(aJ [=
.] » 1
5|5TEM;E\ INTEGHADO DE BIBLIOTECAS
UNIVERSIDADE DE SAO PAULO

Universidade de S&o Paulo
Biblioteca Digital da Producéo Intelectual - BDPI

Departamento de Ciéncias de Computacéo - ICMC/SCC Comunicag¢bes em Eventos - ICMC/SCC

2015-12

Classification of evolving data streams with
Infinitely delayed labels

IEEE International Conference on Machine Learning and Applications, XIV, 2015, Miami.
http://www.producao.usp.br/handle/BDP1/50009

Downloaded from: Biblioteca Digital da Produgéo Intelectual - BDPI, Universidade de S&o Paulo

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/50009

2015 IEEE 14th International Conference on Machine Learning and Applications

Classification of Evolving Data Streams with
Infinitely Delayed Labels

Vinicius M. A. Souza
University of Sao Paulo
vsouza@icmc.usp.br

Diego F. Silva
University of Sdo Paulo
diegofsilva@icmc.usp.br

Abstract—The majority of evolving data streams classification
algorithms assume that the actual labels of the predicted examples
are readily available without any time delay just after a prediction
is made. However, given the high label costs, dependence of
an expert, limitations in data transmission or even restrictions
imposed by the problem’s nature, there is a large number of
real-world applications in which the availability of actual labels
is infinitely delayed (never available). In these cases, it is necessary
the use of algorithms that does not follow the traditional process
of monitoring the error rate to detect changes in data distribution
and uses the most recent labeled data to update the classification
model. In this paper, we propose the method MClassification to
classify evolving data streams with infinitely delayed labels. Our
method is inspired on the use of Micro-Cluster representation
from online clustering algorithms. Considering the presence of
incremental drifts, our approach uses a distance-based strategy
to maintain the Micro-Clusters’ positions updated. An evaluation
in several synthetic and real data shows that MClassification
achieves competitive accuracy results to state-of-the-art methods
and adequate computational cost. The main advantage of the
proposed method is the absence of critical parameters that
require user’s prior knowledge, as occurs with rival methods.

L

Data streams are continuous and unbounded evolving data
that arrives over time. This type of data is increasingly present
in real world applications, mainly due to the growing popular-
ity of sensors and portable measurement devices. For instance,
people carrying smartphones are able to produce massive
stream data daily. Other examples of stream applications are
network traffic analysis, text mining on daily newspapers,
analysis of bank transactions, monitoring audio and video data
for surveillance, analysis of RFID tracking logs, etc.

INTRODUCTION

In non-stationary environments, static models are rapidly
outdated due to changes in data. Thus, in order to maintain
a stable accuracy, the algorithms need to constantly update
their classification models. Most of literature considers that the
actual label y; of every predicted example (Z;, §:) received in a
time ¢ of the stream, is readily available without any time delay
immediately before the arrival of #;1q [1]. The immediate
availability of true labels allows the monitoring of distributions
or error rate to verify whether the current classifier is outdated
and use the most recent labeled data to update the classification
model. A general view of this process is presented in Fig. 1.

However, the assumption that delay time will be equal
to zero for actual labels is very optimistic and cannot be
fulfilled in many situations. Given high label costs, dependence
of an expert, limitations/failures in data transmission or even
the impossibility to obtain these labels, it is more reasonable

978-1-5090-0287-0/15 $31.00 © 2015 IEEE
DOI 10.1109/ICMLA.2015.174

214

Gustavo E. A. P. A. Batista Joao Gama
University of Sdo Paulo University of Porto
gbatista@icmc.usp.br jgama@fep.up.pt
Time
Y O
> > = data
X4 | stream

7

(e

5 Classification model ﬂ
]

~ ~
L yHIW LyHZ 1 predictions

Qro

| actual
labels
/

m—>07T

Fig. 1. A general view of the evolving data streams classification loop. Most
of the algorithms in literature consider that the time delay to obtain the actual
labels for each example is equal to zero

consider that this delay could vary from 0 to oo. When the
delay is an intermediate value, the process presented in Fig. 1
remains the same with a proportional lag for the identification
of changes in data. In contrast, when the availability of actual
labels is infinitely delayed it is impossible to detect changes
using drift detectors and rely on the most recent labeled data
to update the classification model. It is a non-trivial problem
that was recently pointed out in SIGKDD Explor. as one of
eight open challenges in data stream mining [2].

Examples of real applications that frequently have delayed
the availability of actual labels are credit fraud, intrusion, and
fault detection. Applications related to sensors and automation
frequently have infinitely delayed labels. In sensors, an appli-
cation with infinitely delayed labels is a laser that captures
information about insects’ wing beat when it passes the laser.
The goal is to classify the signals into the insect species using
audio features [3]. However, as pointed by [4] in a streaming
scenario, meteorological features such as temperature and
humidity are responsible for changing the insect’s behavior
and consequently the measured data over time. Moreover,
obtaining the actual label of an insect that crossed the laser
involves having an expert available in the field. Thus, we
need to update the classification model over time without
the actual labels of processed examples. In automation, the
recent popularization of drones opens new challenges to the
computerized automation of flights of these aerial vehicles.
Given a drone initially trained in a known environment, they
need to incrementally adapt to changes in speed and direction
of the wind, altitude, temperature, and atmospheric pressure in
an unsupervised way.

There is a limited number of research papers in the
literature that consider infinitely delayed labels. Some of the
existing algorithms have a high computational cost, making
their use not suitable for data streams. Other approaches have
parameters in which the optimal values require tuning.

In this paper, we propose a method based on the use of
Micro-Clusters for the classification of evolving data streams
in a scenario where the availability of actual labels is infinitely
delayed. Micro-Cluster is a well-known representation in on-
line clustering that efficiently stores a set of similar data points.
We propose a distance based strategy to maintain the positions
of Micro-Clusters that are used to classify stream data with
incremental drifts. Considering an evaluation on 16 synthetic
datasets and 2 real-world problems, our algorithm achieves
competitive accuracy to state-of-the-art methods with very
good computational cost. The main advantage of our method
is the absence of critical parameters that require user’s prior
knowledge for adjusting them as occurs with rival methods.

The remaining of the paper is organized as follows. Sec-
tion II discusses the problem of evolving data in stream
learning. Section III presents related works. Our proposed
method is presented in Section IV and the experimental
evaluation is shown in Section V. Finally, Section VI presents
our conclusions and directions for future work.

II. EVOLVING DATA STREAMS

Due to non-stationarity of real environments, data streams
suffer with changes in data distributions over time. In the
context of machine learning, a concept can be defined as a
set of instances generated by the same underlying function.
When this function changes for some reason, we have the phe-
nomenon of concept drift [5]. Given that P is the probability
of an event, x is a feature vector and y is a class label, the
causes of concept drift can be [6]:

o Feature change: a change in the probability of the
occurrence of a particular set of features values, i.e.,
a change in P(x) but P(y|x) remains the same. In
other words, some previously infrequent feature values

become more frequent and vice versa;

Conditional change: a change in the conditional
probability P(y|x) to assign class label y to a feature
vector x, i.e., P(x) remains the same but P(y|x)
changes;

Dual change: a feature and conditional change, i.e.,
a change in both P(z) and P(y|z).

The cases when P(z) changes while P(y|z) does not
change are referred as virtual drift [7]. Opposite cases, when
P(y|z) change while there are no changes in P(z), occur due
to changes in hidden context. Hidden context is the information
that is not included into observable predictive features, but
relevant in determining the class label [8]. According to [9], in
scenarios where the actual labels are not available and P(y|x)
changes without changes in P(z), the algorithm can identify
them only by observing additional external features. In this
work, we assume that we have access to all features responsible
to change the concepts. Thus, we do not consider changes in
P(y|z) when changes are not observable in P(z).

215

The changes in the underlying distributions may appear
in different ways, such as abrupt, incremental, gradual or
reoccurring. Fig. 2 illustrates the different patterns of drifts in
a one-dimensional data where their mean evolves over time.

[

-

time sudden/abrupt

incremental gradual reoccuring concepts

Fig. 2. Different patterns of changes over time [1]. The focus in this paper
is on incremental drifts

In this paper, we deal with incremental drifts, where there
are many intermediate concepts between one concept and
another. Even in scenarios where there is knowledge of actual
labels, this type of drift is often considered more challenging
to detect than abrupt or gradual, given the significant overlap
between concepts in a short period of time [10]. However,
incremental drifts are important when labels are unavailable
since we can use the similarities between two consecutive
concepts to update the classification models.

III. RELATED WORK

We are aware of just three algorithms which consider
infinitely delayed labels (this scenario is also called initially
labeled streaming environment or extreme verification latency):
Arbitrary Sub-Populations Tracker — APT [11], Compacted
Object Sample Extraction — COMPOSE [10] and Stream Clas-
sification AlgoRithm Guided by Clustering — SCARGC [12].
In this section, we discuss how these three algorithms work.

APT considers that each class can be represented as a
mixture of arbitrarily distributed sub-populations. The algo-
rithm learns in a two-stage strategy: i) it uses expectation
maximization to determine the optimal one-to-one assignment
between the unlabeled and labeled data; and %) it updates the
classifier to reflect the population parameters of newly received
data and the drift parameters, relating the previous time step
to the current one. The algorithm has the assumption that the
number of instances of each sub-population is constant over
time. This limitation is hard to be fulfilled and may degrade the
method after some iterations. Furthermore, the tests performed
in [10] indicate a considerable high computational cost.

COMPOSE uses a generalization of convex hull called a-
shapes to deal with incremental drifts and infinitely delayed
labels. The a-shapes are geometrical constructs obtained from
data which are then compacted (shrunk) to determine those
current data points that are most likely to represent the distri-
bution at the next time step. These instances are called core
supports and serve as labeled instances to be propagated on
next time step using semi-supervised algorithms that classify
new unlabeled data in a transductive way.

The main weakness of COMPOSE is the high compu-
tational cost for the a-shape construction, mainly with high
dimensional data. Furthermore, the algorithm has two critical
parameters that affect its performance: o and C'P. The «
parameter is related to the level of detail to model the classes’
shapes. For a large value of « the resultant shape is the convex
hull of the points and for a small value of « the resultant shape
may become concave or even contain disconnected regions.
The C P parameter is related to the level of compaction applied

to the a-shapes. If a-shapes are too compact, relevant instances
of the future distribution are lost. In contrast, if the a-shapes
are little compacted, instances of rival classes may overlap.

Souza et al. [12] presents a simple and efficient algorithm.
SCARGC consists of a clustering followed by a classification
step repeatedly applied in a closed loop fashion. During the
classification phase, the algorithm also stores the examples in
a pool. When the pool is full according to a determined value,
the pool data are clustered into k clusters. Thus, current and
past cluster positions are compared to verify whether there are
any changes in data distribution. If there is an indication of a
significant difference, the data of current clusters receive the
label from the most similar previous cluster. In this sense, the
clustering step allows to track the drifting classes over time.

Due to its simplicity, SCARGC is very efficient in time.
However, the algorithm is highly dependent of the clustering
phase. The original proposal uses the k-means algorithm with
a fixed k£ over time. The main weakness of this approach is
the assumption that the number of groups is constant over time
as well as the need of user’s knowledge to set this parameter
appropriately. Another parameter of the algorithm is related
to the pool size. The main influence of this parameter is
in determining when verifying whether the current concepts
are dissimilar to the previous concepts. However, the authors
showed experimentally that in general, the use of small values
for pool size provides good results.

In general, the main weaknesses of these methods are
related to difficulties to correctly set their parameters (COM-
POSE and SCARGC) and high computational costs in some
situations (APT and COMPOSE). In this paper, we present a
novel solution with a single parameter, practicable computa-
tional cost and competitive accuracy to other methods.

IV. OUR PROPOSAL: MICRO-CLUSTERS FOR
CLASSIFICATION - MCLASSIFICATION

In this paper we propose the algorithm Micro-Clusters
for Classification — MClassification to deal with incremental
evolving data streams in the challenging scenario where the
actual labels of processed examples are infinitely delayed
(never available) after their prediction. This is a more realistic
scenario for a variety of real stream applications.

To adapt to changes over time, our algorithm uses the
concept of Cluster Feature originally introduced by [13] in
the BIRCH algorithm and then called Micro-Cluster by [14]
in the CluStream algorithm. Before presenting our solution,
we introduce the main concepts of Micro-Cluster.

Micro-Cluster (MC) is a compact representation that uses
the triple (NN, s , S5) to store sufficient statistics from a set
of examples, where:

e N is the number of data points in a cluster;

ﬂ = Zfl Z; is the linear sum of the NV data points;

58 = Z?(@)Q is the square sum of data points.

Thus, given a MC that summarizes the information about a
set of IV data points it is possible to calculate measures such as
Centroid and Radius of a MC without storing all the examples
using the following equations:

216

Centroid = %
2
Radius = % - (L?)

MCs have interesting properties that make them a natural
choice for the stream problems. The most important properties
are incrementality and additivity. For example, given a set of
data points where their statistics are stored in a MCy =
(Na,LS4,554), we can incrementally add a new example
Z in M Cy updating their statistics in the following way:

BA%ﬁAJrf
§§A%§§A+(5)2
Ny+ Ny+1

The additivity considers that if we have two disjoint Micro-
Clusters MCy4 and MCp, the union of these two groups is
equal to the sum of its parts. Thus, the sufficient statistics of a
new Micro-Cluster MCo = (N¢, ﬁc, @c) that stores the
information of M C4 U MCp are computed:

ﬁc(—ﬁA-FﬁB
ﬁc%S@Aﬁ-S@B

Nec + Ny + Np

Although it is efficient and appropriate to data stream prob-
lems, we noted that the MC representation has been essentially
used in clustering problems. In this paper, we propose their
use for classification of evolving data streams. Therefore, we
modified the representation to store the information about the
class of a set of data points. Thus, our representation is a 4-
tuple (N, f?, §§, y), where y is a label for a set of data points.
The general idea of the algorithm is presented next.

The algorithm begins receiving as input a reduced initial
set of labeled data 7. Such data are necessary to define the
problem as classification, including the number of classes and
their initial disposition in feature space before the occurrence
of changes. The only parameter of our algorithm is the maxi-
mum radius r of the MCs. This parameter is better explained
next.

From the initial labeled data 7T, the algorithm builds a set of
labeled MCs where each MC has information about only one
example. In the classification phase, the predicted label 1; for
each example T from the stream is given by the nearest MC
according to Euclidean distance. At this moment, it is verified
if the addition of Z7 in their correspondent nearest MC using
the incrementality property it will exceed the maximum MC
radius r defined by the user. If the radius does not exceed the
threshold r, the example 77 is added to the nearest MC and
its sufficient statistics (IV, LS , 58) are updated. Thus, for each
new example added, the centroid position of the updated MC is
slightly dislocated in direction to the newly emerging concept
of the class. On the other hand, if the radius exceeds the
threshold, a new MC carrying the predicted label g, is created
to allocate the new example Z7. Besides, the algorithm searches
by the two farthest MCs from the predicted class to merge them
using the additivity property. Therefore, the two farthest MCs

from Z} are merged into one MC that will be placed closest

to the emerging new concept. This strategy of Micro-Clusters
online maintenance is used over time to constantly adapt the
classification model for incremental changes in data streams.

V. EXPERIMENTAL EVALUATION

In this section, we present the setup used in our experi-
mental evaluation and the analysis of the results.

A. Setup

We evaluate MClassification on 16 synthetic benchmark
datasets and 2 real-world problems, as previously proposed
in [12] to evaluate incremental evolving data. More details
about this benchmark can be found in the original paper [12]
and a visual description in video can be seen in the website
Nonstationary Environments — Archive'.

We compare our method against two bounds that simulate
a static supervised learning classifier and a classifier that is
constantly updated with zero delay of actual labels. We also
compare our method against the most recent proposed algo-
rithm for this scenario, SCARGC. A more detailed description
about rival methods is presented below.

Static. The classifier is trained with a batch of initial
examples from the stream and it is not updated over
time. Thus, it is possible to observe whether the data at
the beginning of stream are sufficiently representative
so that the classifier does not need to adapt over time
in a static scenario;

Sliding. Similarly to the previous setting, the classifier
is initially trained with the first examples from the
stream. In the test phase, the classifier is constantly
updated whenever a new example is processed using
a sliding window. The oldest example is dropped
off from the window and the most recent processed
example is added with its actual label. This setting
represents a very optimistic scenario where the labels
of processed examples do not have any delay in their
availability;

SCARGC. Our main rival is the SCARGC algorithm
previously presented in Section III. We compared
the accuracy results of SCARGC achieved with the
parameters suggested in [12].

B. Analysis of Results

Table I presents the average accuracy achieved by the
methods over the entire stream. In this table, we highlight
the best result in a comparison between the proposed method
MClassification and SCARGC. For all synthetic datasets, we
use the following parameters for MClassification: |T| = 150
and r = 0.1, where |T| represents the size of initial labeled
set and 7 is the maximum MC radius.

We carried out the Friedman test with the Nemenyi posthoc
with 95% as the confidence level to statistically compare the
average accuracies achieved over time by the four algorithms
evaluated. In Fig. 3 we show the critical difference diagram

Ihttps://sites.google.com/site/nonstationaryarchive/

217

TABLE 1. AVERAGE ACCURACIES OVER TIME ON BENCHMARK DATA
Dataset Static Sliding SCARGC MClassification
1CDT 97.01 99.88 99.75 99.89
ICHT 91.96 99.24 99.25 99.38
1CSurr 65.75 98.52 94.35 85.15
2CDT 54.38 93.47 90.92 95.23
2CHT 54.03 85.44 86.02 87.93
4CEICF 95.81 97.15 94.08 94.38
4CR 25.06 99.98 99.95 99.98
4CRE-V1 26.17 97.64 97.39 90.63
4CRE-V2 27.11 89.37 91.90 91.59
5Cvr 40.72 86.86 90.15 88.40
FG 2C 2D 81.30 93.84 95.16 62.48
GEARS 2C 2D 93.62 99.86 95.89 94.73
MG 2C 2D 49.00 90.40 92.71 80.58
UG 2C 2D 47.28 94.27 95.56 95.28
UG 2C 3D 60.64 92.86 94.77 94.72
UG 2C 5D 68.81 89.91 90.98 91.25
NOAA 66.19 72.01 68.61 67.54
KEYSTROKE 68.69 90.14 87.72 90.62

for ranked accuracies that illustrate the test. In this diagram,
we connect in solid bars the groups of algorithms that are not
significantly different from each other [15].

CD
P
4 3 2 1
|) |))]
-
Static 38333 L2 SCARGC
MClassification 20833

20833 gliding

Fig. 3. Critical difference diagram considering the benchmark data

We can note in the diagram from Fig. 3 that the method
with best mean rank is SCARGC. In the second place, there
is a tie between the upper-bound Sliding and MClassification.
However, it is important to note that there is no statistically
significant difference among the results achieved by these three
methods. The tie with Sliding is very positive given that this
setting is very optimistic and does not consider any delay in
the availability of actual labels. Although SCARGC slightly
outperforms our method, there are no statistical difference
between them and our method have the advantage of having
a simpler parameter. Moreover, our method allows that the
number of groups to change over time.

To better understand the evolving behavior of the datasets
and detail the results achieved by the algorithms over time, we
present some examples in more details. For instance, Fig. 4
shows 6 snapshots that illustrate the behavior of UG-2C-5D
dataset. Although this dataset has 5 features, we display only
3 of them in the illustrations.

The results achieved over time for the UG-2C-5D dataset,
considering 100 steps, are shown in Fig. 5. We can note that the
MClassification slightly outperforms the SCARGC and Sliding
and outperforms with a large margin the Static setting that does
not consider change in data distribution.

An interesting dataset is MG-2C-2D. This dataset has 2
classes, where the data of one of them begins with two
Gaussian distributions and the data of the other class begins
distributed in only one. Over time, the two classes change
their positions and the parameters of the distributions. Fig. 6
illustrates the behavior of MG-2C-2D and Fig. 7 shows the
respective results.

(d) Time step 4 (e) Time step 5 (f) Time step 6

Fig. 4. Snapshots that illustrate the behavior of the two classes from UG-
2C-5D dataset over time considering 3 of 5 features of the data

100
90
80
70
60

50

Accuracy (%)

40

30

20+

Static Sliding SCARGC = MClassification

I I I I |
60 70 90 100

0 I I I I

Il
40 50
Step

Fig. 5. Results achieved over time by the methods in UG-2C-5D dataset

Between the steps 30-70, we noted in Fig. 7 that MClassi-
fication shows a mean accuracy around 65%, while SCARGC
with their optimal parameter (k = 4) and Sliding have around
85% of accuracy in the same period. Although this difference
may seem high, MClassification shows a competitive result
after this period. It is also important to note that SCARGC
shows this results using 4 groups in their clustering phase (k
parameter). However, from the initial labeled set it is very
hard to know a priori the evolution of the parameter of the
distributions, being a more natural choice the use of 3 groups
(see Fig. 6-a). Thus, the MClassification have the advantage of
not requiring this crucial parameter. To illustrate the difficulty
of SCARGC with non-optimal value for k& parameter, we also
show the results with £ = 3 and £ = 5 in Fig. 7. As we can
see, with k = 3 SCARGC achieves an average accuracy of
64.86% over the entire stream and 68.18% for k = 5, while
MClassification achieves 80.58% without a parameter about
the number of groups.

For real world problems, we evaluated our algorithm in
NOAA and Keystroke datasets. NOAA is a dataset of weather
measurements collected over 50 years which contains eight
features: temperature, dew point, sea-level pressure, visibility,

218

5 CRN R Ca— IR R L S S R R

(a) Time step 1 (b) Time step 2

L B S R Y Ca— RN R L S S R R

(d) Time step 4 (e) Time step 5 (f) Time step 6

Fig. 6. Snapshots that illustrate the behavior of the two classes from MG-
2C-2D dataset over time

100
90
80

70

60 Static

= Sliding

SCARGC (k=3)
——— SCARGC (k=4)
——— SCARGC (k=5)
— MClassification

50

Accuracy (%)

40

30+

Fig. 7. Results achieved over time by the methods in MG 2C 2D dataset

average wind speed, max sustained wind speed, and mini-
mum and maximum temperature. The classification task is
to determine if it will rain or not in 18,159 daily readings.
The results for this problem are presented in Fig. 8, where
we note a very similar result achieved by SCARGC and
M(Classification. Static and Sliding were initially trained with
the first 30 examples, SCARGC and MClassification use only
the first 10 examples.

The second real data consists of the use of keystroke
dynamics to recognize users by their typing rhythm that
evolves over time. In this dataset, 4 users typed the password
“.tieSRoanl” plus the Enter key 400 times captured in 8
sessions performed in different days. To perform the user
classification task, we used 10 features extracted from the flight
time for each pressed key. The flight time is the time difference
between the instants when a key is released and the next key
is pressed. The evaluation assumes that the algorithms were
trained with labeled data from the first session and tested in
the remaining 7 sessions. The results are presented in Fig. 9
and we can note that MClassification shows the best result.

To evaluate the time spent for classification we choose three
datasets from the benchmark with 200,000 examples: UG-

100
90

80

M

Accuracy (%)
(4, [o2} ~
o o o

IS
o

Static Sliding SCARGC = MClassification

w
o

n
o

30 35 40 45 50

0 I I I I
15 20

.
25
Year

Fig. 8. Results achieved over time by the methods in the real data NOAA

90

W

70+

Accuracy (%)

60

50

Static == Sliding SCARGC = MClassification

40 I I I I I I |
0

Session

Fig. 9. Results achieved over time by the methods in the real data Keystroke

2C-2D, UG-2D-3D, and MG-2C-2D. We select these datasets
because we have the time costs for all rival methods from the
literature. The results are presented in Table II.

TABLE II. TIME COSTS (IN MINUTES) SPENT BY THE ALGORITHMS
Dataset APT COMPOSE SCARGC MClassification
UG-2C-2D 3,600 4,160 1.00 5.14
UG-2C-3D 22,776 26.660 1.97 12.26
MG-2C-2D 20,303 8.330 1.96 10.66

Due to its simplicity, SCARGC is very efficient and hard
to beat in terms of the time cost. However, MClassification
is faster than APT algorithm and has a competitive time cost
compared to COMPOSE. We can note in Table II that in the
3-dimensional dataset UG-2C-3D, COMPOSE spends more
than three times compared to 2-dimensional datasets (UG-2C-
2D and MG-2C-2D). In fact, the increase of dimensionality is
a problem for COMPOSE. For MClassification, the increase
of dimensionality does not affect drastically its performance.
Although our method does not show the best time results, it is
important to note that about 12.255 minutes (in the worst case,
UG-2C-3D dataset) to classify 200,000 examples represents an
adequate and sufficient time rate of 0.0037 second to classify
each example from the stream.

219

VI. CONCLUSIONS

The problem of classification of evolving data with in-
finitely delayed labels is non-trivial and an open challenge in
data stream mining research. The main contribution of this
paper is to introduce the algorithm MClassification to deal
with this problem that affects many real world problems. There
are only few research papers in the literature that consider
this scenario and some of the existing solutions have an
impracticable computational cost or crucial parameters, which
optimal values are difficult to find. The proposed algorithm in
this paper shows competitive accuracy results to state-of-the-art
methods, practical time costs and a single parameter. The main
advantage of our method is the absence of critical parameters
that require prior knowledge of the user to tuning them as
occurs with rival methods. In future work, we intend to explore
new strategies for the maintenance of MCs to deal better with
outliers. An initial idea is to weight the MCs according to
their age or utility so that more importance is given to the
most recent MCs or those used for classification.

ACKNOWLEDGMENT

This work was funded by FAPESP awards #2011/17698-5,
#2013/26151-5, and 2015/07628-0.

REFERENCES

J. Gama, 1. Zliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, p. 44, 2014.

G. Krempl, I. Z]iobaite, D. Brzeziniski, E. Hiillermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and
J. Stefanowsky, “Open challenges for data stream mining research,”
ACM SIGKDD Explorations Newsletter, vol. 16, no. 1, pp. 1-10, 2014.
D. F. Silva, V. M. A. Souza, D. P. W. Ellis, E. Keogh, and G. E. A.
P. A. Batista, “Exploring low cost laser sensors to identify flying insect
species,” Journal of Intelligent & Robotic Systems, pp. 1-18, 2014.

V. M. A. Souza, D. F. Silva, and G. E. A. P. A. Batista, “Classification
of data streams applied to insect recognition: Initial results,” in BRACIS,
2013, pp. 76-81.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in SBIA, 2004, pp. 286-295.

J. Gao, W. Fan, J. Han, and S. Y. Philip, “A general framework for
mining concept-drifting data streams with skewed distributions,” in
SDM, 2007.

A. Tsymbal, “The problem of concept drift: definitions and related
work,” Tech. Rep., 2004.

M. B. Harries, C. Sammut, and K. Horn, “Extracting hidden context,”
Machine learning, vol. 32, no. 2, pp. 101-126, 1998.

1. Zliobaite, “Change with delayed labeling: when is it detectable?” in
ICDM Workshops, 2010, pp. 843-850.

K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE TNNLS, vol. 25, no. 1, pp. 12-26, 2014.

G. Krempl, “The algorithm APT to classify in concurrence of latency
and drift,” in IDA, 2011, pp. 222-233.

V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista,
“Data stream classification guided by clustering on nonstationary envi-
ronments and extreme verification latency,” in SDM, 2015, pp. 873-881.

(1]

(11]

[12]

[13] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in ACM SIGMOD Record,

vol. 25, no. 2, 1996, pp. 103-114.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” in VLDB, vol. 29, 2003, pp. 81-92.

[14]

[15] J. Demsar, “Statistical comparisons of classifiers over multiple data

sets,” JMLR, vol. 7, pp. 1-30, 2006.

