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Abstract—This paper presents a binary acceleration approach
based on extending a General Purpose Processor (GPP) with a
Reconfigurable Processing Unit (RPU), both sharing an external
data memory. In this approach repeating sequences of GPP
instructions are migrated to the RPU. The RPU resources are
selected and organized off-line using execution trace information.
The RPU core is composed of Functional Units (FUs) that
correspond to single CPU instructions. The FUs are arranged in
stages of mutually independent operations. The RPU can enable
several stages in tandem, depending on the data dependencies.
External data memory accesses are handled by a configurable
dual-port cache. A prototype implementation of the architecture
on a Spartan-6 FPGA was validated with 12 benchmarks and
achieved an overall geometric mean speedup of 1.91x.

I. INTRODUCTION

Embedded applications with stringent performance require-
ments and running on reconfigurable systems often need to
employ application-specific hardware accelerators to achieve
the required performance. These dedicated hardware modules
are tailored for the target application, as more efficient designs
can be achieved by exploiting the detailed information available
in such cases: the amount of data to process, inter-iteration data
dependencies in loops, required data representation ranges, etc.
However, a design process which requires software/hardware
partitioning of the application and the customization of the
hardware accelerator incurs long design and verification times,
and may lead to an overall reduction of system flexibility.

To avoid this design effort, there are several approaches
which automate the design of custom accelerators. Those
that depend on the analysis of the run-time behaviour of the
binary application code [1]–[5] can exploit information of
the actual behaviour of the application (possibly workload-
dependent) without requiring any changes to the traditional
software development flow or tools. However, they cannot rely
on sophisticated static code analyses.

Our previous work presented a binary acceleration approach
in which the execution of frequently executed loops is trans-
parently migrated at run-time to a Reconfigurable Processing
Unit (RPU), a tailored co-processor [6]–[8]. To generate an
application-specific RPU, the binary of the target application is
profiled by an Instruction Set Simulator (ISS) to detect several
megablock instruction traces [9]. Each is then translated into a
configuration for a specific instance of an RPU tailored for the
set of translated traces. The approach is intended to accelerate
the execution of loops with many iterations, so that the time

required for the migration can be amortized over a significant
amount of computation.

An accelerator that does not support memory accesses
may have its applicability limited, because many data-intensive
computational kernels must process significant amounts of data.
A previous version of our work presented in [8] efficiently
supports on-chip Block RAMs (BRAMs). To keep the migration
of the control flow transparent to the executing program and
avoid data-consistency issues, the data memory is shared
between RPU and General Purpose Processor (GPP). The RPU
is capable of two concurrent memory accesses by directly
interfacing with the GPP’s local data BRAM through a bus
sharing mechanism.

The system architecture presented in this paper significantly
extends the previous with a more sophisticated control logic for
the RPU’s stages, and a shared external memory. Specifically,
the new version has the following main features:

1) Shared external data memory for GPP and RPU
through a dedicated dual-port data cache for the RPU;

2) More sophisticated control logic that allows for
simultaneous activation of computing stages.

The complete implementation of the new hardware infras-
tructure is also evaluated for a set of 12 benchmarks. An overall
geometric mean application speedup of 1.91× is achieved and
a significant number of memory accesses per megablock is
performed through the accelerator to the external data memory.

This paper is organized as follows. The following section
summarizes related work. Section III presents an overview of
the system architecture and operation. Section IV details the
aspects of the RPU. Section V discusses the dual-port cache
coupled to the RPU, while Section VI presents and discusses
the experimental results. Section VII concludes the paper.

II. RELATED WORK

There have been a number of research efforts considering the
migration of binaries to RPUs. The most well known include
the DIM [2], the Warp processor [10], and the CCA [11].
Recent approaches include the work presented in [12] and
the Dynamically Specialized Execution Resource (DySER)
approach [3].

The DIM binary acceleration approach [2] is built around
a 2D row-oriented coarse-grained reconfigurable array that is
tightly coupled to a MIPS processor. The array is composed
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of homogeneous rows, each one containing several Functional
Units (FUs) of different types, including load/store units. A
transparent runtime translation mechanism detects sequences of
processor instructions between special control instructions. A
configuration for the array is then generated by determining data
dependencies among the instructions and assigning operations
to the FU. The DIM binary translation mechanism and coupling
to the processor result in a low migration overhead. For a subset
of the MiBench benchmark suite, an average speedup of 2.66×
was achieved (compared to a MIPS processor).

In [13], the authors propose a loop accelerator architecture.
The approach is based on binary acceleration which employs
a virtualization layer which abstracts the binary from the
accelerator architecture. During runtime, a virtual machine
translates unmodifed binary into accelerator control instructions.
The accelerator itself is designed to execute modulo schedulable
loops, and is composed of 1 CCA [11], 2 integer units, 2
double units, 16 float units and 4 memory address generators
for load operations, which are time multiplexed to serve 16 load
streams. The loops to map must have an II smaller than 16. The
assumption is made that the accelerator can perform memory
disambiguation, and the address generators only support regular
access patterns. Results are attained by simulation using a
modified compiler, and a mean speedup of 2.66× is achieved.

A just-in-time configuration approach is presented in [12].
Short sequences of up to 3 instructions and Instruction Level
Parallelism (ILP) of 2 are detected by offline profiling. A
compilation step generates configurations for a Specialized
Functional Unit (SFU) and patches the binary code to trigger its
use. The SFU was designed through analysis of 21 applications
from the Mibench [14] and MediaBench [15] benchmark suites.
The SFU is tightly coupled to the processor pipeline, executes
the hot instruction sequences in 1 clock cycle and supports logic
and arithmetic operations. Memory or control flow operations
are not supported. An average speedup of 1.10× was achieved
when coupling the SFU with a 5-stage, single-issue in-order
RISC processor for 14 benchmarks from several suites.

In [3], multiple-path execution trees are detected at compile
time. The detected trees are split into memory handling
instructions, which are executed on the processor side, and
computation instructions, which are moved to DySER blocks,
heterogeneous 2D arrays of configurable FUs. The capabilities
of the FUs were chosen based on a quantitative analysis. Custom
instructions are added to the binary code for configuration
and for transferring data from/to the DySER. Multiple DySER
blocks can be coupled to the processor, and pipelining execution
is supported. A geometric mean speedup of 2.1× is achieved
with two DySER blocks coupled to a dual-issue out-of-order
processor.

The work presented in this paper is based on binary level
detection of repetitively executed GPP instruction sequences.
These sequences are then migrated to the RPU, making it a loop
accelerator. The RPU is loosely coupled to the main processor,
and although this introduces some overhead, it avoids the need
for modifications to the base processor, the instruction set or
the compiler.

Fig. 1: System architecture overview.

III. OVERVIEW

Fig. 1 shows an overview of the core system. It contains:
the GPP (a Microblaze processor) executing code located in
local BRAMs; the RPU, an accelerator whose computational
resources and possible configurations are specified at synthesis
time; an injector module which intercepts the GPP’s instruction
bus; a custom configurable dual-port cache for the RPU; and
a Multi-Port Memory Controller (MPMC) to access external
data memory (not shown).

The BRAM memory contains only program code; every data
element and array is located in external memory. In this proto-
type, an instruction cache for the GPP is not supported. The
local code BRAM also contains communication subroutines.
One subroutine per megablock is created by the RPU generation
process. These routines control the transfer of operands/results
between GPP and RPU. They are loaded into memory without
disturbing the original application code.

A. Functional Description

Migration of the execution from GPP to RPU is ac-
complished by the injector module. It contains a list of
predetermined addresses, each corresponding to the start of an
identified megablock trace. When the GPP accesses an address
in the list, the fetched instruction is replaced with a jump to the
communication subroutine for the corresponding megablock.
Then the GPP executes the subroutine instead of the original
application code.

The subroutine transfers operands from the register file to
the RPU via a Fast Simplex Link (FSL). Concurrently, the
injector sends a configuration word to the RPU. This sets the
data connections between the RPU’s computing resources and
configures the control logic. The RPU execution begins once
all required operands are received. At the same time, the GPP
begins invalidating its data cache to preserve data coherency. If
the RPU execution time is long enough, this process introduces
no additional overhead. GPP data cache invalidation occurs
only if the trace being accelerated contains store operations.

The RPU then accelerates the execution of trace iterations
by concurrently executing its instructions. The RPU has two
Local Memory Bus (LMB) based memory ports that can be
used to either connect directly to a local data BRAM or to the
dual-port cache shown. The availability of two ports alleviates
the memory access bottleneck. In many applications, loops
which are good candidates for acceleration contain numerous
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memory accesses. Support for concurrent accesses is then
particularly important, because it enables the exploitation of
data parallelism.

While the RPU is executing, the GPP stalls (with a blocking
FSL get instruction) waiting for results, which are then placed
in the register file by the communication subroutine. The
subroutine ends with a jump back to the position where
normal execution was interrupted, i.e., the first instruction
of the accelerated trace. By doing so, the last iteration of the
accelerated loop occurs in software. This allows for the control
flow of the program to be followed correctly for cases in which
the trace contains several exit points, i.e. branch instructions.
Thus, this migration mechanism allows for an application to
make use of the accelerator transparently, without need for
modification of source code or binary.

B. Clock Domains

The system has two clock domains. The system-wide clock
system drives the GPP, code memory, FSL links between GPP,
RPU and injector, and MPMC. The RPU and its cache are
driven by a different clock signal, whose frequency can be
set according to the achievable maximum of each particular
RPU. The RPU and cache contain synchronization circuits
for data transfer across clock domain boundaries. A separate
clock domain for the RPU allows for improved acceleration for
those cases in which the RPU’s maximum operating frequency
exceeds that of the rest of the system (which can be constrained
by long buses and other peripherals). When the RPU itself must
operate at a lower frequency, the rest of the system need not
be similarly constrained: effective acceleration is still possible
if the ILP of the Control and Dataflow Graphs (CDFGs) which
represent the accelerated traces exceeds the decrease in clock
frequency relative to the system clock.

IV. RECONFIGURABLE PROCESSING UNIT

The RPU is an accelerator with a generic structure, which
is tailored at synthesis time to accelerate the set of megablocks
selected during profiling. A megablock is a dynamic trace
representing a repeating pattern of instructions during execution.
A specific RPU instance is generated by a set of custom tools
using the tool flow described in [8].

A. Control and Dataflow Graphs

The megablocks selected for acceleration are converted to
a CDFG representation. The trace shown in Fig. 2a, detected
from the execution of an fir filter kernel, yields the CDFG
shown in Fig. 2b. Since megablocks represent iterative patterns
of instructions, the CDFGs contain backwards edges which
represent the data and control dependencies between iterations.
For the first pass through the CDFG, inputs are fetched from the
GPP register file (dotted arrows). Afterwards, data is propagated
within the CDFG and results are placed back into the register
file. Registers on the top are repeated at the bottom, for
simplicity of visualization. The value of register r19 is never
updated during execution, hence the solid arrow feeding the
Cmp operation. Execution terminates at control nodes (e.g.,
BGE in Fig. 2b), which correspond to conditional branch
instructions in the original trace.

(a) Small Megablock trace example

(b) Control and Dataflow Graph derived from the trace in a)

Fig. 2: Megablock trace and respective CDFG

The longest backwards connection in a CDFG dictates the
iteration interval Iiter. When every node represents a single-
cycle instruction, this means that an iteration can be completed
every Iiter cycles. In Fig. 2, the longest backwards connection
spans just one level, thus one iteration can be completed every
cycle (the execution is fully-pipelined). In this situation, the
number of instructions that can be completed per clock cycle,
i.e., the Instructions per Cycle (IPC), is dependent not only
on the average ILP of the individual stages, but also on the
average number of operations completed by executing several
CDFG levels simultaneously.

Previous versions of the RPU did not implement the shortest
possible backwards connection between FUs and lacked control
logic capable of activating several stages concurrently. Instead,
the number of cycles to complete an iteration, Citer, was
equal to the longest path through the CDFG, at best. Achieved
speedups were due only to the ILP of each activation stage. The
implementation of the RPU presented here addresses this by
supporting multiple simultaneous stage activations, as described
next, thereby decreasing Citer.

B. Structure

A simplified view of an RPU instance is shown in Fig. 3.
It contains a set of FUs grouped in activation stages. The FUs
in a stage execute data-independent operations in parallel. Also
shown are the synchronization logic and the memory access
control signals originating from stages which have load or
store units. These signals are connected to the Memory Access
Manager (MAM) (shown in Fig. 4), which controls access to
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Fig. 3: Simplified RPU view with 3 stages, 2 memory operations
and Citer=1

the memory ports. Further details about memory access are
given in Section IV-D.

A stage consists of a number of FU (number and type
according to the mapping process). FUs correspond to machine
code instructions. The supported operations are: loads/stores,
integer arithmetic (including integer division by a constant)
and logical operations. All FUs are single-cycle operations,
except for the integer division by a constant (2 clock cycles),
multiplication (3 clock cycles), and load operations (minimum
of 4 clock cycles). The actual latency of load and store
operations depends on the availability of memory ports. Since
stores produce no data back into the array, the item to store
may be buffered until access is granted at a later time. That
is, a stage may finish executing despite containing outstanding
stores. Latency is introduced by stores if the stage they are in
needs to be activated again, but cannot be due to the outstanding
request.

In order for a stage to be activated, valid data must be
present at its inputs. Inputs for a stage can originate from the
input registers of the RPU or from any stage of the array, the
stage itself included. That is, feedback connections can be
established mimicking the CDFG recursion. If any stage is fed
data from a downstream stage, it will not be possible to enable
that stage every cycle. Fig. 3 shows a synthetic example of a
small array for which it is possible to do so. All data flows
downwards, except for the first stage, which consumes the data
it produced in the previous iteration. Note that the array does
not have crossbar-type connectivity between all stages in order
to support the different FU interconnection patterns of each
configuration. A tailored multiplexer generated per FU input
provides the minimum required connectivity for that input for
each configuration. Fig. 3 exemplifies this with the multiplexer
feeding the first input of the sub FU to the second stage. Inputs
may also be fed constant values specified at synthesis time.

C. Execution

The RPU is idle until it receives a configuration word from
the injector and a known number of operands from the GPP.
The contents of the RPU’s dual-port cache are invalidated prior
to every execution, as the GPP might have made its contents
incoherent with the external memory.

As iterations are completed in the array, the assertion of
a done signal indicates that the execution flow must follow
a different path, i.e., a sequence of instructions not part of
the accelerated trace. The number of iterations does not need
to be known offline. The same RPU configuration can iterate
a different number of times per call depending on its input
operands and termination conditions. A configuration of the
RPU may not use all the existing stages, depending on the
megablock being accelerated. For instance, only the first three
stages of an RPU with five stages total may need to be activated
to complete an iteration of a configuration; the output registers
can be fed by any stage.

Per-stage control modules are shown on the left of Fig. 3.
They receive a ready signal from the corresponding stage,
data validity signals from all stages, and a notification signal,
consumed, from the downstream control module. Each module
generates the enable signal for its stage based on the presence
of required valid data, the ready signal of the stage itself,
and on whether or not its previously produced data has been
consumed.

There are cases where a stage may require several cycles to
execute despite it not being fed data from downstream stages.
This occurs when the stage contains FUs which require more
than one cycle to execute. For instance, the multiplication FU
is a pipelined, three-cycle operation. For these cases, intra-
stage pipelining is enabled. This is exemplified by the the
second stage shown in Fig. 3, which contains a pipelined
load FU whose minimum possible latency is four clock cycles.
Registers are added to the other FUs to synchronize data and
allow the stage to fill, thereby producing data every clock cycle.
Intra-stage pipelining is configured on a per-stage basis during
synthesis.

However, intra-stage pipelining is only effective if the
number of load/store units and memory port availability
allow for all accesses from the same activation to complete
simultaneously. For instance, a stage with 3 loads would not
be able to produce data every cycle due to lack of available
ports. A stage with a single load FU could suffer from the same
effect if additional accesses from other stages are outstanding.
The example in Fig. 3 is a case for which the approach results
in a Citer of 1 clock cycle despite the memory access latency
(assuming a single-cycle data cache for the RPU).

D. Memory access

Since load/store units receive operands from other FUs in
the array, the RPU supports acceleration of loops with arbitrary
memory access patterns. The size or location of data arrays, or
the memory access patterns do not need to be known off-line.
Load/store FUs assert an access request signal and wait until
access is granted.

Fig. 4 shows the Memory Access Manager (MAM) module.
It receives the request signals from all load/store FUs, and
asserts back the grant signals. For load FUs, the data and the
validity bit from the LMB master which performed the access
are routed back into the appropriate load FU. Reads or writes
to memory have a data width of 32 bits. Operations can use
word, half-word or byte addresses. Byte selection is performed
by each LMB Master module.
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Fig. 4: Memory Access Manager (MAM) with each port
handling half of the memory operations

Single-cycle arbitration logic grants access to up to two
operations simultaneously. It works as follows: once access is
granted to an FU, the next access will be granted only to FUs
downstream from that FU. If no access requests are asserted
within that range, access is granted to the uppermost FUs.
This has the effect of preserving memory access order. Each
LMB master is driven by one such arbiter. If more than seven
memory operations are present in the array, the control signals
are split into two groups, in order to avoid critical paths due
to combinational logic in the arbiter, and each arbiter handles
half the operations. Otherwise, both arbiters receive all request
signals and make mutually exclusive selections.

V. DUAL-PORT CACHE

The RPU can access the data in external memory through a
dual-port cache. The two ports on the RPU side are composed of
the same signals as an LMB interface: the same RPU instance
can be connected either to the cache or directly to a local
data BRAM. The memory controller interface of the cache
is composed of two Xilinx Cache Links (XCLs). One port is
used exclusively for write accesses, and the second for loading
blocks into the cache. Requests are issued from the RPU side
ports in order. However, the MPMC uses round robin arbitration
by default. This caused some accesses to the external memory
to be performed out of order. To ensure coherency, the cache
uses a write-through no-allocate policy, and the XCL port used
for writes is given priority.

The cache can operate in the same clock domain as the
RPU. If so, the RPU does not instantiate synchronization logic
at its LMB ports. Instead, synchronization is performed at the
interface with the MPMC, if it operates at a different clock
frequency. Loading data into memory at a higher rate than
required by the RPU has the effect of reducing the impact of
memory latency on the RPU.

Due to current performance-limiting delays in the connec-
tion between the RPU’s logic and the cache’s internal logic, an
additional delay stage has been introduced for the time being
at the LMB port interfaces. This increases the access latency to
two clock cycles, causing some impact on RPU performance.

The cache is direct mapped, with configurable total and
cache block size. Since the RPU side has two ports, one port
can issue a load request that initiates a block load into the
cache, while the other continues accessing data already present

in the cache. Also, both ports can retrieve data from the same
block as it is loaded into the cache. Since only one XCL port
is used for load accesses, only one block can be loaded from
external memory into the cache at a time. Data can also be
written by one of the ports into a block being loaded without
loss of coherency.

VI. EXPERIMENTAL VALIDATION

The system was tested with 12 integer benchmarks from
which appropriate megablocks for implementation could be
extracted, i.e., traces with an acceptable number of load/store
operations and whose total number of operations is not too large
for the FPGA used in the implementation. Eight are simple data-
oriented computation kernels; the remaining are applications
from the powerstone [16] and WCET [17] benchmark suites.
The gridIterate benchmark is the kernel of a 3D path planning
application [18]. The implementation platform is a Digilent
Atlys board, which contains a Spartan-6 LX45 FPGA and 128
MB of DDR2 memory. Xilinx EDK 14.6 was used for bitstream
generation and the benchmarks were compiled with mb-gcc
4.6.4 using the -O2 flag.

The MicroBlaze is configured with an integer multiplier,
a barrel-shifter, and a 256-byte data cache with a line size
of 8 words. The RPU’s cache has the same organization, and
contains the input buffer stage at its LMB ports to avoid the
current critical path delays of the RPU/cache interface. The
system clock frequency is 83 MHz; the clock frequency of the
RPU varies per-implementation. Two additional peripherals are
used to measure execution times and provide other metrics, such
as the number of iterations completed on the RPU, number of
cycles spent on RPU execution, workload on the two memory
ports and execution overheads.

A. Results

Table I summarizes the the number of cycles to complete
an iteration, Citer, of the accelerated traces for an ideal case,
for software only execution, and for RPU execution. Also
summarized are the measured speedups. The mean values in
the last row of Table I are geometric means for the speedups
and arithmetic means for the remaining columns. Column Avg.
#Inst shows the average number of instructions executed in
one iteration. The minimum possible Citer is equal to the Iiter
derived from the CDFGs. From this we compute the maximum
potential IPC as the number of instructions over the Iiter of
the CDFGs. The Sw. IPC is computed by dividing the number
of clock cycles spent executing the megablocks in software by
the number of instructions executed. Similarly, the Hw. IPC is
computed from the actual value of Citer for RPU execution.
The Citer in this case is equal to the total number of clock
cycles required by RPU execution over the total number of
iterations completed. Calculations of IPC and Citer in Table I,
as well as all clock cycle values given throughout this section
are relative to the global system clock (83 MHz).

The last four columns contain: the speedup considering
just the kernels Sk, the speedup for the entire application So,
the application speedup without communication overheads Soh

and a speedup upper bound Sub. The overhead excluded in the
calculations of Soh covers the time required for the GPP and
RPU to exchange operands and results, and the time required
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TABLE I: Performance Metrics

Benchmark Avg.
#Inst.

Min.
Iiter

Max.
IPC

Sw.
Citer

Sw.
IPC

Hw.
Citer

Hw.
IPC

Sk So Soh Sub

blit 10.0 1 10.0 15.0 0.7 7.7 1.3 1.94 1.91 1.92 12.21
bobhash 10.0 5 2.0 15.8 0.6 7.3 1.4 2.14 2.10 2.11 3.03
checkbits 63.0 1 31.5 68.0 0.9 8.2 7.7 8.06 7.58 7.82 26.54
dotprod 12.0 2 12.0 16.6 0.7 9.1 1.3 1.76 1.65 1.72 7.31
fft 39.0 1 19.5 121.2 0.3 100.1 0.4 1.19 0.83 1.04 1.23
gouraud 19.0 1 19.0 21.0 0.9 3.1 6.1 6.65 6.39 6.45 18.42
perimeter 22.0 1 22.0 27.5 0.8 14.2 1.7 1.91 1.87 1.90 16.91
poparray1 27.0 1 27.0 35.7 0.7 6.0 4.5 5.21 3.86 4.24 9.25

gridIterate 120.0 5 24.0 278.9 0.4 245.7 0.5 1.16 1.15 1.24 2.37
powerstone g3fax 5.4 2 2.7 10.0 0.5 7.1 0.8 1.02 0.93 1.12 1.67
WCET edn 15.3 2 7.6 23.3 0.6 16.5 0.9 1.22 1.17 1.34 3.97
WCET fir 9.0 1 9.0 17.8 0.5 17.6 0.5 0.93 0.96 1.03 2.55

mean 29.3 2 15.5 54.0 0.7 37.0 2.24 2.07 1.91 2.05 5.63

Sk (kernel speedup); So (overall application speedup); Soh (speedup without communication overhead); Sub (speedup upper bound)

to invalidate the GPP data cache when the RPU is called. The
Sub values are computed by comparing the time required for
execution of the applications in software with the ideal case
when the execution of the targeted traces is reduced to the
shortest possible time. The fastest possible time to execute the
traces was calculated by measuring how many iterations of
the targeted traces are performed. We then took the Iiter of
the corresponding CDFGs and computed the time required to
execute those traces if iterations could be completed at that
rate. By replacing the measured trace execution time with these
values we arrive at the speedup upper bound Sub.

B. General Considerations

a) IPC: As Tab. I shows, the RPU achieves consistently
higher IPC values than the MicroBlaze GPP by completing
trace iterations in fewer clock cycles. The ratio between Hw.
IPC and Sw. IPC is indicative of the kernel speedup. If the
accelerated traces represent a large part of the program, the
overall application speedup increases. The Hw. IPC can be
increased by exploiting ILP as much as possible. This is
greatly restricted, in the cases studied, by memory accesses. For
cases where the number of memory accesses in a trace exceed
the number of arithmetic and other operations, the memory
bottleneck effectively lowers the IPC. The benchmarks for
which there are fewer memory accesses are also those for
which the Hw. IPC is closer to the Max. IPC. The purpose of
the dual-port data memory is to mitigate the impact of memory
accesses. Measuring the number of accesses performed through
each port provides insight into the overall memory workload
and how it is distributed between both ports. One port issues
an average of 502 accesses per call of the RPU, and the second
issues 329. This demonstrates that a considerable data access
parallelism was exploited through concurrent accesses. The
following subsection further discusses the effects of memory
accesses on performance.

b) RPU Workload: Over all benchmarks, the RPU
executes a mean of 461 iterations per call, and is called an
average of 2286 times. The more iterations performed per
call, the better the overhead of communication and GPP cache
invalidation is amortized. This is detailed in the section VI-D.

An average of 830 memory accesses are issued per call (total
for both ports), the maximum being 2887 for perimeter and
the minimum 13 for fft.

c) Single clock domain speedup: The average frequency
reported by the synthesis tools for the RPU is 128 MHz. The
actual average frequency at which the RPU operated was
111 MHz. By knowing the number of clock cycles required
for RPU execution, we can compute the RPU’s execution time
if using the system clock. In this situation, only a geometric
mean speedup of 1.13× would be achieved, with slowdowns
occurring for 5 benchmarks (fft and the last 4 benchmarks of
Tab. I). Note that the two-cycle latency of the RPU data-cache
now becomes more detrimental to performance, since it is no
longer mitigated by a higher RPU clock frequency.

d) Comparison with previous implementation: Most of
the benchmarks presented in Tab. I (all except gridIterate and
dotprod), were used to test an earlier implementation, which
used local data memories for the RPU and GPP. For that subset,
the mean geometric speedup for the overall application was
1.62×, versus the 2.03× achieved here for the same subset.

e) Upper bound on speedup: The estimated upper bound
(column 10 of Tab. I) is for a scenario with an accelerator
capable of completing trace iterations at the highest possible
rate. This also implies single-cycle memory accesses and infinite
memory bandwidth. For the cases were So > 1, the system
manages to implement an average of 21 % of the maximum
potential speedup. The same calculation for all benchmarks
using the values of Soh yields 20 %. The bobhash benchmark
is the case for which the achieved speedup, So, is closest to the
upper bound: 54 % of the potential speedup of the megablock.

C. Impact of Memory Acesses

Table II summarizes RPU-related metrics. The first column
contains the number of RPU configurations. The next column
shows the average number of consecutive stages activated by
the RPU to complete an iteration. Following are the average
number of FUs used per configuration and the next column
accounts only for the loads/stores out of those FUs.
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TABLE II: RPU and System Characteristics

Benchmark
#Cfgs.

Avg.
#Stages

Avg.
#FUs.

Avg.
#LDs/STs

RPU
LUTs

RPU
FFs

RPU Synt.
Freq (MHz)

RPU Op.
Freq (MHz) Sys.LUTs Sys.FFs

blit 2 3.5 12.0 1/2 3940 3798 145.5 125 8639 8094
bobhash 1 8.0 11.0 1/0 1583 2213 178.0 125 6793 6425
checkbits 1 19.0 59.0 1/1 1967 5068 127.1 120 7555 9310
dotprod 1 5.0 10.0 2/0 1333 2113 144.4 125 6637 6324
fft 1 10.0 48.0 6/4 4059 8839 131.7 115 9774 13254
gouraud 1 6.0 16.0 0/1 2417 3297 117.2 110 7382 7426
perimeter 1 10.0 28.0 5/1 2678 4706 113.2 105 8255 9087
poparray1 1 18.0 22.0 1/0 1516 3910 91.5 85 7064 8119

gridIterate 1 16.0 121.0 22/11 7771 16332 100.5 95 14326 20778
powerstone g3fax 4 3.5 8.5 0.5/0 5029 3959 144.9 125 9942 8199
WCET edn 2 8.0 22.5 3/0 6212 5745 134.3 100 10443 10025
WCET fir 1 4.0 11.0 2/0 2342 3401 105.9 100 7543 7622

arithmetic mean 1.4 9.3 30.8 3.7/1.6 3404 5282 127.8 110.8 8696 9555

When connected to single-cycle instruction and data mem-
ories, the Microblaze executes approximately 0.98 instructions
per clock cycle. Considering the average number of instructions
in the accelerated traces, one iteration would be completed in an
average of 30 clock cycles in this scenario. Due to the external
memory latency, the Sw. IPC decreases to 0.7, meaning that
54 clock cycles are is required to complete an iteration. That
is, external memory access introduces an additional 24 cycles.

Despite the exploitation of ILP and CDFG Iiter by the
RPU, the memory accesses still restrict performance. The mean
Hw. IPC is 2.24, and a mean of 37 clock cycles are required
to complete an iteration. When compared to the ideal case, a
mean of 35 additional clock cycles are introduced.

Memory accesses performed by the RPU are more costly
for two reasons: (i) even though there are two ports between
cache and RPU there is only one XCL port through which data
is fetched into the cache from external memory; (ii) the 2 clock
cycle cache latency makes memory accesses more costly for
the RPU. The RPU does not necessarily suffer from twice the
memory access latency, because (i) the dual-cache port allows
for concurrent accesses, and (ii) the RPU operates at higher
clock frequencies relative to the system clock for all cases.

The megablock for the gridIterate benchmark contains the
largest number of memory operations: 22 loads and 11 stores.
As a result, the achievable Citer is 245. This lowers the Hw. IPC
to 0.49, close to the Sw. IPC of 0.43. Each RPU iteration takes
240 more clock cycles than required without memory access
constraints; software execution requires an additional 156 clock
cycles compared to the base case of execution from local data
memories. Despite the potential maximum IPC of 24 derived
from the CDFG, the cost imposed by memory accesses prevents
higher speedups for cases such as gridIterate. On average, there
are only 0.80 non-memory operations per memory access for
gridIterate. The RPU does not require twice as many cycles
to handle all memory operations as the GPP because of the
dual-port cache and the RPU clock frequency of 95 MHz.

The fft benchmark has the second highest number of
memory operations. However, the lighter workload on the
memory ports when compared to gridIterate allowed for
completion of 1.16 instructions per memory access. Despite
this, the kernel speedups for both cases are very similar, which

suggests that a greater number of instructions needs to be
executed per memory operation to compensate for the access
latency. Although a kernel speedup is achieved for fft, the
overall application slows down due to false calls to the RPU,
as explained in the following subsection.

In contrast, the benchmarks with the fewest memory
operations are bobHash, gouraud and popArray, with only
either 1 load or 1 store. For these cases a higher speedup would
be expected, since the RPU’s ports are exclusively assigned to
the memory operations. However, the megablock for bobHash
has a minimum possible Iiter of 5 and a low average ILP per
stage, achieving a lower speedup when compared to the two
other cases. The best Hw. IPC, 7.69, occurs for the checkbits
benchmark. Its megablock contained more instructions than all
the other benchmarks except gridIterate. An average of 30.5
operations are completed per memory access. The consequent
high IPC results in the largest kernel and overall speedups.

D. Overhead

The subroutines used to communicate with the RPU
introduce two sources of overhead: the transfer of operands
and results, and the invalidation of the GPP’s cache.

Whilst the dual-port cache can be invalidated in a single
cycle prior to RPU execution, the caches on the Microblaze can
only be invalidated one cache line at a time. To invalidate the
256 byte cache, a total of 192 cycles are required. The overhead
of cache invalidation can be effectively amortized whenever
the RPU accelerates a large enough number of iterations per
call. However, there are instances where the most frequent
repeating patterns do not repeat consecutively. For example,
one megablock of the g3fax benchmark iterates a total of 1967
times, but the average number of iterations per call is only 2.2.
A low average number of iterations per call leads to significant
overall overhead. This would not be the case for systems where
the GPP cache can be invalidated in a single instruction.

An additional overhead is introduced by frequent RPU calls
which terminate during the first iteration. That is, no useful
work is performed on the RPU. This may happen if the number
of iterations is dependent on the input data. In this case, any
load accesses issued prior to termination could be aborted
and an immediate return to the GPP performed. The current
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implementation, however, requires that they complete before
execution returns to software. The fft benchmark suffers from
this overhead, as the RPU is called without performing useful
work 127 times out of 128 total.

The speedups from column SOH of Tab. I are computed
without the overheads mentioned in this section, in order to
show the expected gains from minimizing these overhead
sources. The average overhead amounts to 4.94% of the total
time.

E. Resource Usage

Table II also contains results regarding RPU resources,
synthesis and operating frequencies, as well as the resources
required for the entire system. The average RPU instance
requires 3404 Lookup Tables (LUTs) and 5282 Flip Flops
(FFs). These values are calculated from the post-synthesis
reports. On average, the RPU requires 2.6× as many LUTs
and 5.4× as many FFs as a Microblaze instance. For the entire
system, the average number of LUTs and FFs is 8696 and 9555
respectively. These are post-place and route values.

Because the present implementation is capable of simulta-
neous stage activations, the execution can be fully-pipelined
if connections and memory latency allow. To support this,
registers are required at every stage to synchronize every item
being propagated. Thus, an increase in resource requirements is
noticeable when compared to previous work [8]. A subset of the
benchmarks presented here (all except gridIterate and dotprod)
was used to test an earlier non-pipelined implementation. The
average numbers of system LUTs and FFs were 3341 and 2031,
respectively.

VII. CONCLUSION

This paper presented an FPGA-based embedded system
built around a general-purpose processor extended with a
Reconfigurable Processing Unit (RPU) that can be transparently
used by unmodified applications. The RPU executes iterative
CDFGs derived from frequently repeating instruction traces.
Specific RPU instances are tailored at synthesis-time to the
needs of the target applications.

Relative our to previous work, cached external data memory
accesses are fully supported and concurrent stage activation is
explored for increased speedups. The actual level of pipelining
on the RPU depends on the workload on the memory ports of
the RPU, which are the only functional resource constraints.
Execution on the RPU results in an average Instructions per
Cycle of 2.24, versus 0.66 for software-only execution. For
the 12 tested benchmarks, the overall geometric mean speedup
is 1.91×. For the subset of the eight kernels, the speedup is
2.57×. For the previous non-pipelined implementation which
supported only local memory access [8], the mean geometric
speedup for all benchmarks (except gridIterate and dotprod),
is 1.62×, versus the 2.03× reported in this paper for the same
subset.

Future work will focus on extending the system with support
for instruction caches, so that an application can reside entirely
in external memory. The data cache will be improved for smaller
access latency and the RPU architecture will be streamlined to
reduce resource requirements.
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