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Abstract: This study presents the results of field tests performed on French medium-voltage distribution networks with
two novel algorithms developed in the framework of the evolvDSO Project. Working in the transmission system
operator and distribution system operator (TSO-DSO) cooperation domain, the interval constrained power flow tool
estimates the flexibility range at primary substations by aggregating the distribution network flexibility. The low-
voltage state estimator tool evaluates the voltage profile of a low-voltage (LV) network using an artificial neural
network trained on historical data. Based on real-field data and considering various real-life scenarios, both algorithms

look promising in terms of efficiency and scalability. Areas of improvement were also identified.

1 Introduction

Distribution system operators (DSOs) face new challenges with the
increase of distributed generation (DG), the usage of new
equipment such as electrical vehicles (EVs), the emergence of
storage systems as well as new market players such as flexibility
aggregators. However, thanks to Smart Electric Grids, the DSOs
will have additional capabilities to monitor and control the
distribution grid at both medium-voltage (MV) and low-voltage
(LV) levels by relying on advanced information and
communication technology architectures, and innovative algorithms.

Within the framework of the FP7 EU Project evolvDSO (www.
evolvdso.eu), Enedis experimented on field data two original
algorithms developed by INESC TEC. The first one, called
interval constrained power flow (ICPF), belongs to the
transmission system operator and distribution system operator
‘(TSO-DSO) cooperation’ domain [1]: it aggregates the
distribution network flexibility and estimates a region of feasible
values for the active and reactive powers exchanged at the
boundary nodes between the transmission and distribution
networks, as well as its associated costs. The second one, the
low-voltage state estimator (LVSE), aims at improving the
real-time observability of LV grids [2]. It evaluates their voltage
profile, even if they are poorly characterised.

This paper provides the results collected by applying both
algorithms to field data: one LV site consisting of several LV
substations was considered for the LVSE, and two MV networks,
each including at least one primary substation and considering
different flexibility asset types, were used for the ICPF.

2 Interval constrained power flow
2.1 Algorithm description

The ICPF tool aims to increase the cooperation between TSOs and
DSOs by favouring their interaction at different timeframes, thus
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improving the system security. It estimates the active and reactive
power flexibility ranges available at each primary substation, i.e.
at the TSO-DSO interface, and the main associated cost areas.

This process is performed for several hours ahead in operational
planning by considering: (i) the planned network topology, (ii) the
local consumption and generation forecasts, (iii) the technical grid
and asset constraints, (iv) the flexible resources available in each
downstream distribution network and (v) their associated costs.
The flexibility levers the tool is able to consider are divided into
three types: the usual technical DSO levers [on-load tap changers
(OLTCs) and capacitor banks], the regulated ones (e.g. firm and
non-firm connection contracts) and the market based ones. It then
performs a technical and economic evaluation of the flexibility
from the bulk power system point of view. More information
about the ICPF tool features can be found in [3].

2.2 Field test settings

Various tests were carried out on two MV networks in order to assess
the performance achieved by the tool: (i) a small rural network, and
(ii) a large urban network. Their characteristics are provided in
Table 1.

Several flexibility assets were considered within the framework of
the trials:

e DSO owned assets: OLTCs of the high-voltage (HV)MV
transformers and reactive power compensation (e.g. MV capacitor
banks);

o Distributed MV generators: active and reactive power flexibility;
e Battery storage system (only on rural network): active power
flexibility of the battery charge/discharge. The reactive power
flexibility is not considered for this asset in the tool.

It is important to note that the usage of some of these levers (in
particular, those provided by third parties) is currently not possible
for DSOs in the context of the French regulatory framework. Here,
these levers are only considered in a prospective way.
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Table 1 Main characteristics of studied networks

Simple MV Large MV
primary substations 1 2
HV/MV transformers 1 (20 MVA) 5 (36 MVA each)
MV feeders 6 5

MV/LV substations
MV customers
MV production units

114 (total of 6.5 MVA)
15 (total 3.5 MVA)
1 wind farm 12 MW

577 (total of 62 MVA)
106 (total 34 MVA)
1 cogeneration 1 MW

Table 2 PMs obtained for different scenarios applied to the rural MV

network
Scenario Flexibility area increase, % Computational time
reduction, %

samples nb 1k 10k 100k 1k 10k 100k
DSOFlex 24.68 5.59 2.86 88.88  98.97 99.9
DSO&GenFlex  319.84 197.12 162.13  91.57 99.1 99.9
DSO&BatFlex 32.08 14.37 10.07 90.36  98.98 99.9
AllFlex 117.79 51.94 32.98 92.03  99.21 99.92

1 wind farm 6 MW 1PV 1.3 MW
1PV 4.2 MW
capacitor banks 1 (2.4 MVAr) 2 units of 1.8 MVAr
3 units of 4.8 MVAr
battery storage 1 (1.3 MWh) —

Many scenarios were considered involving various combinations
of production levels, asset availability, associated costs and
network topologies. All were performed a posteriori using the
following field data:

e Current topology of the network fetched from Enedis SCADA
system, completing the static description extracted from Enedis GIS;
e Up-to-date load and generation forecasts computed by Enedis
forecasting system;

e Parameters associated to each flexibility asset (variation domain
and associated costs).

2.3 Field test evaluation

Two performance metrics (PMs) were defined to assess the ICPF
effectiveness:

e Computational time required to provide the flexibility cost map
for a specific time instant;
o Size of the estimated flexibility area.

Both PMs are compared to those obtained with a classical
Monte-Carlo approach (considering from 1000 to 100,000
samples) to quantify the gain. It will help us to assess,
respectively, the scalability of the tool, and the accuracy of the
results it provides.

2.4 Field test results

The tool performed well for the different test cases considered,
replicating real-life situations of the studied MV networks.
Flexibility cost maps such as the one displayed in Fig. 1 were
provided by the tool for each hour of the predefined time horizon:
in addition to the reference operating point, four flexibility areas

352€/h
176 €/h
® 1173 €h
10 €/h

reactive power (Mvar)
; .

1,9 2,0 2,1 2,2 2,3 24 25 2,6 2;

active power (MW)

Fig. 1 Example of flexibility cost map obtained for a particular
configuration of the rural MV network with DSO assets and storage
flexibility considered
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are provided, each delimited by a maximum price. Three of these
prices are automatically calculated by the ICPF tool. They
correspond to the maximum price achievable when activating all
the flexibility assets, and to the half and the third parts of this
price. The fourth price is defined by the control centre operator. It
can be larger, smaller or in-between any of these three prices.
Therefore, the largest of these four areas corresponds to the
maximum flexibility domain achievable for this network for the
topology planned at this hour.

(i) Lessons learned on the flexibility map accuracy: The flexibility

areas provided by the ICPF are the largest even when compared to
the Monte Carlo approach (described in [4]) using the largest
sample number (Table 2). This increase is the most significant
when the maximum number of flexible assets is considered
(AllFlex scenario), showing the added value of the ICPF.

Only one minor issue was encountered regarding the DER units
flexibility when both active and reactive powers are considered as
flexible: the rated power of the unit might be overcome in some
situations. Some additional parameters should be introduced in
order to better tune the power electronics and the generation part
of these units.

(ii) Lessons learned on the computational requirements: The ICPF
approach is quite efficient in comparison to MC: it needs less time to
compute a more accurate flexibility map (Table 2).

The flexibility map computational time mainly depends on two
factors: the network size and the number and type of the flexible
assets considered. With a simplified version of the networks under
study, hourly flexibility maps computations require from 5 to
30 min for each substation on a standard PC. ‘Simplified version’
means that the non-controllable switches are removed from the
network representation and the line series are merged to reduce at
maximum the number of network assets. Such operation has thus
to be performed for each network topology. With the full network
description, the computation time almost doubles: it goes up to
55 min for the largest substation.

If such computational times are reasonable for hourly forecasts (all
the more since parallel computation of several maps is possible with
the tool), it might become problematic if shorter time steps (30 min,
or even 15min) were considered. Simplifying the network
beforehand would thus become a requirement.

3 Low-voltage state estimation
3.1 Algorithm description

The LVSE tool developed in the context of the evolvDSO project
evaluates the voltage profile of a complete LV network. It follows
an innovative approach based on an artificial neural network
trained on historical data [1, 2]. It uses limited information when
compared to traditional state estimation techniques, such as
weighted least squares algorithms:

e [t requires no detailed electrotechnical or topology data of the
network, only the connection phase of the customers, and
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historical voltage and power data collected by the smart meters
(SMs);

o [t exploits the voltage and power quantities collected in real time
by SMs.

The first stage of the LVSE algorithm consists in training the
neural network based on the historic database (Fig. 2). This
database needs to contain sufficient synchronised data about the
variables (voltage and powers) that will be passed to the model
during its training stage, including those considered in real time.

The training relies on the use of AutoEncoders (AE) trained
through extreme learning machine (ELM) techniques. This off-line
process allows to learn the patterns/dependencies between the
electrical variables of a given network, and performs a reliable
state estimation.

In the second stage, the trained AE is used as the ‘brain’ of the
LVSE algorithm. The measurements provided in real time by SMs
are used as its inputs to compute the state estimation solution. The
solution comprises the state variables to be estimated: voltage
magnitude values, as well as the active power and reactive power
injections if desired.

3.2 Field test settings

The site considered for the trials of the LVSE tool consisted of 11
MV/LV substations. This represents about 1250 LV customers,
most being residential and the rest being of the commercial type.
They are split between about 50 feeders and 15 km of LV lines.
No photovoltaic generation, storage or EV unit is present on these
networks. About 1000 of the customers were equipped with SMs
allowing their phase connection to be known. These information
are not available for the customers not equipped with a SM.

To allow extensive testing of the LVSE, reference datasets were
constituted for these networks by performing load-flow calculation
based on real data. In addition to their description, we used the
following data collected from the field:

e Power measurements with a 30 min time step;
o Three-phase LV voltage measurements collected at LV substation
bus bars with a 10 min time step.

This allowed us to simulate network behaviour as near to real life
as possible and to investigate a large number of strategies regarding:
the number and positioning of real-time measurements (RTMs), the
number and positioning of SMs considered for the training, the
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Fig. 2 ELM-AE methodology illustration
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historic database duration and so on This extensive testing could
not have been done directly on the field given the experimental
constraints and their limited timeframe.

3.3 Field test evaluation

A consistent database of over 18 months was constituted to evaluate
the algorithm. Out of these 18 months, the first year was used as
reference to test different training strategies. The next 6 months
were used to consistently assess the state estimations provided by
the tool in the different configurations.

Several PMs were considered to assess LVSE efficiency:

e ‘Accuracy’ PMs to characterise the estimation error on the voltage
magnitude;

o Min/max estimation error (V),

o Average estimation error (V),

o Standard deviation of the estimation error (V),

o Distribution of the estimation error,
e ‘Computational’ PMs to characterise the LVSE computation
process;

o Average pre-processing duration (s),

o Average training duration (s),

o Average and standard deviation of the state estimation
duration (s).

3.4 Field test results

(1) Lessons learned on training strategies: Trials of the LVSE have
highlighted that both the estimation accuracy and the training process
duration substantially improve when independent computations of
the network feeders are performed instead of considering the
whole network.

Similar improvements were observed when limiting the
redundancy of information during the training, i.e. when selecting
only one SM per node and per phase while ensuring maximum
observability of the network (Fig. 3).

The analysis of the training strategies proved that the ELM-AE
model requires only a short amount of data to provide a reliable
estimation: two days data seem already sufficient so that the LVSE
can provide again reliable state estimation over the next month
(Fig. 4). This is a strong requirement since the LVSE neural
network model should be adapted in case the LV network
topology evolves, i.e. a new customer or a piece of new equipment
such as EVs is added.

(ii) Lessons learned on real-time observation strategies: Only a
reduced number of RTMs is required to provide sufficient
accuracy. Three RTMs (one on each phase of a feeder) already
provide exploitable results. Nine RTMs (three measurements on
each phase dispersed on the feeder) were sufficient to provide
accurate estimation on a feeder of 150 customers (Fig. 5).

The location of the RTMs seems to have a limited impact on the
state estimation accuracy. If located in the middle of the feeder or
at its end, the overall accuracy is quite similar.

Dsitribution (%)

0.05 0.03 0.01 0.01 0.03 0.05

Error (pu)

Fig. 3 Impact of SM redundancy on the state estimation accuracy
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Fig. 4 Impact of training periods on the estimation accuracy for an
evaluation period of 1 month

—8— 3 meters
—8— G meters 10
—8— 3 meters +

bus bar

6 meters + bus bar

Distribution (%)

N

003 0.01 0.01 0.03 0.05

Error (pu)

Fig. 5 Impact of the number of SMs transmitting data in real time on the
State estimation accuracy

(iii) Lessons learned on the computational requirements: The
pre-processing stage of the database is independent from the
LVSE algorithm itself, but it plays a key role. It ensures that the
time interval considered for the ELM-AE training is the
intersection of the time intervals where measurement data is
present for all the selected SMs. This current requirement makes it
quite time consuming: the larger the number of SMs considered
for the training, the longer the training data consolidation will last
(Fig. 6a). This operation should be optimised in case of an
operational deployment.

Once the database has been consolidated, the training process
itself is quite efficient: it lasts <l min for a database consisting of
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about 300 measurement locations and 1 year of data. Its
duration evolves nearly linearly with the number of considered
SMs (Fig. 6b).

Such an evolution pattern could not be found for the LVSE RT
state estimation computation (Fig. 6¢). This process is quite fast: it
lasts at most 12 s for a network of 300 customers. Over the
numerous situations investigated during the tests, a computation
time of 1.4 s was observed in average.

4 Conclusions

The ICPF tests showed that the tool fulfils its expectations by
providing the aggregated active and reactive power flexibility
available at the TSO-DSO boundary and its associated flexibility
cost map in a reasonable amount of time. The calculation of the
flexibility map for a primary substation lasts no longer than
30 min, making it compatible with the time constraint of
operational planning.

The ICPF tool could be enhanced in several ways, such as:
(i) speed-up the flexibility map calculation; (ii) manage battery
state of charge schedules and use storage reactive power as a
flexibility lever; (iii) automate the integration of scheduled
network reconfigurations, for example happening because of
maintenance; (iv) manage the generation unit flexibility so
that their rated power is never exceeded; (v) make the GUI
more user-friendly, e.g. allow setting the cost ratios of the
flexibility areas. INESC TEC has already started to work on
the speed-up by developing a new sparse solver for optimal
power flow (OPF) calculations.

Based on the feedback of LVSE tests, the accuracy, the
robustness to RTM losses and the computational requirements
(processing power, memory requirement etc.) of the algorithm
seem promising with regard to a decentralised application in
equipment at the MV/LV substation level. More testing,
involving networks with DG and active loads, would however be
required for a definite answer.

Areas of improvements were also identified during the tests,
the main concerning the LVSE training. The current constraints
on data presence and synchronicity would make it difficult to
apply on the field where communication issues, missing data
and invalid data are likely to be encountered. Different
solutions are being investigated by INESC TEC (improved
usage of customer location/connection etc.) to limit this
constraint.
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