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Abstract

The main goal of this work is to produce machine learning models that predict the outcome of a 

mammography from a reduced set of annotated mammography findings. In the study we used a 

dataset consisting of 348 consecutive breast masses that underwent image guided core biopsy 

performed between October 2005 and December 2007 on 328 female subjects. We applied various 

algorithms with parameter variation to learn from the data. The tasks were to predict mass density 

and to predict malignancy. The best classifier that predicts mass density is based on a support 

vector machine and has accuracy of 81.3%. The expert correctly annotated 70% of the mass 

densities. The best classifier that predicts malignancy is also based on a support vector machine 

and has accuracy of 85.6%, with a positive predictive value of 85%. One important contribution of 

this work is that our model can predict malignancy in the absence of the mass density attribute, 

since we can fill up this attribute using our mass density predictor.
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1 Introduction

Mammography is considered the cheapest and most efficient method to detect cancer in a 

preclinical stage and breast screening programs were created precisely with the objective of 
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detecting cancer in earlier stages. The breast screening programs usually generate a huge 

amount of data, annotated according to the Breast Imaging Reporting and Data System (BI-

RADS) created by the American College of Radiology. The BI-RADS system determines a 

standard lexicon to be used by radiologists when studying each finding. Although the breast 

screening programs have helped reducing the number of women with undetected cancer, 

there is still room for improvement, since recent statistics show that one woman dies of 

breast cancer every 13 minutes in the US and in 2012, an estimated 39,510 women (15% of 

all deaths) and 410 men in the US are expected to die from breast cancer. Therefore, it is of 

utmost importance to improve these numbers and raise the life expectancy in the next years.

We applied machine learning methods to 348 consecutive breast masses that underwent 

image-guided core biopsies performed between October 2005 and December 2007 on 328 

female subjects. These 348 findings are defined by 13 attributes, with one of them indicating 

if the finding is malignant or benign. Our main objective is to produce models that can have 

a good performance at predicting malignancy and a good performance at avoiding to expose 

healthy women to extra surgical or screening procedures. We are also interested in studying 

the actual relevance of mass density in the findings, since this is one of the attributes that 

usually is not regarded relevant by physicians. According to physicians, mass density is a 

feature usually considered to be difficult to annotate, because of the breast tissue, and fat 

composition. Previous works have shown that mass density can be an important attribute 

when predicting malignancy (Woods et al., 2010, 2011; Ferreira et al., 2011). The 348 

mammography examinations used in this study have annotations of mass density, which 

allow to (1) investigate in more detail the role played by this feature and (2) produce models 

to predict this particular feature and help physicians distinguish between high and iso/low 

densities.

Much work has been done on applying machine learning techniques to the area of breast 

cancer, one of the most common kinds of cancer in the world. In the University of 

California, Irvine (UCI) machine learning repository (http://archive.ics.uci.edu/ml/ 

datasets.html), there are four datasets whose main target of study is breast cancer. One of the 

first works on applying machine learning techniques to breast cancer data dates from 1990. 

At this time, the first dataset donated to the UCI repository was created by Wolberg and 

Mangasarian after their work on a multi-surface method of pattern separation for medical 

diagnosis applied to breast cytology (Wolberg and Mangasarian, 1990). Most works in the 

literature applies artificial neural networks to the problem of diagnosing breast cancer (Wu 

et al., 1993; Abbass, 2002). Others focus on prognosis of the disease using inductive 

learning methods (Street et al., 1995). More recently, Ayer et al. (2010) have evaluated 

whether an artificial neural network trained on a large prospectively collected dataset of 

consecutive mammography findings could discriminate between benign and malignant 

disease and accurately predict the probability of breast cancer for individual patients. Other 

works concentrate on the correlation of attributes in the mammograms, for example, the 

influence of mass density and other features on predicting malignancy (Jackson et al., 1991; 

Sickles, 1991; Cory and Linden, 1993; Davis et al., 2005; Woods et al., 2010, 2011; Ferreira 

et al., 2011). Other recent works focus on extracting information from free text that appears 

in medical records of mammography screenings (Nassif et al., 2009, 2012) and on the 

influence of age in Ductal Carcinoma In Situ (DCIS) findings (Nassif et al., 2010). Yet other 
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works focus on the mammography images themselves (Lesniak et al., 2011; Samulski and 

Karssemeijer, 2011). These are orthogonal to the above mentioned and to our own work, 

whose focus is on the medical reports.

We use the same dataset used by Woods et al. (2011). This dataset is unique in the sense that 

all findings were retrospectively assessed and all of them have accurate information about 

the density of the breast masses. In that work, they showed that high breast mass density is a 

significant predictor of malignancy, even after controlling for other well-known predictors 

of malignancy such as mass margin and mass shape. The metric used to evaluate 

performance was inter-observer agreement and they found a moderate k-value for mass 

density (0.53).

The remaining of this paper is organised as follows. The next section introduces the dataset 

and the attributes used in this study. We then describe how we performed our experiments. 

In Section 4, we show results for the best classifiers found to predict mass density and 

malignancy. Lastly, we present the main contributions of this study and perspectives of 

future work.

2 Breast cancer data

Our study analyses 348 consecutive breast masses that underwent image guided core 

biopsies performed between October 2005 and December 2007 on 328 female subjects. 

Each one of the 348 cases refers to a breast nodule retrospectively classified according to the 

BI-RADS system. On the other hand, a clinical radiologist assessed (at the time of imaging 

and without biopsy results) the density of 180 of these masses, in an evaluation that can be 

considered as ‘performed under stress’ (prospective assessment). Pathology result at biopsy 

was the study endpoint.

Table 1 shows the main attributes used from these data to learn the models along with their 

explanations. These attributes were collected by our co-authors who are medical doctors, 

specialists in mammograms. When learning models to predict malignancy the attribute 

outcome is the target class. It assumes values malignant and benign and was determined 

using the results of biopsies. From the 348 cases, 118 are malignant (≈34%), and 84 cases 

have high mass density (≈24%) retrospectively assessed. Other attributes are mass shape, 

mass margins, depth, size, among others (see Table 4 for more details). For the purpose of 

our study, we have two attributes that represent the same characteristics of the finding, but 

with different interpretations. These are retro_density and density_num. Both represent mass 

densities that can assume values high or iso/low. Retro_density was retrospectively assessed 

while density_num was prospectively (at the time of imaging) assessed. These two attributes 

are our target classes when learning models to predict mass density.

3 Methodology

The whole dataset (348 findings) was split into two subsets: (1) training set: 180 cases, 

whose mass densities were classified by a radiologist at the exact time of imaging and (2) 

test set: 168 cases, whose mass densities were not annotated at the time of imaging, but 

instead in a reassessment of all the 348 exams performed by a group of experienced 
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physicians. The attribute corresponding to the prediction of mass density by the specialist is 

density_num. The attribute corresponding to the retrospectively assessed mass density is 

retro_density. We have values for density_num for only 180 of the cases and have values for 

retro_density for all 348 cases. With these train and test datasets, we performed several 

experiments in order to generate models to (1) predict malignancy (outcome) and (2) to 

predict mass density.

Table 2 shows all experiments performed for each task, according to the attributes used to 

learn mass density or outcome. The first five experiments were performed with 180 findings 

(training set) while the remaining were performed with 168 findings (test set). From the first 

five, the first three predict outcome and the other two predict mass density. In a nutshell, the 

experiments can be described as follows:

• Experiment E1 aims at finding a classifier to predict outcome using the attribute 

mass density that was retrospectively annotated (retro_density). This classifier 

would be useful to help physicians make decisions on retrospectively studied 

patients.

• Experiment E2 aims at finding a classifier to predict outcome from patients whose 

mass density was prospectively assessed (using the attribute density_num). This 

classifier would be helpful on the clinical daily routine of a physician.

• Experiment E3 was performed in order to assess the performance of a classifier 

trained without any mass density information. This experiment was performed in 

order to assess the relevance of mass density when predicting the outcome. It can 

be used on new data without any information about mass density.

• Experiment E4 generates models to predict mass density based on retrospectively 

annotated density (i.e. using the attribute retro_density).

• Experiment E5 generates models to predict mass density based on prospectively 

annotated density (i.e. using the attribute density_num).

The last two experiments were performed to assess how well an automated classifier can 

predict the kinds of densities (high or iso/low) when compared to the physician.

We evaluated several classification algorithms available in WEKA (Hall et al., 2009) and 

varied their parameters. The experiments were performed with the WEKA’s experimenter 

module using ten times ten-fold cross-validation on the training dataset. For each algorithm 

we selected the combination of parameters that produced the best classifiers, and then 

selected the top three classifiers for generating models: NaiveBayes (John and Langley, 

1995), DTNB (a decision table algorithm whose leaves are Bayesian networks) and SMO (a 

support vector machine (Wang, 2005) implementation (Platt, 1998)). A fourth classifier was 

selected, J48 (decision tree based on Quinlan’s C4.5 algorithm), due to its ability to produce 

readable and easily understandable models.

The last six experiments of Table 2 apply the models generated (M1, M2, M3, M4 and M5 

generated by the first five experiments), to the test set containing 168 cases as follows:
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1. Experiment E6 generates the values for mass density using model M4 trained with 

the attribute retro_density as the class variable (obtained by experiment E4).

2. Experiment E7 generates the values for mass density using model M5 trained with 

the attribute density_num as the class variable (obtained by experiment E5).

3. Experiment E8 predicts outcome using model M1 trained with the attribute 

retro_density (obtained by experiment E1) and uses the actual values of the 

attribute retro_density available in the test set.

4. Experiment E9 predicts outcome using model M1 trained with the attribute 

retro_density (obtained by experiment E1) and uses the mass density values filled 

up by experiment E6 in the test set.

5. Experiment E10 predicts outcome using model M2 trained with the attribute 

density_num (obtained by experiment E2) and uses the mass density values filled 

up by experiment E7 in the test set.

6. Experiment E11 predicts outcome with model M3 that does not use any information 

about mass density, obtained in experiment E3. For this experiment, no mass 

density attribute is used in the test set.

We used the metrics Correctly Classified Instances (CCI, a.k.a. accuracy), F-measure 

(harmonic mean between Precision and Recall) and Kappa statistics to assess the classifiers. 

Whenever applicable we performed significance tests using paired t-test (α = 0.05).

4 Results

We first investigated the data and calculated simple frequencies to determine if there was 

some evidence of relationship between attributes, specially if mass density is related to 

malignancy.

Table 4 shows the frequencies of attribute values. According to the frequencies of attribute 

values among the classes, from the 348 breast masses, 118 are malignant (≈34%) and 84 

have high mass density (≈24%). If we consider that mass density and malignancy are 

independent and take 84 cases from the 348 at random, the probability of these being 

malignant should still be ≈ 34%. However, if it happens that all 84 cases selected at random 

have high density, then the percentage of malignant cases raises to 70.2% and the 

probability of this being coincidence is very low. This simple calculation may already imply 

that high density has some relationship with malignancy. So may the other attributes such as 

age, mass shape and mass margins. In this work, we do not report on the importance of the 

other attributes.

4.1 Performance analysis

The best models produced for experiments (E1), (E2), (E3) and (E4) were obtained with the 

algorithm SMO, with main parameters: polynomial kernel with exponent E = 1 and 

complexity constant C = 0.05. For experiment (E1), the best classifier was obtained with 

data standardisation (N = 1), while the other three experiments used N = 2 (the training data 

was not normalised/standardised). The parameter C at SMO controls how soft the class 
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margins are. In practice, it controls how many instances are used as ‘support vectors’ to 

draw the linear separation boundary in the transformed Euclidean feature space. The fact 

that C = 0.05 produces better results seems to indicate that the default value (1.0) somehow 

generates an over-fitted trained classifier, whose performance is not so good on the cross-

validation test sets. For experiment (E5), the best classifier was obtained using the 

NaiveBayes algorithm with default parameters. Most probably, NaiveBayes performed 

better with this dataset because this data is noisy containing errors associated to the 

prospectively annotated density_num attribute.

Table 3 shows, for each experiment E1 to E5, the best performance of each algorithm after 

parameter variation (classifiers are sorted in descending order after CCI). The SMO 

classifier consistently achieves better results for the training dataset, even when NaiveBayes 

wins (experiment E5, note that there is no statistically significant difference between 

NaiveBayes and SMO with respect to CCI and K).

All classifiers behave better when trained on retrospectively annotated data (experiment E1), 

which seems to indicate that in practical clinical routine, this would be the best classifier to 

use. However, since it is hard to obtain retrospectively annotated data, the approach 

followed in E2, using prospectively annotated mass density values, can also be used with 

good results. It is important to notice that the SMO obtained with experiment E2 has 

performance only slightly lower than the SMO of experiment E1 and the difference is not 

statistically significant.

Experiment E5 is the most difficult as it consists of predicting mass density from noisy data. 

It is interesting to note that all algorithms achieve lower performance for this experiment 

than for the other tasks, with NaiveBayes achieving a performance that is close to that of the 

physician, who has CCI of 70% when compared with the retrospectively annotated mass 

density.

All results of Table 3, with exception of AUROC, are higher for the best classifier. The 

AUROC is higher for algorithms other than the best.

4.2 Training to predict outcome

In the three experiments, (E1), (E2) and (E3), the best classifiers found were based on SMO. 

First of all, these results show that mass density has some influence on the outcome, 

specially when mass density is the one observed on the retrospective data (experiment E1). 

The classifier trained without mass density has an overall performance of 83.8% while the 

classifier trained with the retrospectively assessed mass has an overall performance of 

85.6%, which is a statistically significant difference of 1.8 (p = 0.05). If we look at the K 

value, we can confirm that the relation between mass density and outcome is not by chance, 

given the relatively high observed agreement between the real data and the classifier’s 

predicted values. The F-measure balances the values of Precision and Recall and also 

indicates that the classifiers are behaving reasonably well.

The results obtained with experiments (E1), (E2) and (E3) confirm findings in the literature 

regarding the relevance of mass density (Davis et al., 2005, 2007; Ferreira et al., 2011; 
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Woods et al., 2010, 2011), and also show that good classifiers can be obtained to predict 

outcome (with a high percentage of correctly classified instances and reasonable values of 

precision and recall, according to F).

Another evidence that mass density is somehow related to malignancy are the decision trees 

(Figures 1(a) and 1(b)) generated by the J48 algorithm, in which retro_ density and 

density_num were chosen as the most important attributes appearing in the top of the trees. 

Despite the fact that J48 was not the best classifier to predict outcome, this fact reveals that 

the attribute mass density has some influence over all the remaining features. Another 

important fact to note is that, according to J48, the second most important attribute that helps 

discriminating between malignant and benign cases is mass_margins.

4.3 Training to predict mass density

Our set of experiments E4 and E5 are related to predicting mass density. As the dataset has 

two annotated mass densities, one for the prospective study and another one for the 

retrospective study, we generated two classifiers: one is trained on the prospective values of 

mass density (density_num) and another one is trained on the retrospective (retro_density) 

values of mass density. Once more, we used the 180 cases as training set and ten times ten-

fold cross-validation. The best classifier for predicting retro_density was SMO and the best 

to predict density_num was NaiveBayes.

During the prospective study, the radiologist predicted 70% of masses on the 180 findings 

compared with the annotated masses of the retrospective study. The SMO classifier 

predicted 81.3% of correct instances when training on the retrospective annotated mass 

(retro_density) and NaiveBayes predicted 67.2% of correct instances when training on 

prospective masses annotated by the radiologist. These results are quite good and indicate 

that either the SMO or the Bayesian classifier generated in this study can be well applied as 

a support tool to help physicians/radiologists to classify mass density in mammograms.

The values of K and F-measure for this experiment are not so good as the ones obtained with 

the classifiers that predict outcome. The K value, once more, indicates that both NaiveBayes 

and SMO have a moderate level of agreement.

4.4 Performance summary

Figure 2 shows the errors associated to the different algorithms for experiments E1 to E5, in 

terms of numbers of common misclassified examples. From each one of the Venn diagrams, 

we can identify the total number of misclassified examples and the actual examples that are 

being misclassified by the several algorithms. From the experiments to predict outcome, the 

one that produces the lowest error rate is E1 with 41 misclassified examples. This is also one 

of the two experiments that has lower error rate for all classifiers (only nine examples are 

commonly misclassified by all algorithms). The experiment that produces the highest error 

rate is E5, with all classifiers commonly misclassifying 16 instances.

It is interesting to note that some classifiers make mistakes in completely different parts of 

the dataset. For example, SMO, DTNB and J48 do not have any intersection in experiment 

E5.
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We plotted Precision-Recall curves and CCI curves according to the predicted probabilities 

of the SMO algorithms for experiments E1 to E4 and of NaiveBayes for experiment E5. The 

Precision-Recall and CCI curves give a good overview of how well the classifiers behave 

when one needs a cut-off point.

When predicting mass density, our classifiers ( M 4 in Figure 3(d) and M 5 in Figure 4(a)) 

produce results comparable with the ones obtained by the physician (the physician’s result is 

plotted with a star symbol). These curves show the performance of the classifiers for 

predicting malignancy (E1 to E3) and high density masses (E4 and E5).

4.5 Performance of the best classifiers on unseen data

Table 5 summarises the results of predicting outcome on the 168 unseen cases as well as the 

results of filling up the attribute mass density in the test set.

The first two lines of Table 5 refer to experiments to fill up values of the attribute mass 

density in the test set. The CCI indicates how well models M4 and M5 , obtained respectively 

with experiments E4 and E5, performed on filling up those values, when compared with the 

actual values of retro_density available in the test set. The SMO classifier, which had a very 

good performance on the training set (CCI = 81.3%), behaves even better when filling up 

values for retro_density, making mistakes in only 15% of the actual masses. The 

NaiveBayes classifier ( M 5 ), obtained with experiment E5 , which had CCI = 67.2% in the 

training set, performed very well in the task of filling up the missing values of density_num, 

correctly classifying 75.6% of the instances. A result that surpasses the result obtained by 

the specialist, which is 70%.

For the tasks of predicting outcome, the classifiers also perform very well, with the worst 

predictions being produced by model M3 , which does not use any information about mass 

density. This result confirms once more the relevance of mass density on predicting 

outcome. In the absence of this information, the data could be filled up by M 4 or M 5 , that, 

as mentioned, have a good performance on performing this job.

4.6 MammoClass application

The best models were integrated into an online application (called MamoClass). It allows a 

practitioner to quickly and easily assess mammograms by obtaining a prediction for mass 

density and/or classify a mammography given a reduced set of mammography findings. The 

application is freely available at http://cracs.fc.up.pt/mammoclass. This application will start 

to be used at Hospital São João in Porto, Portugal, and at the Medical School, in the 

University of Wisconsin, Madison, USA, by our collaborators.

5 Conclusions and future work

In this work, we were provided with 348 cases of patients who went through mammography 

screening and biopsies. The objective of this work was twofold: (i) find non-trivial relations 

among attributes by applying machine learning techniques to these data and (ii) learn models 

that could help medical doctors to quickly assess mammograms. The best models to predict 

outcome were obtained with Support Vector Machines (SVM), implemented in WEKA’ 
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SMO algorithm, with the parameters polynomial kernel with exponent E =1 and complexity 

constant C = 0.05. The fact that C =0.05 produces better results seems to indicate that the 

default value (1.0) somehow generates an over-fitted trained classifier, whose performance 

is not so good on the cross-validation test sets.

The best model to predict mass density based on retrospective data was also based on SVM. 

The best model to predict mass density based on prospective data is based on the naive 

Bayes algorithm with default parameters. The higher levels of noise in the data used for 

predicting mass density, that results from the errors associated to the prospectively annotated 

density_num attribute, must have contributed to the better performance of naive Bayes 

(which is known to be robust to noise).

In general, SVM classifiers showed to be the best for predicting both malignancy and mass 

density with the retrospective data. The experiments that use the retrospective data are the 

ones that generate classifiers with the lowest error rate. Predicting malignancy using the 

models that can fill up missing values of mass density seem to work very well in the test set. 

An analysis of precision-recall curves and errors indicate that choosing a good threshold, 

one can have good classifiers, with an acceptable false positive rate and good recall, in all 

experiments.

We plan to extend this work to larger datasets, and apply other machine learning techniques 

based on statistical relational learning, since classifiers that fall in this category provide a 

good explanation of the predicted outcomes as well as can consider the relationship among 

mammograms of the same patient. We would also like to investigate how other attributes 

can affect malignancy or are related to the other attributes.
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Figure 1. 
Decision trees and mass density
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Figure 2. 
Errors of the classifiers on the 180 cases (see online version for colours)
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Figure 3. 
Precision-Recall curves and CCI according to cut-off (SMO based models). The dotted grey 

line and star on the graphics of (see online version for colours)
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Figure 4. 
Precision-Recall curves and CCI according to cut-off (NaiveBayes based model). The dotted 

grey line and star on the graphics indicate the performance of the physician (see online 

version for colours)
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Table 1

Data attributes

Attribute Description

age_at_mammo Age of the patient when the mammogram was taken

clockface_location Location of the mass

mass_shape Mass shape descriptor

mass_margins Classification of the margins of the mass

side Breast where the mass was found (left or right)

depth Depth of the mass according to a measure from the skin surface to the
centre of the lesion

mass_margins_worst Most worrisome mass margin descriptor

quadrant_location_def
size

Quadrant location of the mass
Greatest transverse width of the mass (in mm)

breast_composition Breast density assessment (e.g., almost entirely fat, scattered
fibroglandular densities, heterogeneously dense, extremely dense)

retro_density Retrospective annotation of mass density

density_num Prospective annotation of mass density (at the time of imaging)

outcome Classification of the mass based on the results of the biopsy (malignant
or benign)
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Table 2

Experiments on the training and test sets. In each line, we give the conditions of the experiment. For example, 

E1, E2 and E3 predict outcome, where E1 uses mass density as described by the attribute retro_density, E2 uses 

mass density as described by the attribute density_num and E3 does not use any information about mass 

density

Exp. outcome retro_density density_num size output

E 1 class yes no 180 classifier for outcome (M1)

E 2 class no yes 180 classifier for outcome (M2)

E 3 class no no 180 classifier for outcome (M3)

E 4 no class no 180 classifier for mass density (M4)

E 5 no no class 180 classifier for mass density (M5)

E 6 no class no 168
test set with mass density filled up
by model M4

E 7 no no class 168
test set with mass density filled up
by model M5

E 8 class yes no 168 prediction of outcome using actual
values of retro_density

E 9 class yes (E6) no 168
prediction of outcome using test
set obtained in E6

E 10 class no yes (E7) 168
prediction of outcome using test
set obtained in E7

E 11 class no no 168 prediction of outcome without
mass density
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Table 3

Classifiers’ performance for each task, for the training data. Values not in bold are statistically significantly 

worse than the classifier with highest accuracy (using paired t-test with α = 0.05)

Exp. Algorithm CCI K F AUROC

E 1 SMO 85.6 ±7.3 0.69 ±0.16 0.80 ±0.11 0.84 ±0.08

E 1 DTNB 81.6 ±8.2 0.60 ±0.18 0.74 ±0.13 0.88 ±0.07

E 1 NaiveBayes 81.3 +9.5 0.61 ±0.20 0.76 ±0.12 0.88 ±0.08

E 1 J48 80.7 ±9.3 0.59 ±0.20 0.75 ±0.13 0.79 ±0.11

E 2 SMO 83.9 ±7.7 0.66 ±0.17 0.78 ±0.11 0.82 ±0.08

E 2 NaiveBayes 80.3 ±9.3 0.59 ±0.19 0.75 ±0.12 0.87 ±0.09

E 2 DTNB 79.8 ±9.5 0.56 ±0.21 0.72 ±0.15 0.86 ±0.09

E 2 J48 75.4 ±9.5 0.47 ±0.21 0.65 ±0.15 0.73 ±0.12

E 3 SMO 83.8 ±7.7 0.65 ±0.17 0.78 ±0.11 0.82 ±0.09

E 3 J48 76.3 ±9.9 0.49 ±0.22 0.67 ±0.15 0.76 ±0.13

E 3 NaiveBayes 76.2 ±9.9 0.51 ±0.20 0.71 ±0.13 0.85 ±0.09

E 3 DTNB 75.7 ±9.0 0.48 ±0.19 0.67 ±0.13 0.81 ±0.10

E 4 SMO 81.3 ±8.2 0.52 ±0.21 0.64 ±0.17 0.75 ±0.11

E 4 J48 74.4 ±8.8 0.32 ±0.24 0.47 ±0.21 0.67 ±0.15

E 4 DTNB 73.5 ±10.0 0.34 ±0.24 0.51 ±0.19 0.76 ±0.12

E 4 NaiveBayes 72.8 ±9.9 0.37 ±0.23 0.56 ±0.18 0.77 ±0.11

E 5 NaiveBayes 67.2 ±12.1 0.33 ±0.25 0.62 ±0.15 0.72 ±0.14

E 5 SMO 66.8 ±10.7 0.31 ±0.22 0.55 ±0.16 0.65 ±0.11

E 5 J48 63.6 ±10.1 0.26 ±0.21 0.56 ±0.15 0.62 ±0.13

E 5 DTNB 62.1 ±11.9 0.22 ±0.24 0.54 ±0.16 0.64 ±0.14
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Table 4

Dataset attribute values and frequencies for the 348 instances

Benign(%) Malignant(%) Total(%)

N 230(66.09%) 118(33.91%) 348(100%)

Age

(0,35] 12(5.22%) 1(0.85%) 13(3.74%)

(35,45] 81(35.22%) 8(6.78%) 89(25.57%)

(45,55] 58(25.22%) 29(24.58%) 87(25%)

(55,65] 56(24.35%) 29(24.58%) 85(24.43%)

(65,100] 23(10%) 51(43.22%) 74(21.26%)

Clockface location

1.0 34(14.78%) 16(13.56%) 50(14.37%)

2.0 15(6.52%) 4(3.39%) 19(5.46%)

3.0 14(6.09%) 7(5.93%) 21(6.03%)

4.0 12(5.22%) 4(3.39%) 16(4.6%)

5.0 9(3.91%) 1(0.85%) 10(2.87%)

6.0 24(10.43%) 7(5.93%) 31(8.91%)

7.0 9(3.91%) 6(5.08%) 15(4.31%)

8.0 10(4.35%) 2(1.69%) 12(3.45%)

9.0 3(1.3%) 5(4.24%) 8(2.3%)

10.0 13(5.65%) 12(10.17%) 25(7.18%)

11.0 31(13.48%) 24(20.34%) 55(15.8%)

12.0 39(16.96%) 20(16.95%) 59(16.95%)

C 17(7.39%) 10(8.47%) 27(7.76%)

Mass shape

L 32(13.91%) 14(11.86%) 46(13.22%)

O 108(46.96%) 26(22.03%) 134(38.51%)

R 41(17.83%) 11(9.32%) 52(14.94%)

X 19(8.26%) 56(47.46%) 75(21.55%)

Mass margins1

D 92(40%) 14(11.86%) 106(30.46%)

I 36(15.65%) 35(29.66%) 71(20.4%)

M 6(2.61%) 8(6.78%) 14(4.02%)

S 2(0.87%) 29(24.58%) 31(8.91%)

U 45(19.57%) 16(13.56%) 61(17.53%)

Mass margins2

D 87(37.83%) 13(11.02%) 100(28.74%)
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I 38(16.52%) 36(30.51%) 74(21.26%)

M 6(2.61%) 8(6.78%) 14(4.02%)

S 2(0.87%) 32(27.12%) 34(9.77%)

U 48(20.87%) 13(11.02%) 61(17.53%)

Mass margins worst

Circumscribed 87(37.83%) 13(11.02%) 100(28.74%)

Indistinct 38(16.52%) 36(30.51%) 74(21.26%)

Microlobulated 6(2.61%) 8(6.78%) 14(4.02%)

Obscured 48(20.87%) 13(11.02%) 61(17.53%)

Spiculated 2(0.87%) 32(27.12%) 34(9.77%)

Side

L 116(50.43%) 44(37.29%) 160(45.98%)

R 114(49.57%) 74(62.71%) 188(54.02%)

Size

(0,5] 21(9.13%) 3(2.54%) 24(6.9%)

(5,10] 94(40.87%) 45(38.14%) 139(39.94%)

(10,15] 56(24.35%) 30(25.42%) 86(24.71%)

(15,20] 37(16.09%) 19(16.1%) 56(16.09%)

(20,200] 21(9.13%) 21(17.8%) 42(12.07%)

Depth

A 63(27.39%) 29(24.58%) 92(26.44%)

M 94(40.87%) 53(44.92%) 147(42.24%)

P 54(23.48%) 29(24.58%) 83(23.85%)

Quadrant

Lower Inner 52(22.61%) 21(17.8%) 73(20.98%)

Lower Outer 8(3.48%) 5(4.24%) 13(3.74%)

Upper Inner 38(16.52%) 21(17.8%) 59(16.95%)

Upper Outer 86(37.39%) 57(48.31%) 143(41.09%)

Breast composition

Almost entirely fat 20(8.7%) 30(25.42%) 50(14.37%)

Extremely dense 21(9.13%) 3(2.54%) 24(6.9%)

Heterogeneously dense 104(45.22%) 31(26.27%) 135(38.79%)

Scattered fibroglandular
densities 85(36.96%) 54(45.76%) 139(39.94%)

Retro density

High 25(10.87%) 59(50%) 84(24.14%)

Iso/low 205(89.13%) 59(50%) 264(75.86%)
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Density num

High 30(13.04%) 51(43.22%) 81(23.28%)

Iso/low 79(34.35%) 20(16.95%) 99(28.45%)
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Table 5

Classifiers’ performance for the test set

Algorithm CCI K F AUROC

E 6 SMO 84.52 0.46 0.55 0.74

E 7 NaiveBayes 75.60 0.35 0.49 0.81

E 8 SMO 80.95 0.50 0.63 0.74

E 9 SMO 80.36 0.49 0.62 0.73

E 10 SMO 80.95 0.52 0.65 0.76

E 11 SMO 76.19 0.42 0.58 0.71
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