
451

A System to Visualize and Interact
with Prolog Programs

Jos6 Paulo Leal

Laborat6rio de Intelig~ncia Artificial e Ci~ncia de Computadores
R. do Campo Alegre, 823 / 4100 Porto

Portugal
fax: +351 2 6003654

emaJJ:zp@ncc .up.pt

Abs t rac t . We present a system for visualization and in terac t ion with
Prolog programs using a structural editing approach, t h a t m a y be ex-
tended to o ther logic l a n g u a g e s since it is based in concepts from the
Logic Programming (LP) p a r a d i g m .

We present a system to visualize and to interact with the execution of Prolog
programs. The clauses of the predicates to be visualized or interacted with are
a n n o t a t e d with terms that specify their visual syntax and those predicates are
i n t e r a c t i v e l y s o l ve d using a graphical interface, where the user specifies the
goal and the clause for the next derivation step.

This approach is motivated by the analogy between resolution of a logic
program and syntactic analysis of a context free grammar [9]. It allows us to use
the knowledge of attr ibute grammars in interactive editing [1, 3], particularly
in the incremental evaluation of attributes [5] and integrates the concepts of
interaction and visualization LP in the paradigm.

The system is implemented in Prolog and uses a portable interface package
[8] to create interfaces for X Windows. It is composed of tree main modules to
solve annotated predicates, evaluate incrementally the attributes, and manage
the interface. The system has also a module to specialize by partial evaluation
the incremental attr ibute evaluator for a set of annotated predicates.

The system works with standard Prolog program files with some annotated
clauses that are transformed during compilation. The annotations are terms
rewritable to a set of assignments, where the left hand side refers the at tr ibute
of a goal and the right hand side is an expression involving arithmetic operators,
functions, constants and other attributes. It does not intend to be an interactive
Prolog engine. In fact, only the predicates where user selection is pertinent should
be annotated, and only those clauses would be interactively solved.

We intend to use this system for several tasks in the development of Prolog
programs, in particular for:

- visualizing/editing data structures
- debugging and tracing of programs
- management of user interaction

452

The main characteristics of this system are a result of the following decisions:

E x e c u t i o n o r i e n t e d v e r s u s c o d e o r i e n t e d : The adopted model is execution
oriented although for some purposes a code oriented visualization could be
preferable. In the latter case it is possible to use some annotated meta pro-
gram to manipulate the program whose code we are interested in visualizing.

R e s t r i c t e d i n p u t v e r s u s i n p u t - c o m p i l a t i o n - e x e c u t i o n cycle : In this sys-
tem the user inputs are restricted to valid ones: the selection of pending
goals or unifiable clauses. It prevents input errors but it is applicable only
when the input is a tree, failing if its a D.A.G. (general graphs are even
more problematic) as those resulting from the unification of logic variables.
We are still looking for the best way of merging this two types of interaction
to solve this problem.

E x p r e s s i v e n e s s v e r s u s e f f ic iency: We were more concerned with expressive-
ness rather than efficiency in the definition of the annotation language.
Nevertheless, at tr ibute evaluation is more efficient than, for instance, con-
straint solving (another common approach for describing a layout) and using
partial evaluation optimization the interaction is rather fast.

References

1. R. Balk, G. Snelting, The PSG System: iFrom Formal language Definitions to
Interactive Programming Environments, ACM Transactions on Programming lan-
guages and Systems, Vol. 8, In 4, (1986:10), 557-608.

2. A. Jorge, Using EDIPO, Centro de Informs Universidade do Porto, 1990.
3. S. Horwitz, T. Teitelbaum, Generating Editing Environments Based on Relations

And Attributes ACM Transactions on Programming languages and Systems, Vol.
8, In 4, (1986:10), 557-608.

4. C. Hogger, Essentials of Logic Programming, Graduate Texts in Computer Science~
Oxford University Press, 1990.

5. S. E Hudson, Incremental Attribute Evaluation: The Flexible Algorithm for Lazy
Update ACM Transactions on Programming languages and Systems, Vol. 13, No3,
July 1991, 315-341.

6. J. P. Leal, The Ytoolkit: the Prolo9 approach to an users interface, ICLP Precon-
ference Workshop on Logic Programming Environments, Eilat, Israel, 1990.

7. J. P. Leal, An History Based Interface, ICLP Preconference Workshop on Logic
Programming Environments, Paris, 1991.

8. J. P. Leal, J. P. Santos, Towards the portable interface for Prolo9 applications -
Reference Manual - X-Windows Interface, Centro de Informs da Universidade
do Porto.
J. Maluszyfiky, Attribute Grammars and Logic Programs: A Comparison of Con-
cepts Lecture Notes in Computer Science, 545, Springer Verlag.
E.Yardeni, E. Shapiro The Type system for Logic Programs Journal of Logic Pro-
gramming, (1991:10), 125-153.

9.

10.

