AGHABOZORGI, S. R., AND YAzDI, S. 2011. A study of
density-grid based clustering algorithms on data streams. In Eighth International Conference
on Fuzzy Systems and Knowledge Discovery. IEEE press, 1652—-1656.

ARABIE, P. AND HUBERT, L. J. 1999. An Overview of Combinatorial Data Analysis. World
Scientific Publishing, Chapter 1.

ARTHUR, D. AND VAsSILVITSKII, S. 2006. How slow is the k-means method? In Proceedings of
the twenty-second annual symposium on Computational geometry. SCG '06. ACM, New York,
NY, USA, 144-153.

ARTHUR, D. AND VASSILVITSKII, S. 2007. k-means++: the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 1027—
1035.

BaABcocCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in
data stream systems. In PODS ’02: Proceedings of the 21th ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM Press, 1-16.

BAaBcoCK, B., DATAR, M., MOTWANI, R., AND O’CALLAGHAN, L. 2003. Maintaining variance and
k-medians over data stream windows. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM, 234—243.

BAporu, M., HAR-PELED, S., AND INDYK, P. 2002. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. STOC ’02.
ACM Press, 250-257.

BARBARA, D. 2002. Requirements for clustering data streams. SIGKDD Ezplorations (Special
Issue on Online, Interactive, and Anytime Data Mining) 3, 23-27.

BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18, 9, 509-517.

BENTLEY, J. L. AND SAXE, J. B. 1980. Decomposable searching problems i: Static-to-dynamic
transformation. Journal of Algorithms 1, 4, 301-358.

BHAT, U. N. AND MILLER, G. K. 2002. Elements of Applied Stochastic Processes, 3rd ed. John
Wiley & Sons, Inc., New Jersey.

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 . Jonathan A. Silva et al.

BIrFET, A. 2010. Adaptive Stream Mining: Pattern Learning and Mining from FEwvolving Data
Streams. 10S Press.

BIFET, A., HOLMES, G., KIRKBY, R., AND PFAHRINGER, B. 2010. Moa: Massive online analysis.
Journal of Machine Learning Research 11, 1601-1604.

BRADLEY, P. S. AND FAyyaD, U. M. 1998. Refining initial points for k-means clustering. In
Proceedings of the Fifteenth International Conference on Machine Learning. ICML’98. Morgan
Kaufmann Publishers Inc., 91-99.

BRADLEY, P. S.; FAyvaDp, U. M., AND REINA, C. 1998. Scaling clustering algorithms to large
databases. In Proceedings of Knowledge Discovery and Data Mining. AAAI Press, 9-15.

Cao, F., ESTER, M., QIAN, W., AND ZHOU, A. 2006. Density-based clustering over an evolving
data stream with noise. In Proceedings of the Sixth SIAM International Conference on Data
Mining. STAM, 328-339.

CHARIKAR, M. AND GuHA, S. 1999. Improved combinatorial algorithms for the facility location
and k-median problems. In /0th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 378-388.

CHARIKAR, M., O’CALLAGHAN, L.; AND PANIGRAHY, R. 2003. Better streaming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing. ACM, 30-39.

CHEN, Y. AND Tu, L. 2007. Density-based clustering for real-time stream data. In KDD ’07:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM Press, 133—-142.

CHo, K., Jo, S., JaNG, H., Kim, S., AND SONG, J. 2006. DCF: An Efficient Data Stream Clustering
Framework for Streaming Applications. Database and Ezxpert Systems Applications, 114-122.

CSERNEL, B., CLEROT, F., AND HEBRAIL, G. 2006. Datastream clustering over tilted windows
through sampling. In Knowledge Discovery from Data Streams Workshop (ECML/PKDD).

Dang, X. H., LEg, V. C. S., Na, W. K., CipTapi, A., AND ONG, K.-L. 2009. An EM-based
algorithm for clustering data streams in sliding windows. In Proceedings of the 14th Interna-
tional Conference on Database Systems for Advanced Applications. Lecture Notes in Computer
Science. Springer, 230-235.

DE ANDRADE SILvA, J. AND HRUSCHKA, E. R. 2011. Extending k-means-based algorithms for
evolving data streams with variable number of clusters. In Fourth International Conference on
Machine Learning and Applications - ICMLA’11. Vol. 2. 14-19.

DE FARIA, E. R., BARROS, R. C., DE CARvALHO, A. C. P. L. F.; AND GAMA, J. 2012. Improving
the offline clustering stage of data stream algorithms in scenarios with variable number of
clusters. In 27th ACM Symposium On Applied Computing - SAC’12. 572-573.

DoMINGOS, P. AND HULTEN, G. 2001. A general method for scaling up machine learning algorithms
and its application to clustering. In Proceedings of the 8th International Conference on Machine
Learning. Morgan Kaufmann, 106-113.

DunuaM, M. H., MENG, Y., AND HUANG, J. 2004. Extensible markov model. In Fourth IEEE
International Conference on Data Mining. ICDM ’04. 371-374.

ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In 2nd International Conference on
Knowledge Discovery and Data Mining. 226-231.

FArRNSTROM, F., LEwWIS, J., AND ELKAN, C. 2000. Scalability for clustering algorithms revisited.
SIGKDD Ezxploration, 51-57.

Fayyap, U. M., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowl-
edge discovery: an overview. In Advances in knowledge discovery and data mining. American
Association for Artificial Intelligence, Menlo Park, CA, USA.

FRANK, A. AND ASUNCION, A. 2010. UCI machine learning repository.

GABER, M., VaTsaval, R., Omritaomu, O., GaMA, J., CHAWLA, N., AND GANGULY, A. 2010.
Knowledge Discovery from Sensor Data. Springer.

GAMA, J. 2010. Knowledge Discovery from Data Streams. Chapman Hall/CRC.

GaMA, J. AND GABER, M. M. 2007. Learning from Data Streams: Processing Techniques in
Sensor Networks. Springer.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 35

GAMA, J., MEDAS, P., CASTILLO, G., AND RODRIGUES, P. P. 2004. Learning with Drift Detection.
In Proceedings of the 17th Brazilian Symposium on Artificial Intelligence (SBIA 2004). Vol.
3171. 286-295.

GAMA, J. AND PiNTO, C. 2006. Discretization from data streams: applications to histograms and
data mining. In ACM symposium on Applied computing (SAC ’06). 662—667.

GAMA, J., RODRIGUES, P. P.; AND LOPES, L. 2011. Clustering distributed sensor data streams
using local processing and reduced communication. Intelligent Data Analysis 15, 1, 3-28.

GAN, G., Ma, C., AND Wu, J. 2007. Data Clustering: Theory, Algorithms, and Applications
(ASA-SIAM Series on Statistics and Applied Probability). SIAM.

Gao, M.-M., Liu, J.-Z., AND Gao, X.-X. 2010. Application of Compound Gaussian Mixture
Model clustering in the data stream. In International Conference on Computer Application
and System Modeling (ICCASM).

GonzALEzZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theorical
Computer Science 38, 293—-306.

GUHA, MEYERSON, MISHRA, MOTWANI, AND O’CALLAGHAN. 2003. Clustering data streams: Theory
and practice. IEEE Transactions on Knowledge and Data Engineering 15, 515-528.

GUHA, S. 2009. Tight results for clustering and summarizing data streams. In Proceedings of the
12th International Conference on Database Theory. ICDT ’09. ACM, New York, NY, USA,
268-275.

GUHA, S., MisHRA, N., MOTWANI, R., AND O’CALLAGHAN, L. 2000. Clustering data streams. In
IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, 359-366.
HAHSLER, M. AND DuNHAM, M. H. 2010. rEMM: Extensible markov model for data stream

clustering in R. Journal of Statistical Software 35, 5, 1-31.

HAHSLER, M. AND DUNHAM, M. H. 2011. Temporal Structure Learning for Clustering Massive
Data Streams in Real-Time. In SIAM Conference on Data Mining. SIAM / Omnipress, 664—
675.

HAN, J. AND KAMBER, M. 2000. Data Mining: Concepts and Techniques. Morgan Kaufmann.

HAR-PELED, S. AND MAZUMDAR, S. 2004. On coresets for k-means and k-median clustering. In
36th Annual ACM symposium on Theory of computing. 291-300.

HurteN, G. AND DoMiINGOS, P. 2003. VFML — a toolkit for mining high-speed time-changing
data streams. Tech. rep., University of Washington.

Isaksson, C., DunHAaM, M. H., AND HAHSLER, M. 2012. Sostream: Self organizing density-based
clustering over data stream. Lecture Notes in Computer Science, vol. 7376. Springer, 264—278.

JIANG, N. AND GRUENWALD, L. 2006. Research issues in data stream association rule mining.
SIGMOD Record 35, 1, 14-19.

KAUFMAN, L. AND ROUSSEEUW, P. 1990. Finding Groups in Data An Introduction to Cluster
Analysis. Wiley Interscience.

KAvVITHA, V. AND PUNITHAVALLI, M. 2010. Clustering time series data stream - a literature survey.
International Journal of Computer Science and Information Security 8, 1, 289-294.

KHALILIAN, M. AND MUSTAPHA, N. 2010. Data Stream Clustering: Challenges and Issues. In
Proceedings of International Multi Conference of Engineers and Computer Scientists. 566—
569.

KoGAaN, J. 2007. Introduction to Clustering Large and High-Dimensional Data. Cambridge
University Press.

KoNTAKI, M., PAPADOPOULOS, A., AND MANOLOPOULOS, Y. 2008. Continuous trend-based clus-
tering in data streams. Data Warehousing and Knowledge Discovery, 251-262.

KRANEN, P., ASSENT, I., BALDAUF, C., AND SEIDL, T. 2011. The clustree: indexing micro-clusters
for anytime stream mining. Knowledge and Information Systems 29, 2, 249-272.

KREMER, H., KRANEN, P., JANSEN, T., SEIDL, T., BIFET, A., HOLMES, G., AND PFAHRINGER, B.
2011. An effective evaluation measure for clustering on evolving data streams. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.
KDD ’11. ACM, New York, NY, USA, 868-876.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 . Jonathan A. Silva et al.

L1, Y. AND TAN, B. H. 2011. Data Stream Clustering Algorithm Based on Affinity Propagation
and Density. Advanced Materials Research 267, 444—449.

Liu, Y.-B., Ca1, J., YIN, J., AND Fu, A. 2008. Clustering text data streams. Journal of Computer
Science and Technology 23, 1, 112—128.

LLoyD, S. 1982. Least squares quantization in pcm. [IEFEE Transactions on Information The-
ory 28, 2, 129-137.

LUHR, S. AND LAZARESCU, M. 2009. Incremental clustering of dynamic data streams using con-
nectivity based representative points. Data Knowledge Engineering 68, 1-27.

MACQUEEN, J. B. 1967. Some Methods for Classification and Analysis of MultiVariate Observa-
tions. In 5th Berkeley Symposium on Mathematical Statistics and Probability, L. M. L. Cam
and J. Neyman, Eds. Vol. 1. 281-297.

MAESSCHALCK, R., JOUAN-RIMBAUD, D., AND MASSART, D. 2000. The mahalanobis distance.
Chemometrics and Intelligent Laboratory Systems 50, 1 — 18.

MaHDIRAJI, A. R. 2009. Clustering data stream: A survey of algorithms. International Journal
of Knowledge-Based and Intelligent Engineering Systems, 39—44.

MARKOV, A. 1971. Extension of the Limit Theorems of Probability Theory to a Sum of Vari-
ables Connected in a Chain. In Dynamic Probabilistic Systems (Volume I: Markov Models),
R. Howard, Ed. John Wiley & Sons, Inc., Chapter Appendix B, 552-577.

METWALLY, A., AGRAWAL, D., AND EL ABBADI, A. 2005. Duplicate detection in click streams. In
Proceedings of the 14th international conference on World Wide Web. ACM, 12-21.

MEYERSON, A. 2001. Online facility location. Foundations of Computer Science, Annual IEEE
Symposium on, 426—431.

MIERSWA, 1., WURST, M., KLINKENBERG, R., ScHOoLZ, M., AND EULER, T. 2006. Yale: Rapid pro-
totyping for complex data mining tasks. In KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, L. Ungar, M. Craven,
D. Gunopulos, and T. Eliassi-Rad, Eds. ACM, New York, NY, USA, 935-940.

O’CALLAGHAN, L., MisHRA, N., MEYERSON, A., GUHA, S., AND MOTWANI, R. 2002. Streaming-
data algorithms for high-quality clustering. In 18th International Conference on Data Engi-
neering. 685—694.

OLIVEIRA, M. AND GAMA, J. 2010. MEC —Monitoring Clusters’ Transitions. In Proceedings of
the Fifth Starting AI Researchers’ Symposium. 10S Press, 212—-224.

OLIVEIRA, M. D. B. AND GAaMA, J. 2012. A framework to monitor clusters evolution applied to
economy and finance problems. Intell. Data Anal. 16, 1, 93—-111.

Ong, K., L1, W., NG, W., AND LM, E.-P. 2004. SCLOPE: an algorithm for clustering data
streams of categorical attributes. Data Warehousing and Knowledge Discovery, 209-218.

OSTFELD, A., UBER, J., SALOMONS, E., BERRY, J., HART, W., PHILLIPS, C., WATSON, J., DORINI,
G., JONKERGOUW, P., AND KAPELAN, Z. 2008. The battle of the water sensor networks (BWSN):
A design challenge for engineers and algorithms. Journal of Water Resources Planning and
Management 134, 556.

Park, N. H. AND LEE, W. S. 2007. Cell trees: An adaptive synopsis structure for clustering
multi-dimensional on-line data streams. Data and Knowledge Engineering 63, 2, 528—549.

QIoNG L1, X. M. S. T. AnND XIE, S. 2011. Continuously Identifying Representatives Out of Massive
Streams. In Advanced Data Mining and Applications. Springer, 1-14.

REN, J. AND MA, R. 2009. Density-based data streams clustering over sliding windows. In Sizth
International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 5. 248 —252.

RODRIGUES, P., GAMA, J., AND PEDROSO, J. 2006. ODAC: Hierarchical clustering of time series
data streams. In Proceedings of the Sixth SIAM International Conference on Data Mining.
499-503.

RODRIGUES, P., GAMA, J., AND PEDROSO, J. 2008. Hierarchical clustering of time-series data
streams. Knowledge and Data Engineering, IEEE Transactions on 20, 5 (may), 615 —627.
SERIR, L., RAMASSO, E., AND ZERHOUNI, N. 2012. Evidential evolving Gustafson—Kessel algorithm
for online data streams partitioning using belief function theory. International Journal of

Approximate Reasoning In press., 1-22.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Data Stream Clustering: A Survey : 37

SHAH, R., KRISHNASWAMY, S., AND GABER, M. M. 2005. Resource-aware very fast k-means for
ubiquitous data stream mining. In 2nd International Workshop on Knowledge Discovery in
Data Streams, 16th European Conference on Machine Learning (ECML’05).

SivA, A., CHIKY, R., AND HEBRAIL, G. 2011. A clustering approach for sampling data streams
in sensor networks. Knowledge and Information Systems.

SPILIOPOULOU, M., NTOoUTSI, I., THEODORIDIS, Y., AND SCHULT, R. 2006. Monic: modeling and
monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. KDD ’'06. ACM, 706-711.

Tasouuls, D., Abams, N., AND HAND, D. 2006. Unsupervised clustering in streaming data. IEEE
International Workshop on Mining Evolving and Streaming Data. Sizth IEEE International
Conference on Data Mining (ICDM 2006), 638—642.

TAVALLAEE, M., BAGHERI, E., Lu, W.; AND GHORBANI, A. A. 2009. A detailed analysis of the
kdd cup 99 data set. In 2nd IEEFE International Conference on Computational Intelligence for
Security and Defense Applications. 53—58.

VATTANI, A. 2009. k-means requires exponentially many iterations even in the plane. In Proceed-
ings of the 25th annual symposium on Computational geometry. SCG ’09. ACM, New York,
NY, USA, 324-332.

WanN, R., YAN, X., AND Su, X. 2008. A weighted fuzzy clustering algorithm for data stream. In
ISECS International Colloquium on Computing, Communication, Control, and Management.
360-364.

WAaANG, X. Z. AND WEL 2010. Self-adaptive Change Detection in Streaming Data with Non-
stationary Distribution. In Advanced Data Mining and Applications. Springer, 1-12.

Wu, X., KUMAR, V., Ross QUINLAN, J., GHOSH, J., YANG, Q., MoTODA, H., MCLACHLAN, G. J.,
Ng, A., Liu, B., Yu, P. S., ZHou, Z.-H., STEINBACH, M., HAND, D. J., AND STEINBERG, D.
2007. Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1-37.

Xu, R. AND WuNscH, D. 2009. Clustering (IEEE Press Series on Computational Intelligence).
Wiley-IEEE Press.

YANG, C. AND ZHOU, J. 2006. HClustream: A novel approach for clustering evolving heterogeneous
data stream. In Sizth IEEE International Conference on Data Mining. IEEE Press, 682—688.

ZHANG, T., RAMAKRISHNAN, R., AND LivNy, M. 1996. BIRCH: An Efficient Data Clustering
Method for Very Large Databases. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 103—-114.

ZHANG, T., RAMAKRISHNAN, R., AND L1ivNy, M. 1997. BIRCH: A new data clustering algorithm
and its applications. Data Mining and Knowledge Discovery 1, 2, 141-182.

ZHANG, X., SEBAG, M., AND GERMAIN-RENAUD, C. 2009. Multi-scale Real-Time Grid Monitoring
with Job Stream Mining. In 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID ’09). 420-427.

ZHANG, X., ZHou, X., AND Hu, X. 2006. Semantic smoothing for model-based document cluster-
ing. In Sizth International Conference on Data Mining (ICDM ’06). IEEE, 1193-1198.

Zuou, A., Cao, F., QiaN, W., aAND JIN, C. 2008. Tracking clusters in evolving data streams over
sliding windows. Knowledge and Information Systems 15, 2, 181-214.

Zuu, H., WANG, Y., AND YU, Z. 2010. Clustering of Evolving Data Stream with Multiple Adaptive
Sliding Window. In International Conference on Data Storage and Data Engineering (DSDE).
95-100.

ZHU, Y. AND SHASHA, D. 2002. StatStream: statistical monitoring of thousands of data streams
in real time. In Proceedings of the 28th International Conference on Very Large Data Bases.
VLDB Endowment, 358-369.

Journal of the ACM, Vol. V, No. N, Month 20YY.

