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Abstract The classification of multivariate time series in terms of their corresponding
temporal dependence patterns is a common problem in geosciences, particularly for
large datasets resulting from environmental monitoring networks. Here a wavelet-
based clustering approach is applied to sea level and atmospheric pressure time series
at tide gauge locations in the Baltic Sea. The resulting dendrogram discriminates
three spatially-coherent groups of stations separating the southernmost tide gauges,
reflecting mainly high-frequency variability driven by zonal wind, from the middle-
basin stations and the northernmost stations dominated by lower-frequency variability
and the response to atmospheric pressure.
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1 Introduction

The monitoring of environmental parameters is often performed on a spatially irregular
network of stations yielding large datasets of multivariate time series. The classification
of such time series in terms of the characteristics of the corresponding temporal patterns
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is a common goal to summarise the information and identify relations among the
different series.

Several clustering approaches have been developed for the classification of time
series of a single variable (Alonso et al. 2006; Caiado et al. 2015; Diaz and Vilar
2010; Liao 2005; Liu et al. 2014; Scotto et al. 2009, 2010, 2011). However, monitor-
ing stations often measure several different variables and clustering methods for the
classification of multivariate time series have been recently developed (D’Urso and
Maharaj 2012; D’Urso et al. 2014; Maharaj et al. 2010). The present study addresses
the bivariate classification of sea level and sea level atmospheric pressure time series
from the Baltic Sea using a wavelet-based clustering approach introduced by D’Urso
et al. (2014). Their ideas will be extensively used throughout this work.

Sea level is an integrated environmental parameter reflecting both the state of the
ocean and of the atmosphere above. Because of the multiple factors influencing the
height of the sea surface, including atmospheric pressure, winds, water temperature
and salinity, sea level displays variability on a wide range of spatial and temporal
scales. Therefore, a scale-by-scale approach based on the discrete wavelet transform
is particularly appealing for the analysis of sea level records (Barbosa et al. 2007,
Bastos et al. 2013; Percival and Mojfeld 1997).

Atmospheric pressure also displays variability on multiple time scales and is
amenable to wavelet-based analysis (Barbosa et al. 2009). The atmospheric pressure
is responsible for a downward force acting on the sea surface which is compensated, to
some extent, by corresponding sea-level variations. The static response of the sea sur-
face can be modelled linearly by the inverse barometer model, a decrease (increase) in
atmospheric pressure of 1 mb raising (depressing) sea level by 1 cm. However, ocean
dynamics and wind effects introduce substantial deviations to the hydrostatic response
of the sea surface to atmospheric pressure loading. Thus the association between sea
level and atmospheric pressure is usually scale-dependent in time and variable from
site to site. Furthermore, the inverse barometer law fails in the semi-enclosed Baltic
Sea since the narrow straits connecting the Baltic to the North Sea prevent the fast
response of the sea surface to local changes in atmospheric pressure (Kulikov and
Medvedev 2013).

In this work the information from both sea level and atmospheric pressure time
series is used to classify tide gauge records from the Baltic Sea. The classification
of sea level time series allows to summarise the monitoring information in terms of
common variability features of the records and to identify sub-regions with similar
properties. The wavelet-based clustering approach allows to significantly reduce the
dimensionality of the classification problem by reducing a large number of observa-
tions to a small number of wavelet coefficients while preserving the information on
the temporal structure of the time series. Furthermore, the multivariate setting allows
to include additional useful information into the clustering procedure by considering
the interaction between pairs of components of the multivariate time series at each
scale.

The rest of the paper is organized as follows: the wavelet-based clustering approach
is described in Sect. 2. The sea level and pressure time series used in the application
are presented in Sect. 3. The results are displayed in Sect. 4 and discussed in Sect. 5.
Concluding remarks are provided in Sect. 6.
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2 Methods

Section 2.1 provides an outline of discrete wavelet analysis and maximal overlap dis-
crete wavelet transform (MODWT) useful in the present setting, referring the reader
to Percival and Walden (2000), Percival (2008) and the references therein for a more
detailed description. Furthermore, Sect. 2.2 describes the wavelet decomposition-
based clustering approach used in this study to classify bivariate time series of sea
level and atmospheric pressure. The purpose of this analysis was twofold: first, wavelet
decomposition is applied to the time series to identify the most relevant scales in what
concerns to variability and also joint variability for each tide gauge station. Second,
based on such features the wavelet decomposition-based clustering method is applied
for grouping stations with similar profiles.

2.1 Wavelet-Based Decomposition

The MODWT is a linear filtering operation which acts as the base of both a variance
and an additive decomposition of a given time series (X;; t =0,..., T — 1).

Let (6;,; 1 =0,1,...,L; — 1) be the MODWT wavelet filter of length L ; asso-
ciated with the scale 7;, where L; = (27 = 1)(L — 1) 4+ 1 and L is the width of the
base filter (i.e., for j = 1). In addition assume that

-1
X _ .
Wi, = Z 81 X1,
1=0

represents the stochastic process by filtering the discrete parameter stochastic process
X, with the MODWT filter §; ;. The time series X, can be reexpressed as the sum of
J + 1 sub-series, that is X; = Z;Z] Dj + Sy, where the details Dj; j=1,...,J,
derived from the wavelet coefficients Wj{(t, correspond to the pass-band filtering scales
T = 2/~1 and the smooth S, corresponds to the remaining parcel of the decompo-
sition. The details D; are associated with frequencies in the interval [1/2/%1,1/27]
and thus scale 7; captures the dynamics over intervals with duration from 2/ to 271
time units. Consequently, S; includes information from all scales above 27 time units.

The time independent MODWT wavelet variance at scale 7; is defined as vi (zj) ==

V(W]Xt), provided that it exists and is finite. Thus

V(X)) =D vi(T)),

j=1

which implies that the wavelet analysis decomposes the variance of (X;) across wavelet
scales. A similar decomposition can be obtained for the covariance between two sto-
chastic processes X; and Y; with MODWT coefficients W]Xt and W}/l, respectively,
defined as
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oo oo
Cov(X;, Y;) = D Cov(W}. W) =D vxy(z)).
j=1 j=

In a bivariate framework, suppose that Z; is a bivariate time series with compo-
nents X; and Y;. The scale-by-scale wavelet variance/covariance quantification can
be rearranged in the following symmetric matrix

Cz(t)) = ( Vi, (%) UX§YZ(Tj)) ,
vy x, (i) vy, (7))
where Xz and Yz represents the first and second component of the bivariate random
vector Z, respectively.
After setting the base filter, WX can be straightforwardly computed by considering
circular boundary conditions. Hence Cz(z;) can be estimated through the unbiased
empirical counterpart of its components, namely

T—1
1 "
Ok, (1) = o DL W) (1
i
1=L;—1
and
=
l/)XzYz(‘l:j) = GYzXz(Tj) = V Z W/XtW/ytv (2)
Jr=L;—1

where M; = T — L + 1, represents the number of wavelet coefficients excluding the
boundary coefficients that are affected by the circular assumption of the wavelet filter.

The wavelet filter is selected to obtain an adequate variance decomposition and
variance estimation across scales. In particular, the least asymmetric filter of width
L = 8, i.e., LA(8), was adopted in this analysis since it yields coefficients that are
approximately uncorrelated between scales while having a filter width short enough
to keep the number of boundary coefficients small. Furthermore, LA filters exhibit
approximately linear phase and thus allow to align the sinusoidal components in all
scales with the original time series by time shift, for visualization purposes. Finally,
the number of scales J is restricted by the length of the time series (7') and the filter
width (L) through the inequality J < logz(% + 1), which lead to J < 10 in the
present work.

It is important to refer here that in this study the times series were analysed after
the normalization X, /s, where s represents the standard deviation of the original time
series X,. Since the MODWT allows partitioning the total variance of the original series
by scale the variance of the normalized series associated with each scale corresponds
to the percentage of X; variance associated with such scale. The normalized series are
also used to compute the wavelet covariance as measure of the association between
the time series across scales.
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2.2 Clustering of Bivariate Time Series

The clustering procedure builds a hierarchy from the individual elements by progres-
sively merging more similar clusters, using an appropriate dissimilarity measure and a
group linkage criterion (Everitt etal. 2011). Suppose that Zy 4, . . ., Z, ; are n bivariate
time series. The n x n dissimilarity matrix, d,,, has entries d, (i,i'),i,i’ = 1,...,n
corresponding to the pairwise comparison between Z; ; and Z;: ;. The comparison is
based on their corresponding wavelet variance/covariance matrices, using the follow-
ing distance measure proposed by D’Urso et al. (2014)

1

(i, 1) = {(awy - duni, D) + (awe - ducti, D))} 3)

where awy and ay ¢ are suitable non-negative and normalized weights for the wavelet
variance-based distance and the wavelet covariance-based distance. Note that d,,, (i, i)
takes into account the differences in variance across scales for the objects i and i” as

J
dyo (i, i) = ) | diag(Cz (1)) — diag(Cz () )
j=I
where diag(A) denotes the principal diagonal of a matrix A and || - || represents the

Euclidean norm. Moreover, the component

J
duc(iy i) = D vxy, v, (T) = vxz, vy, () (5)
j=1

quantifies the differences in wavelet covariances across scales. Distances dyy (i, i) and
dy(i, i) are estimated by replacing its components by their empirical counterparts
from (1) and (2).

Finally, the clustering procedure involves obtaining a dendrogram based on the
application of classical cluster techniques to the d,, matrix. In particular, unweighted
average distance (average linkage), shortest distance (single) and furthest distance
(complete) were considered for the group linkage criterion. The group linkage is cho-
sen as to maximize the dendrogram’s goodness-of-fit, evaluated through the cophenetic
correlation coefficient between distances matrix d,, and distances represented in the
cophenetic matrix (Everitt et al. 2011, p. 91). The closer the coefficient is to one, the
more accurately the clustering procedure reflects the original data.

3 Data

Time series of daily-mean sea level (MSL) from tide gauges in the Baltic Sea are
analysed for the period from January 1979 to December 2005. Daily data from the
stations of Gedser and Hornbak are provided by the Danish Meteorological Institute,
DMI (Hansen 2007), the data for Furu6grund, Kungsholmsfort, Olands Norra Udde
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Fig. 1 Map of the Baltic Sea
with location of tide gauges
(circle) and reanalysis gridpoints
(star)

Table 1 Analysed daily tide gauge records

Station name Lon. (°E) Lat. (°N) Missing values (%)
Furuogrund (FUR) 21.23 64.92 0.04

Ratan (RAT) 20.90 63.99 0

Stockholm (STO) 18.08 59.32 3.7

Olands Norra Udde (OLA) 17.10 57.37 0
Kungsholmsfort (KUN) 15.59 56.10 0

Hornbak (HOR) 12.46 56.09 7.5

Gedser (GED) 11.93 54.57 4.8

and Ratan stations are provided by the Swedish Meteorological and Hydrological
Institute, SMHI, and the data from Stockholm are provided by the University of Hawai
Sea Level Center, UHSLC. Missing values in the tide gauge records are interpolated
using the KNNinput method (Troyanskaya et al. 2001). Time series of daily-averaged
sea-level pressure (SLP) are obtained from the ERA-interim reanalysis dataset (Dee
etal. 2011). The analysed data are extracted from a 0.5° grid at the gridpoints closest
to each tide gauge station (Fig. 1; Table 1).

As a pre-processing step all time series are linearly detrended and the annual sea-
sonal cycle is removed. The analysed time series are shown in Fig. 2.
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4 Results
4.1 Wavelet Decomposition

The scale-by-scale MODWT decomposition is the first step of the wavelet-based clus-
tering procedure. The results are illustrated for the station Kungsholmsfort (KUN).
Figures 3 and 4 show the MODWT decomposition of the MSL and SLP time series,
respectively. The sub-series corresponding to a given wavelet scale j reflects vari-
ability on periods of 27 to 2/H1 days, with j = 1, ..., 10. While for sea level the
large scales significantly contribute to the series’s variability, in the case of pressure
the shorter scales (order of days) contribute significantly to the overall signal. The
wavelet variance across scales is computed from each MODWT sub-series using Eq.
(1) and the covariance is estimated from Eq. (2). The results are displayed in Fig. 5.
Sea level from the stations located at the Baltic entrance (GED and HOR) dis-
play a distinct temporal structure, with dominance of high-frequency short-scale

Wavelet scales (j) for MSL

L L L L L L
1980 1985 1990 1995 2000 2005
Years

Fig. 3 MODWT decomposition for MSL time series in Kungsholmsfort (KUN) after phase shift for
temporal alignment. From top to bottom components for wavelet scale j = 1, ..., 10. The vertical dashed
lines delineate the boundary regions (wavelet coefficients outside of the lines are influenced to some degree
by boundary conditions)
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Wavelet scales (j) for SPL

| | | | | |
1980 1985 1990 1995 2000 2005
Years

Fig. 4 As in Fig. 3 but for SLP time series in Kungsholmsfort (KUN)

(a) V(MSL) (b) V(SPL) (c) Cov(MSL,SPL)
0.4 0.4
FUR
@ RAT 0.3 0.3 -0.05
S OLA
% sTO Ha 0.2 0.2 -0.1
a KUN
HOR 0.1 0.1 [ -0.15
GED _02
123456780910 0 4123456780910 O 412345678910 :
Wavelet scales (j) Wavelet scales (j) Wavelet scales (j)

Fig. 5 Mosaic plot representing the contribution per wavelet scale to the total variance of a MSL, b SLP,
and c¢ covariance of MSL and SLP, for all stations (darker colors indicate higher absolute values)

components, in contrast with the remaining stations displaying higher contributions
from lower-frequency signals (Fig. 5a). In the case of atmospheric pressure a more
homogeneous picture emerges (Fig. 5b) with all stations exhibiting a similar temporal
structure dominated by short range variability at wavelet scales 2—5. More than 40 %
of the contribution to the overall variance of SLP series comes from scales 3 and 4
corresponding to periods of 8-32 days.

Figure 5c shows that for all stations the association of and SLP is not uniform,
changing considerably with scale. Thus the scale-based picture is different from what
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Table 2 Linear correlation

between MSL and SLP time Station Correlation coefficient 95 % CI

series and corresponding 95 % FUR —0.48 [—0.52, —0.45]

confidence interval assuming an ’ N

effective sample size based on RAT =047 [=0.50, —0.43]

1st order autocorrelations STO —0.38 [—0.42, —0.33]
OLA —0.27 [—0.32, —0.22]
KUN —0.13 [—0.17, —0.09]
HOR —0.44 [—0.47, —0.41]
GED +0.05 [0.021, 0.087]

emerges by just considering correlations between components of the bivariate time
series (Table 2). The Gedser (GED) station displays virtually no correlation between
SL and SLP, both for the whole series and across scales. For Hornb&k (HOR) the
association of MSL and SLP is concentrated on a short range of scales about <30
days. For the remaining stations the co-variability of MSL and SLP is more important
at large scales, typically of several months.

4.2 Clustering

The clustering procedure is based on the wavelet variance and covariance representa-
tions of the bivariate time series. For each individual time series the estimated wavelet
variance at scale 7, f)i (z), is computed from the corresponding wavelet coefficients
of the MODWT decomposition using Eq. (1). The wavelet variance-based distance
dyy (i, ") can then be computed from Eq. (4) using the wavelet variances from MSL
and SLP at stations i and i’. Likewise the wavelet covariance-based distance d,,. is
computed using Eq. (5) from the wavelet covariance differences of MSL and SLP
times across scales.

The dissimilarity matrix is then obtained from the weighted combination of d,,,
and dy, as in Eq. (3). Two distinct options are considered for the weights awy = 1
and awc = 0 (variance only) and ayy = 0.5 and awc = 0.5 (equal weight of
variance and covariance representations). Figure 6 shows the dendrograms obtained
by applying the average linkage criterion to the dissimilarity matrix d,, with only
variance-based distances (Fig. 6a) and with both variance and covariance distances
(Fig. 6b).

Recall that the smaller the distance, the higher their similarity. The cophenetic
correlation coefficient of the dendrograms is very similar, 0.92 and 0.90, respectively,
indicating that the clustering is quite fit in both cases. Note that the dendrograms
are very similar for the two sets of weights, the only difference being the relative
position of station KUN (Kungsholmsfort). The value of the cophenetic coefficient
for different covariance weights ayw ¢ can be used to assess the choice of the coefficients
of the wavelet-based distance measure. The cophenetic coefficient for weights ay ¢ =
0,0.25,0.5,0.75and 115 0.92, 0.92, 0.90, 0.87 and 0.76, respectively, suggesting that
equal weights (awc = 0.5) is a reasonable choice in the present application.
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Fig. 6 Dendrogram of the (a)
hierarchical clustering of the

stations (average linkage FUR
criterion): a variance-only; b
variance + covariance

RAT

KUN

OLA

STO

HOR

GED

0 0.2 0.4 0.6 0.8
Distance

(b)
FUR
RAT]

OLA

STO

KUN

HOR

GED

0 0.2 0.4 0.6 0.8
Distance

5 Discussion

The wavelet decomposition of MSL records (Figs. 3, 5) showed a distinct behaviour
of the stations at the Baltic entrance, GED and HOR, dominated by high-frequency
variability which is driven by zonal (east-west) winds. In contrast, the remaining
stations are dominated by low-frequency contributions since fast variations are filtered
out by the narrow and shallow Baltic entrance (Samuelsson and Stigebrandt 1996).
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For pressure a similar behaviour across scales is obtained for all stations (Figs. 4,
5) reflecting the large-scale spatial structure of the pressure field and the dominance
of short-term pressure fronts (Gustafsson and Andersson 2001).

Sea-level and atmospheric pressure tend to be anti-correlated reflecting the
hydrostatic response of the sea surface to the weight of the atmosphere above it—
higher/lower pressure corresponding to a larger/smaller downward force on the sea
surface and thus a lower/higher sea-level. The atmospheric pressure also influences
sea-level indirectly as a result of its impact on winds and ocean dynamics.

The wavelet-based dendrograms (Fig. 6) clearly discriminate the stations in the
Baltic entrance from the remaining sea level records and groups together GED and
HOR despite the absence of correlation of sea level with pressure at GED and the
strong correlation at HOR.

Although the hierarchical clustering procedure yields apparently similar dendro-
grams, the dissimilarity measure taking into account both variance and covariance
across scales produces a classification more consistent with the spatial setting of the
stations. While the station KUN is placed closer to the group of the northernmost
stations (FUR, RAT) in the variance-only classification, it occupies an intermedi-
ate position, more consistent with its geographical location, when both variance and
covariance are taken into account. The southernmost stations (GED, HOR) belong to
the same cluster in both cases. However, in the variance-only classification they are
much closer to each other, and farther from the remaining group of stations, reflecting
their similar variance structure across scales (Fig. 5a). In contrast, when covariance is
also taken into account the distance between the two stations increases substantially
reflecting the distinct covariance structure for the two stations (Fig. 5¢).

6 Conclusions

The present work shows the application of a recently developed wavelet-based
approach to the clustering of sea level records from the Baltic Sea. Taking into
account both the variability of the multivariate time series across scales and the
pairwise interaction at each scale allowed to obtain a classification more consistent
with the regional setting. The clustering procedure evidenced two groups of stations
with common variability features, discriminating the stations at the Baltic entrance
(GED, HOR) from the remaining stations inside the Baltic. Furthermore, the inter-
mediate station (KUN) was correctly assigned to the group of inward stations while
being correctly placed farther from the stations in the central and northern Baltic
area.

While the wavelet-based classification approach was applied here to sea-level
records it is potentially useful to a wide range of geoscience applications dealing with
multivariate time series such as the ones originated from environmental monitoring
networks. In particular, simulation studies showed that the wavelet-based classifica-
tion is able to adequately handle switching time series (Maharaj et al. 2010) making
it particularly appealing, for example, for the classification of seismic data.

Acknowledgments Tide gauge data kindly provided by DMI (K. Madsen), SMHI (T. Hammarklint) and
UHSLC. S.M. Barbosa acknowledges support of the FCT—Fundagao para a Ciéncia e a Tecnologia (contract

@ Springer



Math Geosci (2016) 48:149-162 161

under programme IF2013 and project UID/EEA/50014/2013). This work was supported by the European
Regional Development Fund (FEDER) through the COMPETE programme and by the Portuguese Govern-
ment through the FCT, in the scope of the project UID/MAT/04106/2013 (Centro de I&D em Matemadtica
e Aplicagdes, http://cidma.mat.ua.pt/) and projects PEst-OE/EEI/UI0127/2014 and UID/CEC/00127/2013
(Instituto de Engenharia Electrénica e Informatica de Aveiro, IEETA/UA, http://www.ieeta.pt). S. Gouveia
acknowledges the postdoctoral grant by FCT (ref. SFRH/BPD/87037/2012). A.M. Alonso acknowledges
support of the Ministerio de Economia y Competitividad projects ECO2011-25706 and ECO2012-38442.

References

Alonso AM, Berrendero JR, Herndndez A, Justel A (2006) Time series clustering based on forecast density.
Comput Stat Data Anal 51:762-776

Barbosa SM, Fernandes MJ, Silva ME (2007) Scale-based comparison of sea level observations in the North
Atlantic from satellite altimetry and tide gauges. In: Tregoning P, Rizos C (eds) Dynamic planet:
monitoring and understanding a dynamic planet with geodetic and oceanographic tools. Springer,
Berlin, Heidelberg, pp 63-66

Barbosa SM, Silva ME, Fernandes MJ (2009) Multi-scale variability patterns in NCEP/NCAR reanalysis
sea-level pressure. Theor Appl Climatol 96:319-326

Bastos A, Trigo RM, Barbosa SM (2013) Discrete wavelet analysis of the influence of the North Atlantic
Oscillation on Baltic sea level. Tellus A 65:20077

Caiado J, Maharaj EA, D’ Urso P (2015) Time series clustering. In: Hennig CM, Meila M, Murtagh F, Rocci
R (eds) Handbook of cluster analysis. Chapman and Hall/CRC, Boca Raton, Florida

Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance
of the data assimilation system. Q J R Meteorol Soc 137:553-597

Diaz SP, Vilar JA (2010) Comparing several parametric and nonparametric approaches to time series clus-
tering: a simulation study. J Classif 27:333-362

D’Urso P, Maharaj EA (2012) Wavelets-based clustering of multivariate time series. Fuzzy Set Syst 193:33—
61

D’Urso P, De Giovanni L, Maharaj EA, Massari R (2014) Wavelet-based self-organizing maps for classifying
multivariate time series. Chemometrics 28:28-51

Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis. Wiley, West Sussex

Gustafsson BG, Andersson HC (2001) Modeling the exchange of the Baltic Sea from the meridional
atmospheric pressure difference across the North Sea. J Geophys Res 106:19731-19744

Hansen L (2007) Hourly values of sea level observations from two stations in Denmark Hornbaek 1890-2005
and Gedser 1891-2005. DMI Technical Report No. 07-09, DMI

Kulikov EA, Medvedev IP (2013) Variability of the Baltic sea level and floods in the gulf of Finland.
Oceanology 53:145-151

Liao TW (2005) Clustering of time series data—a survey. Pattern Recognit 38:1857-1874

Liu S, Maharaj EA, Inder B (2014) Polarization of forecast densities: a new approach to time series classi-
fication. Comput Stat Data Anal 70:345-361

Maharaj EA, D’Urso P, Galagedera DUA (2010) Wavelet-based fuzzy clustering of time series. J Classif
27:231-275

Percival D, Mojfeld H (1997) Analysis of subtidal coastal sea level fluctuations using wavelets. ] Am Stat
Assoc 92:868-880

Percival D, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press,
Cambridge

Percival DB (2008) Analysis of geophysical time series using discrete wavelet transforms: an overview.
In: Donner RV, Barbosa SM (eds) Nonlinear time series analysis in the geosciences—applications in
climatology, geodynamics, and solar-terrestrial physics, pp 61-79. Springer, Berlin Heidelberg

Samuelsson M, Stigebrandt A (1996) Main characteristics of the long-term sea level variability in the Baltic
sea. Tellus 48:672-683

Scotto MG, Barbosa SM, Alonso AM (2009) Model-based clustering of Baltic sea-level. Appl Ocean Res
31:4-11

Scotto MG, Alonso AM, Barbosa SM (2010) Clustering time series of sea levels: extreme value approach.
J Waterw Port Coast Ocean Eng 136:215-225

@ Springer


http://cidma.mat.ua.pt/
http://www.ieeta.pt

162 Math Geosci (2016) 48:149-162

Scotto MG, Barbosa SM, Alonso AM (2011) Model-based clustering of extreme sea level heights. In:
Wright LL (ed) Sea level rise, coastal engineering, shorelines and tides, pp 277-293. Nova Science
Publishers, New-York

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001)
Missing value estimation methods for DNA microarrays. Bioinformatics 17:520-525

@ Springer



	Wavelet-Based Clustering of Sea Level Records
	Abstract
	1 Introduction
	2 Methods
	2.1 Wavelet-Based Decomposition
	2.2 Clustering of Bivariate Time Series

	3 Data
	4 Results
	4.1 Wavelet Decomposition
	4.2 Clustering

	5 Discussion
	6 Conclusions
	Acknowledgments
	References




