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Abstract 

This paper analyzes the optimal planning and operation of aggregated distributed energy resources 

(DER) with participation in the electricity market. Aggregators manage their portfolio of resources 

in order to obtain the maximum benefit from the grid, while participating in the day-ahead 

wholesale electricity market. The goal of this paper is to propose a model for aggregated DER 

systems planning, considering its participation in the electricity market and its impact on the 

market price. The results are the optimal planning and management of DER systems, and the 

appropriate energy transactions for the aggregator in the wholesale day-ahead market according to 

the size of its aggregated resources. A price-maker approach based on representing the market 

competitors with residual demand curves is followed, and the impact on the price is assessed to 

help in the decision of using price-maker or price-taker approaches depending on the size of the 

aggregated resources. A deterministic programming problem with two case studies (the average 

scenario and the most likely scenario from the stochastic ones), and a stochastic one with a case 
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study to account for the market uncertainty are described. For both models, market scenarios have 

been built from historical data of the Spanish system.  

The results suggest that when the aggregated resources have enough size to follow a price-maker 

approach and the uncertainty of the markets is considered in the planning process, the DER 

systems can achieve up to 50% extra economic benefits, depending on the market share, compared 

with a non-aggregated business-as-usual approach (not implementing DER systems). 

Keywords- Energy Management; Renewable Sources; Energy Storage; Aggregator; Energy 

System Models; Demand Response. 

Nomenclature 

Sets  

h   hour = 1 – 24 

m month = 1 – 12 

y years = 1 –pLifespan 

c type of houses = 1 – pNumHouses 

p points of the piecewise linear function = 1 – 23 

seg linear segments of the piecewise linear function = 1 – 22 

s number of scenarios = 1 – 3 

Parameters  

pLifespan Expected lifespan for PV and HP systems in the study (years) 

pNumHouses Number of different houses 

pHouseMultiplier Number of equivalent clients per house type 

pDemandElecc,m,h Base electric demand curve for 12 representative days (MWh) in each house 

pDemandThermc,m Total thermal demand for 12 representative days (MWh) 

pCostEy Electric energy base buying price at year y (€/MWh) 

pCostTy Thermal energy base buying price at year y (€/MWh) 

pFixEpow Access tariff for electric power (€/MW) 

pFixTpow Access tariff for thermal power (€/client) 

pGridTariffEE   Share of the variable electricity tariff that correspond to network costs (€/MWh) 

pDNIm,h Direct normal irradiance (W) 

pLossesPV Total electric losses in the PV system (%) 

pLossesHP Total thermal losses in the HP system (%) 

pCostPV Total cost per installed Watt of PV (€/MW)  

pCostHP Total cost per installed Watt of HP (electric power input) (€/MW) 



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

2 

 

pCostBat Total upfront cost of batteries, considering a replacement every 8 years (€/MWh) 

pOMfixPV Fixed annual Operation and Maintenance costs per installed Watt of PV (€/MW) 

pOMfixHP Fixed annual Operation and Maintenance costs per installed Watt of HP (€/MW) 

pCOP Coefficient of Performance for the HP 

pDemandShift Maximum allowed load to be shifted per day of the base electric demand (%) 

pDRequipCost Costs of equipment required in each house to do load shifting (€/client) 

pDaysInMonthm Number of days in month m 

pEffBat   Battery charge/discharge efficiency (%) 

pProbss,m,h Probabilities for each scenario and each hour (%) 

pProbAvgs Average probabilities for each scenario (%) 

pXparameters,p,m,h “X” value (energy) of the point p in the piecewise linear functions (MWh) 

pYparameters,p,m,h “Y” value (energy cost) of the point p in the piecewise linear functions (€/MWh) 

pAvgSystemDemandm,h     Average total system demand (MWh) 

Positive Variables  

vPowerPVc PV installed capacity of (MW) 

vBatCapacityc Battery installed capacity(MWh) 

vPowerHPc HP installed capacity (MW) 

vProdPVc,m,h Electric PV production (MWh) 

vElecHPinputs,c,m,h Electricity for thermal production with HP (MWh) 

vGridEnTotalPoss,m,h Total energy transaction to the grid (positive side) (MWh) 

vGridEnTotalNegs,c,m,h   Total energy transaction to the grid (negative side) (MWh) 

vBoughtEnergyT s,c,m Thermal energy bought (natural gas) from the grid to meet the daily demand (MWh) 

vSOCs,c,m,h Battery State-of-Charge (MWh) 

vDisBats,c,m,h   Energy discharged from battery (MWh) 

vChBats,c,m,h Energy charged to the battery (MWh) 

vDecDemands,c,m,h Decrease in base demand from pDemandElec (MWh) 

vIncDemands,c,m,h Increase in base demand from pDemandElec (MWh) 

vDemandNews,c,m,h New consumption curve after changing the base profile of pDemandElec (MWh) 

vPowElects,c contracted annual electric power in house c (MW) 

vGridCostEEs,m,h   Cost or benefit of electric energy transaction (€) 

λs,p,m,h   Auxiliary continuous variable for the piecewise linear functions 

Free Variables  

vGridEnTranss,c,m,h   Energy transaction to the grid in each node (MWh) 

vElectricCosts,m,h   Cost or benefit of electric energy transaction (€) 

vCostEE   Total electric energy cost for the considered district (€) 

vCostPowE   Total electric power cost for the considered district (€) 

vCostET Total thermal energy cost for the considered district (€) 
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vCostPowT  Total thermal power cost for the considered district (€) 

vCostPV   Total PV investment costs (€) 

vCostBat Total battery investment costs (€) 

vCostHP  Total heat pump investment costs (€) 

vOMPV   Total PV operation and maintenance costs (€) 

vOMHP Total HP operation and maintenance costs (€) 

vCostDR   Total considered costs for demand response equipment (€) 

vOriginalDemandm,h     Original electric demand of the considered district (MWh) 

vPriceOriginalm,h     Original market electricity price  (€/MWh) 

vPriceNewm,h     New market electricity price  (€/MWh) 

vAvgPriceOriginal     Original average market electricity price  (€/MWh) 

vEnergyOriginalm,h     Original energy transactions from the district (No DER) (MWh) 

vEnergyNewm,h     New energy transactions from the district (with DER) (MWh) 

vTotalCostBaseCase Total costs at the end of the study for the base case (No DER) (€) 

vTotalCostNew New total costs at the end of the study for the districts (with DER) (€) 

vCostClientSmallestDistrict Total costs per client at the smallest considered district (€) 

vCostClientNewDistrict Total costs per client at all other considered districts (€) 

vWaveragePriceOriginal Energy weighted original average system price (€/MWh) 

vWaveragePriceNew Energy weighted new average system price (€/MWh) 

vSystemEnergyOriginalm,h Original energy of the Spanish electric system (MWh) 

vSystemEnergyNewm,h New energy (after the DER penetration) of the Spanish electric system (MWh) 

Binary Variables  

χs,seg,m,h   Auxiliary binary variable for the piecewise linear functions 

1. Introduction 

Distributed Energy Resources (DER) appear as a group of tools that facilitate the integration of 

renewable energy while mitigating the challenges of intermittency and the lack of dispatchability 

of such sources [1]. DER systems include generation, energy storage, and demand response 

schemes.  

Many examples in the literature suggest that these systems can be beneficial for most stakeholders 

in the energy system [2], especially when aggregated [3]. It is important to remark that most DER 

owners (also known as producer-consumers or “prosumers” [4]) don’t have enough size to 

participate directly in energy markets (due to the existing entry barriers, [5]), and thus the 

importance of the aggregator to manage all the DER systems and interact with the market [3], [6]. 
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This aggregation of distributed energy resources can be done in a variety of ways, such as Virtual 

Power Plants (VPP, composed by several microgenerators, loads and flexible storage capacities 

not necessarily geographically close to each other [7]), Microgrids (similar to VPPs, with the 

difference that loads and resources are geographically concentrated, such as in residential districts 

or university campus, and can operate connected and/or isolated from the grid [48]) or mobile 

storage/loads in the form of electrical vehicles (EV) fleets. In addition, the participation in the 

market of this aggregated resources can be modelled following price-taker or price-maker 

approaches. Under a price-taker approach, the market participant is considered unable to 

significantly affect the market price by changing its cleared energy or its offering strategy, and 

corresponds normally to small players. Computations for this participants can assume constant 

market prices independently of their strategy. In the price-maker approach it is considered that the 

market participant affects the market price by clearing more or less energy or by changing its 

offering strategy, and computation must take into account this impact on the price [16].   

Some representative examples of research works found in the literature, focusing in aggregation 

of resources with market participation have been summarized in Table 1. It is important to remark 

that, in this paper, the aggregator is the agent (physical or not) responsible of managing a set of 

resources, such as a microgrid, a VPP, an EV fleet or just a group of clients, and could be a retailer, 

a distribution company, or another market participant. Regulatory particularities of such agents 

have not been addressed here as they fall outside the scope of this paper. 

Table 1 

Summary of resource aggregation models with market participation. 

Reference 

Type of 

aggregation Methodology 

Market 

participation 

Time 

scope focus Approach 

[7] VPP Stochastic MILP 
Day-ahead 

and balancing 
Short-term Operation Price-taker 

[8] VPP MILP 
Bilateral 

contracts 
Short-term Operation Price-taker 

[9] VPP Montecarlo Balancing Short-term Operation Price-taker 

[11] Microgrid Stochastic MILP Day-ahead Short-term Operation Price-taker 
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[12] 
Microgrid, 

EV fleet 
MILP Day-ahead Short-term Operation Price-taker 

[13] Microgrid MPEC Balancing Short-term Operation Price-taker 

[14] 
Microgrid, 

EV fleet 
Tabu search 

Internal 

market 
Short-term Operation Price-maker 

[49] 
Microgrid MCP 

Internal 

market 

Medium-

term Planning Price-maker 

[16] 
Retailer 

(loads) 

Genetic 

algorithm 

Day-ahead 

and intradays 
Short-term Operation Price-taker 

[36] VPP NLP Day-ahead Short-term Operation 
Price-taker 

price-maker 

[38] VPP MILP Day-ahead Short-term Operation Price-maker 

[37] VPP EPEC Day-ahead Short-term Operation Price-maker 

[35] Microgrid LP N/A Long-term Planning Price-taker 

 

An example of a VPP model has been proposed in [7], composed by a two-stage stochastic mixed-

integer linear programming model which maximizes the virtual power plant expected profit. This 

model buys and sells energy from the day-ahead and balancing markets. Similarly, a mixed-integer 

linear programming model based on robust optimization approach has been proposed in [8] to 

reduce the risk of not meeting bilaterally contracted energies by a VPP. Conversely, authors in [9] 

analyze the integration of wind power into the grid by using VPPs, focusing on balancing wind 

power and energy costs with micro-CHP (combined heat and power systems). Lastly, in [10] the 

technical and economic aspects of VPPs have been reviewed and its competitiveness in a 

deregulated market environment has been studied. 

Examples of Microgrids managed by aggregators can be found in [11] and [12]. The former 

proposes a stochastic problem for the optimal operation of a microgrid, implementing several DER 

systems, with the objective of placing optimal hourly bids in the day-ahead market. The latter 

presents an aggregator that manages distributed generation and a smart parking lot with 200 EVs. 

The main objective of the model they propose was to compute the optimal day-ahead energy 

schedule of the microgrid and the EVs that minimizes the operation costs. Both models follow a 

price-taker approach and involve only the operation of DER systems in the short term (1 day). 

Another example can be found in [13], where an aggregator works with a wind power producer, 
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and uses demand-response to cope with the power production uncertainty and market violations. 

To solve this problem, single-level mathematical program with equilibrium constraints (MPEC) is 

proposed. 

A different methodology has been developed in [14], where an aggregator manages loads, 

distributed generation (DG) and EVs of a district with the particularity that the customers have 

elastic demand curves as linear functions of the electricity price, leading to an additional internal 

market between the aggregator and its prosumers. Tabu search [15] has been used to solve the 

proposed non-linear problem, and the scope of the model is to find the optimal scheduling for the 

external day-ahead energy markets, given the energy usage expected from the internal market 

clearing. Similarly, a planning and operation of isolated microgrids is proposed in [49], where an 

internal market is implemented and the market price is solved using a mix complementarity 

problem (MCP). Another more general example of bidding strategies can be found in [16] where 

an aggregator manages its energy offers for the day-ahead market, and also for the six intraday 

markets in the Spanish energy system. The optimization problem has been solved with a genetic 

algorithm.  

In [36], pumped storage hydro has been used to balance wind power generation in the electricity 

markets, following both price-taker and price-maker approaches, using a non-linear optimization 

problem. Authors remark that the operation of the considered systems and the participation in the 

market change considerably due to the approach taken. Other price-maker approaches can be found 

in [37] and [38], where energy storage technologies have been used for energy arbitrage, the latter 

also analyzing the particular strategic behaviors of different types of storage systems. Operation 

and planning of DER systems under different low-voltage network topologies have been analyzed 

in [35], following a price-taker approach. 

Despite the amount of research available about DER aggregation, as it can be clearly seen in Table 

1, most work focus on operation only in the short term, from those considering investment 

planning, very few consider direct transactions with the market in their planning process, and most 

of them follow a price-taker approach (the problem formulation might be inexact and might 

provide misleading results). In addition, stochastic optimization models are rare in this kind of 

application. Hence, the work proposed in this paper intends to fulfil this gap in the literature 



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

7 

 

proposing a stochastic optimal planning problem of aggregated DER systems with market 

participation, following a price-maker approach. To the best of the authors’ knowledge, such a 

model has not been proposed in the literature. 

The goal of this paper is to propose a price-maker model for DER systems planning in a district 

(which can be considered either a microgrid or a VPP) operated by an aggregator that participates 

in the electricity market. The importance of following a price-maker approach in comparison with 

a price-taker one is analyzed by modeling the impact of the aggregator’s actions on the final 

electricity price. The optimal planning and operation of DER systems considering market 

uncertainty, the benefits of their aggregation and the assessment of when a price-maker approach 

should be followed depending on the amount of aggregated resources are some of the main 

contributions of this paper. It is important to remark that the proposed methodology does not imply 

any market modification but only provides a better way to compute the impact of DER systems in 

the final market price, in comparison with the simpler but less realistic price-taker models. 

Two programming problems have been proposed to analyze different approaches in the planning 

stage: a deterministic Price-maker model, and a stochastic Price-maker model to cope with market 

uncertainty. The impact of the aggregator on the market has been simulated by clearing the 

aggregator’s energy (to sell or to buy) against a set of residual demand curves (RDC) [16] 

representing the different scenarios analyzed. Solar photovoltaic panels (PV) and air-source heat 

pumps (HP) have been selected as representative DG technologies for electric and thermal energy 

production. For the energy storage, conventional battery systems have been considered.  

The rest of the paper is organized as follows. In Section 2, a brief description of the optimization 

model can be found, while in Section 3 its full mathematical formulation has been presented. In 

Section 4 the case studies considered in this research and the DER implementation scenarios have 

been described. Results of the case studies and a discussion of their implications have been 

provided in Section 5. Concluding remarks can be found in Section 6. 

2. Model description 

The base scheme considered in this study is composed by an aggregator that manages a large 

number of residential clients (implementing DER systems). This aggregator also has a connection 
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to the electricity market, making possible to sell and buy energy in the day-ahead market session. 

The ownership of the distributed energy resources has been attributed to be on the residential 

clients, and the aggregators act like a distribution-level retailer (market participator) that sends 

dynamic price signals to its clients to manage their consumption behavior and resources. 

Reliability issues and the economic interactions client-retailer (business models) have not been 

addressed in this study, as they fall outside the scope of the paper. In addition, it is considered that 

the contractual relationship between the generic aggregator or retailer and the clients, the profit 

sharing among the participants, and the possible business models that could be established, do not 

really impact on the optimal management of DER systems. Also, unbalance issues have not been 

taken into account, as the real time operation (where the unbalances occur) has not been 

considered. 

The optimization model proposed is a mixed-integer linear programming one, and its objective is 

to maximize the profit of an aggregator that has to decide the investments and the operation of a 

set of distributed energy resources. Model inputs include the costs and performance values (e.g., 

electric efficiency, thermal efficiency, power rating, and losses) of the DER systems considered, 

geolocation characteristics (sun irradiation), energy requirements (consumer electric and thermal 

demand curves) and each scenario has been modeled with a set of market residual demand curves. 

These curves change depending on the type of model selected (stochastic or deterministic) and the 

case study considered. Outputs comprise optimal investments planning (installed capacities) and 

operation of DER systems, with the corresponding grid energy buying and selling schedules, and 

the energy market price. For the sake of simplicity, a year has been modeled with one 

representative day per month, for a total of 288h. The distributed energy resources considered are: 

distributed generation (PV, Heat pump), storage systems (water tanks and batteries), and demand 

response schemes. Since the time scope of this model is the long-term (20 years), uncertainties in 

renewable energy production have not been taken into account, as it is considered that average 

values can deliver sensible results (given the long-term nature of the problem). Moreover, in order 

to model renewable production uncertainties, extra scenarios (e.g. with low, medium and high 

production) and/or larger time periods (e.g. considering one full year instead of 12 representative 

days) have to be included, incrementing considerably the computation time.  
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Fig.  1. Block diagram of the proposed optimization models. 

The Spanish electricity market is composed of the wholesale market, the intraday markets (a time 

scheme of such sessions can be found in [16]), the balancing market and the ancillary service 

markets. Due to the long-term scope of this study, and considering that most energy is traded in 

the day-ahead session, the proposed model considers only the participation in the day-ahead 

market. 

Greenhouse gas emissions are not taken into account in this study, as the computation of such 

reductions is a complex problem, that falls outside of the scope of this paper and deserves a deeper 

analysis. Indeed, to analyze the effect of price changes in the reduction of emissions, it seems 

necessary to develop a detailed unit commitment model where the commitment and production of 

the thermal power plants given the new operation of DER clients can be used to quantify the new 

emissions. An example of such type of analysis can be found in [56], where a full unit commitment 

model of the Spanish system is used for this purpose. 

 

3. Mathematical formulation  

This section describes the two stage stochastic optimization model to find the optimal scaling and 

operation of DER systems (PV systems, HP systems, batteries, and demand response schemes) to 
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be installed in a set of buildings connected by a distribution network. It has been considered that 

the buildings do not have any preexisting DER installation. A typical year’s operation 

characterized by 12 days, each one representing a month of the year, is replicated for the total 

length of the study. For the sake of brevity, only the stochastic price-maker problem has been fully 

described, as the deterministic price-maker  changes only in the number of scenarios (one in that 

case). 

In the following formulation a v has been added at the beginning of the variable names, a p for the 

parameters, and the sets have been included as sub-indexes at the end of the parameter or variable 

names. 

3.1. Objective function 

The proposed objective function maximizes the benefits of all the prosumers (producer-

consumers) in the network in an aggregated manner; this has been done by reducing the equivalent 

energy costs. Indeed, the objective function is composed by the energy incomes and costs, and the 

costs of the DER systems, considering both equipment investments and maintenance. It is 

calculated as: 

𝑚𝑎𝑥{−𝑣𝐶𝑜𝑠𝑡𝐸𝐸 − 𝑣𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝐸 − 𝑣𝐶𝑜𝑠𝑡𝑃𝑉 − 𝑣𝑂𝑀𝑃𝑉 − 𝑣𝐶𝑜𝑠𝑡𝐵𝑎𝑡 − 𝑣𝐶𝑜𝑠𝑡𝐸𝑉 − 𝑣𝐶𝑜𝑠𝑡𝐻𝑃

− 𝑣𝑂𝑀𝐻𝑃 − 𝑣𝐶𝑜𝑠𝑡𝐸𝑇 − 𝑣𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝑇 − 𝑣𝐶𝑜𝑠𝑡𝐷𝑅} 

(1) 

 

Where:  

𝑣𝐶𝑜𝑠𝑡𝐸𝐸 = ෍ ൭𝑝𝐶𝑜𝑠𝑡𝐸௬

௬

∗ ෍ ෍ ൭𝑑𝑎𝑦𝑠𝑀𝑜𝑛𝑡ℎ௠

௠௦

∗ ෍ ቀ𝑝𝑃𝑟𝑜𝑏𝑠௦,௠,௛ ∗ ൫𝑣𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶𝑜𝑠𝑡௦,௠,௛ + 𝑣𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝐸𝐸௦,௠,௛൯ቁ

௛

൱൱ 

(2) 

𝑣𝐶𝑜𝑠𝑡𝑃𝑜 − 𝑤𝐸 = ෍ ൭𝑝𝐶𝑜𝑠𝑡𝐸௬ ∗ 𝑝𝐹𝑖𝑥𝐸𝑝𝑜𝑤 ∗ ෍ ෍൫𝑝𝑃𝑟𝑜𝑏𝐴𝑣𝑔௦ ∗ 𝑣𝑃𝑜𝑤𝐸𝑙𝑒𝑐𝑡௦,௖൯

௖௦

൱

௬

 
(3) 



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

11 

 

𝑣𝐶𝑜𝑠𝑡𝑃𝑉 = ෍(𝑝𝐶𝑜𝑠𝑡𝑃𝑉 ∗ 𝑣𝑃𝑜𝑤𝑒𝑟𝑃𝑉௖)

௖

 (4) 

𝑣𝑂𝑀𝑃𝑉 = ෍(𝑝𝑂𝑀𝑓𝑖𝑥𝑃𝑉 ∗ 𝑣𝑃𝑜𝑤𝑒𝑟𝑃𝑉௖ ∗ 𝑝𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛)

஼

 (5) 

𝑣𝐶𝑜𝑠𝑡𝐵𝑎𝑡 = ෍(𝑝𝐶𝑜𝑠𝑡𝐵𝑎𝑡 ∗ 𝑣𝐵𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௖)

௖

 (6) 

𝑣𝐶𝑜𝑠𝑡𝐸𝑇 = ෍ ൭𝑝𝐶𝑜𝑠𝑡𝑇௬ ∗ ෍ ෍ ෍൫𝑝𝑃𝑟𝑜𝑏𝐴𝑣𝑔௦ ∗ 𝑝𝐷𝑎𝑦𝑠𝑀𝑜𝑛𝑡ℎ௠ ∗ 𝑣𝐵𝑜𝑢𝑔ℎ𝑡𝐸𝑛𝑒𝑟𝑔𝑦𝑇௦,௖,௠൯

௠௖௦

൱

௬

 
(7) 

𝑣𝐶𝑜𝑠𝑡𝑃𝑜𝑤𝑇 = 𝑝𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛 ∗ 𝑝𝑁𝑢𝑚𝐻𝑜𝑢𝑠𝑒𝑠 ∗ 𝑝𝐻𝑜𝑢𝑠𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ 𝑝𝐹𝑖𝑥𝑇𝑝𝑜𝑤 (8) 

𝑣𝐶𝑜𝑠𝑡𝐻𝑃 = ෍(𝑝𝐶𝑜𝑠𝑡𝐻𝑃 ∗ 𝑣𝑃𝑜𝑤𝑒𝑟𝐻𝑃௖)

௖

 (9) 

𝑣𝑂𝑀𝐻𝑃 = ෍(𝑝𝑂𝑀𝑓𝑖𝑥𝐻𝑃 ∗ 𝑣𝑃𝑜𝑤𝑒𝑟𝐻𝑃௖ ∗ 𝑝𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛)

஼

 (10) 

𝑣𝐶𝑜𝑠𝑡𝐷𝑅 = 𝑝𝑁𝑢𝑚𝐻𝑜𝑢𝑠𝑒𝑠 ∗ 𝑝𝐻𝑜𝑢𝑠𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ 𝑝𝐷𝑅𝑒𝑞𝑢𝑖𝑝𝐶𝑜𝑠𝑡 (11) 

 

From the previous equations, it can be seen that (2) sum up the electricity costs/benefits produced 

by the transactions with the grid. The variable vElectricCost is positive when energy is bought 

from the grid and it is negative when energy is sold (the negative costs represents profit). Equation 

(3) is used to compute the cost of the contracted electricity power amount and (7), (8) relate to the 

thermal energy costs and access tariffs, respectively. Equations (4), (6), (9) and (11) describe the 

distributed resources equipment costs, whereas equations (5) and (10) compute the total operation 

and maintenance costs. All the parameters used in these and the rest of the equations in this section 

have been described in section 4. 

This objective function has been formulated considering the total lifespan of the project set to 20 

years (considering this is the lifespan of HP and PV systems [39], [40]) with battery replacements 

every 8 years [19] (when they have been included in the DER planning outcome of the 

optimization problem), and investments, if any, take place at the beginning of the study period. 

3.2. State-of-Charge constraints: 

The following constraints describe the behavior of the battery storage systems, affecting mainly 

the state-of-charge (SOC) which is the rate of stored energy with respect to the battery maximum 

capacity, typically expressed as a percentage (similar to a fuel gauge). These constraints limit the 
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charge to the maximum capacity and the discharge to the current energy level. Current SOC has 

been computed from the previous SOC by adding and subtracting the energy charged and 

discharged. 

𝑣𝑆𝑂𝐶௦,௖,௠ୀଵ,௛ୀ଴ = 0 (12) 

𝑣𝑆𝑂𝐶௦,௖,௠,௛ୀ଴ = 𝑣𝑆𝑂𝐶௦,௖,௠ିଵ,௛ୀଶସ ∀𝑚 ∈ [2,12] (13) 

𝑣𝑆𝑂𝐶௦,௖,௠,௛ୀଵ = 𝑣𝑆𝑂𝐶௦,௖,௠,௛ୀଶସ ∀𝑚 ∈ [2,11] (14) 

𝑣𝑆𝑂𝐶௦,௖,௠,௛ = 𝑣𝐵𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௖ (15) 

𝑣𝑆𝑂𝐶௦,௖,௠,௛ = 𝑣𝑆𝑂𝐶௦,௖,௠,௛ିଵ − 𝑣𝐷𝑖𝑠𝐵𝑎𝑡௦,௖,௠,௛ + 𝑣𝐶ℎ𝐵𝑎𝑡௦,௖,௠,௛ (16) 

𝑣𝐷𝑖𝑠𝐵𝑎𝑡௦,௖,௠,௛ ≤ 𝑣𝑆𝑂𝐶௦,௖,௠,௛ିଵ (17) 

𝑣𝐶ℎ𝐵𝑎𝑡௦,௖,௠,௛ ≤ 𝑣𝐵𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦௖ − 𝑣𝑆𝑂𝐶௦,௖,௠,௛ିଵ (18) 

3.3. Demand Response constraints: 

The following equations model load shifting under a demand response scheme. Equation (19) 

makes the daily total of the new managed demand to be the same as the original demand (no 

elasticity). Equation (20) balances the demand shift per hour and accounts for the energy increased 

and decreased at that hour. The maximum amount of load that can be shifted per day has been 

limited by the parameter pDemandShift, as shown in (21), i.e. the amount of increments of demand 

(and consequently demand decrements in other hours) must be lower or equal to a percentage of 

the daily total demand.  

෍ 𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑒𝑤௦,௖,௠,௛

௛

= ෍ 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐸𝑙𝑒𝑐௖,௠,௛

௛

 (19) 

𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑒𝑤௦,௖,௠,௛ + 𝑣𝐷𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑௦,௖,௠,௛ = 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐸𝑙𝑒𝑐௖,௠,௛ + 𝑣𝐼𝑛𝑐𝐷𝑒𝑚𝑎𝑛𝑑௦,௖,௠,௛ (20) 

෍ 𝑣𝐼𝑛𝑐𝐷𝑒𝑚𝑎𝑛𝑑௦,௖,௠,௛

௛

≤ 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑆ℎ𝑖𝑓𝑡 ∗ ෍ 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐸𝑙𝑒𝑐௖,௠,௛

௛

 (21) 

 

3.4. Energy Production constraints: 

The PV system production is modelled with (22) (taken from [50]), which is an approximation of 

PV power generation extensively used for DER system planning models, as in [49], [35] and [25].  

The variable vProdPV refers to the electric energy produced by the PV system, where DNI stands 

for Direct Normal Irradiance (W/m2), which is the energy provided by the sun at a specified 
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location. The vPowerPV refers to the selected size of the system. Lastly, G is the global irradiation 

received on a horizontal plane (G = 1000 W/m2). Note that the time step of all the considered data 

is 1 hour.  Equation (23) presents the approximated thermal generation equation for an air-source 

heat pump. It is important to remark that thermal generation has been considered to have a greater 

output than its actual production as it has been compared with the cost of producing the same 

amount of energy with a conventional gas boiler at 80% efficiency. Also, note that more detailed 

models for both PV and HP production are available, normally used for real-time operation studies 

(including generation and demand uncertainty), but such real-time issues fall outside the scope of 

this paper. 

𝑣𝑃𝑟𝑜𝑑𝑃𝑉௖,௠,௛ =
𝑝𝐷𝑁𝐼௠,௛ ∗ 𝑣𝑃𝑜𝑤𝑒𝑟𝑃𝑉௖

𝐺
∗ (1 − 𝑝𝐿𝑜𝑠𝑠𝑒𝑠𝑃𝑉) 

(22) 

𝑣𝐵𝑜𝑢𝑔ℎ𝑡𝐸𝑛𝑒𝑟𝑔𝑦𝑇௦,௖,௠

= 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑇ℎ𝑒𝑟𝑚௖,௠

− ෍ ቀ𝑣𝐸𝑙𝑒𝑐𝐻𝑃𝑖𝑛𝑝𝑢𝑡௦,௖,௠,௛ ∗ 𝑝𝐶𝑂𝑃 ∗ (1 − 𝑝𝐿𝑜𝑠𝑠𝑒𝑠𝐻𝑃)ቁ

௛

/0.8 

(23) 

 

Constraint (24) limits the electric production of the heat pump below the nominal installed power. 

Continuing with HP operation, (25) is intended to avoid thermal generation only in hours that is 

less likely to be used, making it produce at least 30% of total demand in the afternoon-evening 

hours. 

𝑣𝐸𝑙𝑒𝑐𝐻𝑃𝑖𝑛𝑝𝑢𝑡௦,௖,௠,௛ ≤ 𝑣𝑃𝑜𝑤𝑒𝑟𝐻𝑃௖ (24) 

෍൫𝑣𝐸𝑙𝑒𝑐𝐻𝑃𝑖𝑛𝑝𝑢𝑡௦,௖,௠,௛ ∗ 𝑝𝐶𝑂𝑃൯

௛

∗
(1 − 𝑝𝐿𝑜𝑠𝑠𝑒𝑠𝐻𝑃)

0.8
≥ 0.3 ∗ 𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑇ℎ𝑒𝑟𝑚௖,௠ ∀ℎ ∈ [13,20] 

(25) 

 

The following equation has been used to calculate the required contracted electric power given the 

DG production. 

𝑣𝑃𝑜𝑤𝐸𝑙𝑒𝑐𝑡௦,௖ ≥ 𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑒𝑟𝑇𝑟𝑎𝑛𝑠௦,௖,௠,௛ (26) 
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3.5. Balance Equation: 

Equation (27) is required to balance the total energy consumption and production at every period, 

where all the energy that enters each node is positive and the energy that leaves the node is 

negative. 

𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑟𝑎𝑛𝑠௦,௖,௠,௛

= 𝑣𝐷𝑒𝑚𝑎𝑛𝑑𝑁𝑒𝑤௦,௖,௠,௛ − 𝑣𝑃𝑟𝑜𝑑𝑃𝑉௖,௠,௛ − 𝑣𝐷𝑖𝑠𝐵𝑎𝑡௦,௖,௠,௛ ∗ 𝑝𝐸𝑓𝑓𝐵𝑎𝑡

+ ൬
𝑣𝐶ℎ𝐵𝑎𝑡௦,௖,௠,௛

𝑝𝐸𝑓𝑓𝐵𝑎𝑡
൰ + 𝑣𝑇𝑟𝑎𝑛𝑠𝐸𝑛𝑒𝑟𝑔𝑦௦,௖,௠,௛ − 𝑣𝑅𝑒𝑐𝐸𝑛𝑒𝑟𝑔𝑦௦,௖,௠,௛

+ 𝑣𝐸𝑙𝑒𝑐𝐻𝑃𝑖𝑛𝑝𝑢𝑡௦,௖,௠,௛ 

(27) 

 

3.6. Electricity cost constraints:  

The constraints in this and the next subsection have been used to calculate the electric energy costs 

from the market price, using a piecewise linear approximation. First, (28) has been used to separate 

the positive and negative parts of the energy transactions with the grid. This is to pay the equivalent 

share of network usage when buying energy, considering that this cost is to be paid by the buyer 

and not the seller of energy, as formulated in (29). 

𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑠௦,௠,௛ − 𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑜𝑡𝑎𝑙𝑁𝑒𝑔௦,௠,௛ = ෍ 𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑟𝑎𝑛𝑠௦,௖,௠,௛

௖

 (28) 

𝑣𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝐸𝐸௦,௠,௛ = 𝑝𝐺𝑟𝑖𝑑𝑇𝑎𝑟𝑖𝑓𝑓𝐸𝐸 ∗ 𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑠௦,௠,௛ (29) 

 

3.7. Piecewise linear function constraints:  

The piecewise linear functions have been modeled as described in [20]. The piecewise function is 

characterized by the points connecting the linear segments. In this paper, 23 points have been used 

to model the 22 considered segments for the energy cost curve approximation. The detailed process 

for the piecewise linear function approximation can be found in section 4.2.  
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The positive auxiliary variable λ has been used in (30) to compute the electricity cost as a linear 

combination of energy cost values of the considered points (pYparameter) previously described. 

Similarly, the energy value of the piecewise linear function is translated to a linear combination of 

the pXparameter values, as shown in (31).  

𝑣𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶𝑜𝑠𝑡௦,௠,௛ = ෍൫𝜆௦,௣,௠,௛ ∗ 𝑝𝑌𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟௦,௣,௠,௛൯

௣

 (30) 

𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑠௦,௠,௛ − 𝑣𝐺𝑟𝑖𝑑𝐸𝑛𝑇𝑜𝑡𝑎𝑙𝑁𝑒𝑔௦,௠,௛ = ෍൫𝜆௦,௣,௠,௛ ∗ 𝑝𝑋𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟௦,௣,௠,௛൯

௣

 (31) 

It is important to remark that the sum of all λ variables cannot be greater than 1, as shown in (32). 

However, to avoid being in more than one segment of the piecewise function, the binary variable 

χ is used (also, the sum of all χ cannot be greater than one, and thus, only the χ of one of the 

segments will be equal to 1 and the rest will be 0, as shown in (36)). This binary variable makes 

the optimization problem a mixed integer programming one. The constraints (33) – (35) complete 

the piecewise linear function formulation, allowing the λ variables to be greater than 0 if the binary 

variable is 1 (the active segment of the piecewise linear function), and to be zero otherwise. A 

more detailed explanation of this piecewise approximation can be found in [20]. 

෍ 𝜆௦,௣,௠,௛

௣

= 1 (32) 

𝜆௦,௣ୀଵ,௠,௛ ≤ 𝜒௦,௦௘௚ୀଵ,௠,௛ (33) 

𝜆௦,௦௘௚,௠,௛ ≤ 𝜒௦,௦௘௚ିଵ,௠,௛ + 𝜒௦,௦௘௚,௠,௛ ∀𝑠𝑒𝑔 ∈ [2,21] (34) 

𝜆௦,௣ୀଶଷ,௠,௛ ≤ 𝜒௦,௦௘௚ୀଶଶ,௠,௛ (35) 

෍ 𝜒௦,௦௘௚,௠,௛

௦௘௚

= 1 (36) 

 

4. Scenarios and Case Studies 

4.1. Case study description and parameters 

Three case studies with different DER planning approaches have been analyzed:  

 Case study A: Price-maker with deterministic approach (average scenario). 
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 Case study B: Price-maker with deterministic approach (most likely scenario). 

 Case study C: Price-maker with stochastic approach. 

For all cases different sizes of aggregated districts have been analyzed. To adequately simulate a 

district different types of domestic energy users have been considered. According to [21] 

residential clients in Spain can be classified in four kinds depending on the age of the head of the 

family (HF) and/or the presence of young children in the household: head of the family with less 

than 35 years, head of the family between 35 and 65 years old, head of the family with more than 

65 years, and family with children younger than 14 years old. Fig.  2 and Fig.  3 show the typical 

electricity demand curves for every type of client in summer and winter seasons, calculated as an 

average of historical data [21].  

 

 

Fig.  2. Normalized residential demand curves for winter time (4 types of users). 
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Fig.  3. Normalized residential demand curves for summer time (4 types of users). 

Table 2 summarizes the annual energy consumption per client type and the difference with respect 

to the Spanish residential average value per household. The monthly energy demand throughout a 

year is represented in Fig.  4 [21].  

Table 2 

Total annual energy consumption per client type. 

Type of client Comparison with 

average value 

Annual Thermal 

(kWh) 

Annual Electric 

(kWh)  

HF<35 y.o. -5% 6054.9747 3507.0613 

35≤HF<65 y.o. 8% 6871.7046 3980.1140 

HF≥65 y.o. -19% 5174.3962 2997.0274 

House with 

children 

16% 7422.3987 4299.0778 
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Fig.  4. Monthly demand variation for the residential electric sector in Spain. 

For thermal energy, it has been considered that most residential customers have a hot water tank 

or other means of thermal storage, so there is no an hourly demand curve. However, constraint 

(25) has been added to have a minimum thermal production during peak hours, to avoid 

concentrating all the thermal energy in a few off-peak hours when is less likely to be used. 

Moreover, it has been assumed that the total thermal use follows the same monthly percentage 

pattern of Fig. 4. 

In this study, the solar characteristics of Madrid, Spain, have been considered, and solar production 

has been calculated with hourly DNI data from [22]. Other required parameters have been 

summarized in Tables 3 and 4. The former, with data taken from [23], presents the access tariffs 

to be paid by each household (due to the contracted power), the thermal energy cost (in the form 

of natural gas) and the electric energy cost for network operation and maintenance, cost to be paid 

in addition to the cost of the energy bought from the market (according to [24], the network cost 

and taxes represents about 60% of the tariff). The electricity price will be the resulting price of the 

market (an output of the model), and it is not included here. Note that these prices are at the 

wholesale level and not at the consumer level. Table 4 shows the costs and performance parameters 

(including losses) of the considered distributed energy resources (taken from [42], [43] and [44], 
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losses from [22], [49] and [51]). Battery charge/discharge efficiency has been set to 95% [42]. The 

coefficient of performance (COP) of the heat pump has been assumed in 2.5 units, considered as 

an average COP throughout the year [41]. Indeed, the COP of HP system varies constantly as a 

function of the difference between indoor-outdoor temperatures, and thus, the approximation used 

is expected to have an error in real-time operation (in summer time the COP is likely to be smaller, 

and in winter time the COP is likely to be larger). However, given the long-term scope of this 

study, it is considered that the average value used deliver sensible results. Other works with similar 

COP range can be found in [49], [54] and [55]. 

The pDemandShift parameter has been calculated considering the appliances that can be more 

easily shifted in time. According to [26], the washing machine, dryer and dish washer represent 

the 13.3% of the total electric consumption of a typical Spanish household; hence, the 

pDemandShift parameter has been established to a maximum 13% of total daily load. A fixed cost 

pDRequipCost of 250 €/house represents the cost of the control devices needed for demand 

response [45]. 

Table 3 

Power tariffs and thermal energy pricing. 

Access tariffs (Power) Price 

Electric (Annual) 38043 (€/MW) 

Thermal (Annual)  106.08 (€/Client) 

Natural gas tariff: 74.3 (€/MWh) 

Network costs share: 44.02 (€/MWh) 

 

Table 4 

Technology costs and expected energy losses. 

Technology Inst. Cost  (€/ W) O&Mfix (€/ kW) Losses (%) 

PV 2.15 30.93 24 (electric) 

HP (COP=2.5) 2.94 100.1 15 (thermal) 
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Battery 0.36 (€/Wh) - 10 (electric) 

 

4.2. Scenario description 

The scenarios proposed consist of residual demand curves (RDC) used by the aggregator to assess 

its impact on the market price when selling or buying energy, and thus, the aggregator optimizes 

its energy transactions for each hour. In a simple way, a residual demand curve of a market 

participant is a function that relates the market clearing price to the quantity sold by the participant 

in that hour. It is obtained by adding up the demand curves of the competitors and subtracting their 

supply curves, or equivalently, by removing the market participant own aggregated supply curve 

from the total aggregated residual demand curve of the market [32]. It is a well-known approach 

for representing the competitors’ behavior, and is commonly used by market participants to 

formulate effective oligopolistic strategies [33]. The RDC for the representative days used to 

model year 2013 have been computed from real market data taken from [17] and [18], and used in 

all residual demand curve scenarios. In the deterministic problem 288 representative residual 

demand curves have been computed, corresponding to one representative curve per hour, 24 hours 

per day and 12 representative days for the year. For the stochastic case, three sets of 288 curves 

have been created (i.e. 3 scenarios per hour). Then, an energy cost curve has been computed for 

every residual demand curve considered and a piecewise linear approximation has been carried 

out to implement them in the optimization model, [27]. It is important to remark that both the 

calculation of the energy cost curve and the use of a piecewise linear approximation have been 

implemented to avoid the non-linearity of this kind of model (the minimization of the energy costs 

depends on the energy transaction and the energy price, which is also function of the energy, 

making it a non-linear problem) and having a mixed-integer linear programming one. 

This process can be described as follows: 

1. For a particular month, all the residual demand curves of the same hour, but of different 

days of the same month, have been grouped. For instance, for January at 10h00 there are 

31 curves. In the deterministic cases, there is no distinction between working days and 

holidays; however, the stochastic scenarios create different groups of days. 
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2. Using the K-means clustering algorithm implemented in MATLAB [28], a representative 

curve has been created (3 representatives for the stochastic case) for each hour of each 

representative day of each month. This clustering methodology has been used effectively 

to create RDC scenarios, as shown in [47]. 

3. With the representative demand curve, the energy cost curve has been computed by 

multiplying all the energy values by its corresponding price. This preprocessing has been 

developed to avoid nonlinearities in the programming problem, as proposed in [27]. 

4. The piecewise linear approximation has been carried out using the Recursive Douglas-

Peucker Polyline Simplification algorithm, implemented in MATLAB [29]. The tolerance 

parameter has been fine-tuned to create 22 segments for the piecewise linear function, 

putting especial emphasis in the area where the clearing is more likely to occur. This 

procedure is repeated for all the 288 hours considered representative of the whole year.  

 

4.2.1.  Average scenario for the deterministic model (Case study A).  

For this case study, the process described above has been applied and an average representative 

has been taken from all the residual demand curves of a particular hour in that month. Fig.  5 shows 

the curves for all the month of January at 10h, and their representative curve (dashed red line). 
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Fig.  5. Residual demand curves of all days of January at hour 10 and the computed 

representative curve. 

For all the representatives obtained with the abovementioned process, the energy cost curve has 

been computed, by multiplying the energy quantity times its price, and the piecewise linear 

approximation has been applied. Fig.  6 shows an example of the piecewise linear functions 

obtained (dashed line in red) for the corresponding energy cost curve (solid line in blue). Positive 

costs are for buying energy, while negative costs represent profits for selling energy. 
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Fig.  6. Piecewise linear approximation of the energy cost curve (Case study A, January 8h00). 

4.2.2. The most likely scenario (Case study B) and three scenarios for the 

stochastic model (Case study C). 

Case study B has been proposed to analyze the aggregated system with market values that are 

likely to occur. This approach gives relevant information that might be lost in the average scenario 

considered previously, as the clustering in a single representative behaves as an average of all the 

samples, and tends to over-smooth the residual demand curve. Case study C, on the other hand, 

tries to model the uncertainty of the markets by following a stochastic approach.  

For the deterministic model with the most likely scenario and the stochastic one, the same 

procedure described previously has been carried out, with the only difference that now three 

representative curves have been created instead of one, and thus 288 sets of three curves have been 

created. While case C uses the three curves per hour, case B only uses the one with greater 

probability corresponding to the representative of the largest cluster. The selection of three 
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scenarios for the stochastic model has been done, firstly, due to computational constraints as the 

number of binary variables in the problem make it difficult to solve and time consuming, secondly, 

because the three scenarios provides good approximation of the reality, according to the silhouette 

clustering validation method [30]. This method permits to assess how well represented are the 

residual demand curves by the three representatives created. The results of this test, carried out in 

MATLAB, gives a Silhouette value of 0.67, which can be translated to 83.37% of correctness in 

the clustering representatives. Note that the silhouette value ranges from -1 to +1. A high value 

indicates that the sample is well-matched to its own cluster, and poorly-matched to neighboring 

clusters (the clusters are different enough). Hence, if most samples have a high silhouette value, 

then the clustering solution is appropriate [31]. 

Fig.  7 exemplifies a set of energy cost curves with their corresponding piecewise linear functions 

approximations. The probability of each scenario has been calculated as the proportion of samples 

(days) classified in each cluster regarding the total number of samples (number of days in each 

month) [47].  
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Fig.  7. Piecewise linear approximation of the energy cost curves (Case study B and C, January 

10h00). 

4.2.3. Residual demand curve adjustment for different loads. 

The residual demand curves obtained from [17] and [18] include the total generation and demand 

of the Spanish system, and the resulting market price (the price of the energy at that particular 

hour) falls at energy = 0 MWh (equilibrium between generation and demand of all the system). 

Therefore, the proposed aggregator needs to take out the original load of the considered district 

from such curves before placing offers in the electricity market. Otherwise it will be like if the 

considered aggregated clients have been added to the system, artificially increasing the total 

system demand. 

To correct this problem, a similar methodology as in [33] and [34] has been applied, so the original 

unmanaged load of the considered group of aggregated clients is removed from the residual 

demand curves, by shifting the curves to the left in the same number of units of energy as the 

demand removed. Fig.  8, shows an example of such curve shift, where the blue solid line 
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represents the original curve and the red curve is the adjusted one. In Fig.  9, the original (blue) 

and adjusted (red) energy cost curves are shown. It can be seen that removing load (moving the 

residual demand curve to the left) makes the price to decrease (the crossing with zero energy falls 

at a lower price), which implies lower energy costs when the energy is bought from the grid (red 

curve in Fig.  9). If there is no energy management and the same amount of energy is bought from 

the grid (as the original case), the red line will be shifted back to where the blue line is, getting the 

original market price for that hour. 

Note that this curve adjustment not only makes the energy price lower for buying energy, but it 

also produces lower income for selling energy (the curve is shifted further to the left, reducing 

more the market price), affecting the strategies taken by the aggregator. 

 

Fig.  8. Adjusted residual demand curve (January 10h00). 
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Fig.  9. Adjusted energy cost curve (January 10h00).  

5. Results and discussion 

This section presents the results of the optimization models proposed, and the effect of the amount 

of aggregated resources is analyzed. For the sake of comparison, the results of the three case 

studies have been grouped and discussed in section 5.2. It is important to remark that, as network 

constraints have not been included, the optimal DER planning solely depends on the type of client, 

and not on its location in the network [35].  

5.1. Aggregated system behavior for all study cases 

The first model implemented is the deterministic one that considers the average residual demand 

curve of each hour of each day (Case study A). Fig.  10 and Fig.  11 show the electric energy 

transaction from the grid of the considered clients implementing DER systems (net demand from 

the grid, considering consumption, generation and management of resources) and its effect on 

electricity prices. For the sake of brevity, only two out of the twelve representative days have been 

shown (one for winter and one for summer), and three district sizes (which could be considered: 

small, medium and large). For the winter day, the original energy price (blue line, Fig.  10) has 

lower prices in the early morning (off-peak time) and higher prices from 16h to 24h (peak time). 
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As expected, it can be seen that the energy price changes more for the larger district (red line), and 

the price barely changes in the smaller district (see Fig.  10, the red line is over the blue line). 

 

Fig.  10. Aggregator energy transactions and effect on energy price for the representative day of 

January (Case study A), a) for 40000, b) 1000000 and c) 8000000 houses.  

In the representative summer day, the original price curve (blue line, Fig.  11) is flatter than its 

equivalent at winter. However, the behavior of the aggregator is similar, reducing energy 

transactions at the middle of the day with the PV production, and shifting load to such hours. The 

new energy price (red line, Fig.  11) is lower, especially at the sunny hours (mainly 8 – 18h). 
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Fig.  11. Aggregator energy transactions and effect on energy price for the representative day of 

July (Case study A), a) for 40000, b) 1000000 and c) 8000000 houses. 

The behavior of the aggregated systems for Case study B is shown in Fig.  12 and Fig.  13. In this 

case study, it has been used the representative energy cost curve from the largest cluster out of the 

three computed at each hour.  

As it can be seen, the aggregator takes advantage of the larger difference between off-peak and 

peak time electricity prices (23 – 78 €/MWh in Fig.  12, in comparison with 24 – 68 €/MWh in 

Fig.  10), promoting more load shifting. Moreover, the price at sunny hours is slightly higher in 
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this case study (over 60 €/MWh at 14h in Fig.  13, in comparison with 57 €/MWh at 14h in Fig.  

11), encouraging the aggregator to sell energy during such hours, especially in summer months as 

can be seen in Fig.  13. 

 

Fig.  12. Aggregator energy transactions and effect on energy price for the representative day of 

January (Case study B), a) for 40000, b) 1000000 and c) 8000000 houses. 
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Fig.  13. Aggregator energy transactions and effect on energy price for the representative day of 

July (Case study B), a) for 40000, b) 1000000 and c) 8000000 houses. 
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scenarios can take into account other cases that disappeared in the deterministic ones due to the 

averaging (for instance, cases related to weekends are averaged out with the working days, 

hour
2 4 6 8 10 12 14 16 18 20 22 24

P
ri

ce
 (€

/M
W

h
)

0

50

c) 8 million houses

E
n

e
rg

y 
(G

W
h

)

-10

0

10

hour
2 4 6 8 10 12 14 16 18 20 22 24

P
ri

ce
 (€

/M
W

h
)

0

50

b) 1 million houses

E
n

e
rg

y 
(G

W
h

)

-2

0

2

hour
2 4 6 8 10 12 14 16 18 20 22 24

P
ri

ce
 (€

/M
W

h
)

0

50

a) 40 thousand houses

E
n

e
rg

y 
(G

W
h

)

-0.1

0

0.1

Original price
New price

Original demand
New demand



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

32 

 

reducing peaks and valleys in the price curves).This provokes the district to install more battery 

capacity, so the aggregator can buy more energy at the early hours of the day, when the prices are 

lower or even zero, to store it and use it (or sell it) when prices are higher. This behavior also 

flattens slightly the energy price curves (red lines). 

 

Fig.  14. Aggregator energy transactions and effect on energy price for the representative day of 

January (Case study C), a) for Sc1, b) Sc2 and c) Sc3, all with 1000000 houses. 
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original price curve is flatter than in winter, and thus, there is not much load shifting throughout 

the day and most of the energy produced by the PV systems has been sold back to the grid. Scenario 

2 (Fig.  15b) presents a slightly larger variability in prices as in winter scenarios. This produces 

more load shifting and selling energy back to the grid when the electricity price is higher. Lastly, 

scenario 3 (c) has a slightly flatter price curve, and the aggregator strategy is similar than in 

scenario 1. It can be noted that the aggregator strategy overall tends to decrease the electricity price 

in summer time, by selling energy back to the grid. 
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Fig.  15. Aggregator energy transactions and effect on energy price for the representative day of 

July (Case study C), a) for Sc1, b) Sc2 and c) Sc3, all with 1000000 houses. 
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aggregator. Moreover, batteries have only been installed when load shifting still allows for prices 

differences that make battery investments profitable, and it can be seen that the price change 

increases with the amount of aggregated resources. 

5.2. Discussion and case study comparison 

Different district sizes have been considered in all case studies, taking the 4 household types, 

described in section 4.1, as the base load. For instance, a district with 100000 clients is 

disaggregated into 25000 clients per each client type. To have a better understanding of the 

magnitude of the districts in comparison to the total market size, the respective market share for 

all considered districts has been calculated with (37) as the mean of the hourly market shares. The 

hourly market share has been computed as the original demand (without implementing any DER 

or management of any sort) of the considered district at a particular hour of a month, over the 

average demand of the Spanish system at the same hour, considering all the days of that month. 

The maximum number of clients implementing DER systems considered in this study is 8 million. 

This corresponds to around 15% of the total demand of the Spanish system. The rest of the system 

demand goes to other residential clients (approx. 25%) and to industrial and commercial clients 

(approx. 60%) [46]. 

𝑚𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒 =

∑ ∑ ൬
𝑣𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑௠,௛

𝑝𝐴𝑣𝑔𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑒𝑚𝑎𝑛𝑑௠,௛
൰௛௠

𝑚 ∗ ℎ
 

(37) 

 

The average change on electricity prices due to the aggregator actions and the impact on the 

electric energy costs in the considered districts have been computed as well. The average price 

change and the absolute price change have been computed with (38) and (39) respectively, where 

the average of the original prices has been computed with (40). Also, the average energy weighted 

system price change is calculated with (41) – (43). The change in electricity costs is calculated 

with (41). 

𝑝𝑟𝑖𝑐𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =
∑ ∑ ൬

𝑣𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤௠,௛ − 𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛

𝑣𝐴𝑣𝑔𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
൰௛௠

𝑚 ∗ ℎ
 

(38) 
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𝑎𝑏𝑠𝑃𝑟𝑖𝑐𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =

∑ ∑ ቆ
𝑎𝑏𝑠൫𝑣𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤௠,௛ − 𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛൯

𝑣𝐴𝑣𝑔𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
ቇ௛௠

𝑚 ∗ ℎ
 

(39) 

𝑣𝐴𝑣𝑔𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =
∑ ∑ ൫𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛൯௛௠

𝑚 ∗ ℎ
 

(40) 

𝑣𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤 =
∑ ∑ ൫𝑣𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤௠,௛ ∗ 𝑣𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝑁𝑒𝑤௠,௛൯௛௠

∑ ∑ ൫𝑣𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝑁𝑒𝑤௠,௛൯௛௠

 
(41) 

𝑣𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =
∑ ∑ ൫𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛ ∗ 𝑣𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛൯௛௠

∑ ∑ ൫𝑣𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛൯௛௠

 
(42) 

𝑆𝑦𝑠𝑡𝑒𝑚𝑃𝑟𝑖𝑐𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑣𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤 − 𝑣𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑣𝑊𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
∗ 100 

(43) 

𝑒𝑛𝐶𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒 =

∑ ∑ ൬
𝑣𝑃𝑟𝑖𝑐𝑒𝑁𝑒𝑤௠,௛ ∗ 𝑣𝐸𝑛𝑒𝑟𝑔𝑦𝑁𝑒𝑤௠,௛

−𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛ ∗ 𝑣𝐸𝑛𝑒𝑟𝑔𝑦𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛
൰௛௠

∑ ∑ ൫𝑣𝑃𝑟𝑖𝑐𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛ ∗ 𝑣𝐸𝑛𝑒𝑟𝑔𝑦𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙௠,௛൯௛௠

 

(44) 

 

The results of the analyzed case studies are presented in Table 5 and Table 6. In Case study A, the 

former table shows how the installed capacity of the PV and HP grew almost linearly with the 

number of houses, yet the battery has been very little or not implemented in most cases, since the 

prices differences after load management have not been enough to compensate batteries 

investment prices. The system total costs (Table 6), including energy and DER costs (calculated 

with (1)), presented a similar linear pattern, with lower slope, than the PV and HP installed 

capacity, meaning that the aggregator’s economic benefits of managing larger districts are greater 

than the increased costs of a greater amount of loads and distributed resources.  

 

Table 5 

DER installed capacity for all case studies. 

Number 

of clients 

(millions) 

Market 

share 
PV (MW) Battery (MWh) HP (MW) 

(%) A B C A B C A B C 

0.04 0.076% 110 124 96 0 0 58 17 17 16 

0.1 0.19% 279 327 234 9 0 131 42 43 39 
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0.2 0.38% 540 635 477 16 0 255 83 86 78 

0.4 0.76% 1053 1234 891 27 0 437 167 171 154 

1 1.9% 2621 3028 1917 65 0 1282 412 426 399 

2 3.8% 5227 5954 3810 10 0 2212 834 856 739 

4 7.6% 9651 10469 7570 11 0 2985 1667 1667 1560 

8 15.2% 17662 18185 15253 0 0 4903 3335 3335 3240 

 

Table 6 

Total system cost (energy and DER) for all case studies. 

Number 

of clients 

(millions) 

Market 

share 
Total costs (M€) 

(%) A B C 

0.04 0.076% 760.77 759.8 670.6 

0.1 0.19% 1824.15 1870.3 1581.6 

0.2 0.38% 3635.94 3726.2 3078.9 

0.4 0.76% 7277.55 7440.1 5953.7 

1 1.9% 18083.2 18237.1 12004.3 

2 3.8% 36192.1 36574.5 24225.5 

4 7.6% 72952.13 73576.4 58050.3 

8 15.2% 147378.07 149218.5 127128 

 

In Case study B, battery storage has not been implemented in any of the district sizes considered 

while the entire DER installed capacity grew with the number of clients. The difference in prices 

during the day, especially at winter time, makes load shifting more profitable, but the differences 

have not been large enough to implement battery systems. Regarding the total system costs (Table 

6), Case B values were slightly greater than those of Case A. This was a result of both the slightly 

higher average price and the slightly higher prices at the off-peak hours from the input parameters. 

Focusing on Case C, it can be seen that in comparison with the deterministic cases, the HP installed 

capacity was slightly smaller, especially in big districts. In addition, the PV capacity was smaller 

for all district sizes, especially in the larger districts. However, the main difference is in the battery 
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systems that increased significantly for all the analyzed district sizes. This has been due to the 

greater variability and difference in prices provided by the stochastic scenarios, as shown in Fig.  

14 and Fig.  15. Lastly, the total system costs were slightly smaller (especially with medium to 

large amounts of aggregated resources) than in the previous cases. Once again, this last 

phenomenon has been produced by taking advantage of the larger price variability and the lower 

minimum price (see Fig.  14) in comparison with case studies A and B.  

Table 7 shows the average change on electricity prices due to the aggregator actions and the 

repercussion on the electric energy costs of the system (calculated with (38) – (43)). From Table 

7 and the figures of the previous section, it can be seen that distributed generation such as PV 

panels tends to reduce the overall electricity consumption (32 – 68% depending on the district size 

and the case study), reducing the electricity price for all district sizes. However, it is evident that 

the price change is more significant for larger district sizes, as the market share is larger.  

Note that all market participants affect the market price since they move the clearing point on the 

RDC. In addition, even for small agents, if the slopes of the RDC faced are large, they can have 

large impacts on the price (as proved in [52] and [53]).  

It is important to remark that the adequate computation of the price-taker error is not 

straightforward and requires, at least, to create two more models: One price-maker with fixed 

energy prices, where the resulting planning and operation variables are saved (the energy prices 

and costs will be erroneous with respect to reality), and a new price-maker model that takes the 

planning and operation from the “price-taker”, evaluating the change on prices according to this 

operation. This will give the new energy prices and costs, and thus, the error can be calculated. 

For the sake of brevity, such computation is not developed in this paper. Nevertheless, it can be 

seen that for large DER aggregations, a price-taker approach could have an important error and is 

likely to provide non-meaningful results. However, for smaller aggregations (less than 100000 

houses) a price-taker approach could be acceptable. 

Table 7 

Effect on electricity prices for all case studies. 
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Number 

of clients 

(millions) 

Market 

share Average price change (%) Average abs. price change (%) Average 

system price 

change (%) (%) 
A B C A B C 

0.04 0.076% -0.05% -0.05% -0.04% 0.10% 0.09% 0.20% -0.07% 

0.1 0.19% -0.12% -0.15% -0.08% 0.25% 0.23% 0.44% -0.14% 

0.2 0.38% -0.22% -0.28% -0.13% 0.49% 0.46% 0.87% -0.26% 

0.4 0.76% -0.42% -0.55% -0.23% 1.02% 0.90% 1.60% -0.50% 

1 1.9% -1.00% -1.39% -0.50% 2.35% 2.26% 3.94% -1.20% 

2 3.8% -2.19% -2.73% -1.08% 4.83% 4.61% 7.39% -2.59% 

4 7.6% -4.15% -4.71% -2.48% 8.81% 8.32% 13.31% -4.81% 

8 15.2% -7.94% -8.40% -6.19% 16.07% 14.93% 23.56% -8.88% 

 

Comparing the change on electricity prices, Case study A had a slightly smaller decrement in 

comparison with Case study B, but the absolute price change has been slightly larger in all district 

sizes. For Case study C, it can be seen that the high variability on the original prices can make the 

average price change to seem small in comparison with previous case studies at certain district 

sizes; however, the absolute change showed more significant price changes, especially with the 

larger district sizes, that can be above the 23%. In other words, in Case C the price decrements 

have been more compensated with the prices increments, unlike the other cases that produced more 

decrements than increments on the electricity price. 

Table 8 shows the average changes in electric energy costs for the district (calculated with (44)).  

The savings in Case study A were lower than in Case study B for all district sizes, mainly caused 

by the higher average prices, and the greater PV capacity installed in case study B. Regarding Case 

study C, the average savings for all district sizes were 62% approximately. It is important to remark 

that, for all case studies, the electric energy cost reduction has been greater with smaller number 

of clients and this amount decreased as the amount of clients increased. This has been caused, on 

the one hand, due to the overall lower prices (produced with larger district sizes) that generate a 

lower profit for selling energy (with smaller districts, the price for selling energy will be higher 

because less energy has been taken from the electric system and the adjustment of the residual 

demand curve is smaller, see section 4.2.3). On the other hand, the benefit of buying energy at off-
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peak times has been reduced with the flatter price curves (see section 5.1). Note that the savings 

in electricity costs might not be representative of the savings on total costs, as other aggregator 

costs (investment in DER systems, maintenance, etc.) have also been taken into account. 

 

 

Table 8 

Effect on electric energy cost for all case studies. 

Number 

of clients 

(millions) 

Market 

share Electric Energy Cost change (%) 

(%) 
A B C 

0.04 0.076% -65.71% -84.92% -100.56% 

0.1 0.19% -66.18% -92.48% -86.02% 

0.2 0.38% -63.21% -88.19% -80.98% 

0.4 0.76% -59.58% -84.06% -68.75% 

1 1.9% -58.29% -78.71% -55.17% 

2 3.8% -56.12% -75.40% -46.16% 

4 7.6% -46.84% -60.92% -35.20% 

8 15.2% -35.95% -45.95% -24.10% 

 

The outcomes of the case studies previously presented have been illustrated in Fig.  16 and Fig.  

17. In the former figure, it can be seen how the PV and HP installed capacities tend to grew steadily 

with the larger number of clients, and that there was no large difference between case studies. The 

battery systems, on the contrary, varied significantly among case studies and district sizes, being 

Case study C the one that implemented such systems the most. This has been produced by the high 

variability of prices, making investment in battery for load-shifting more profitable, as shown in 

previous subsection. 
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Fig.  16. DER installed capacity for all case studies. 

The total system costs of all case studies are shown Fig.  17 (taken from Table 6), showing that 

the costs grow almost linearly with the size of the district for all cases.  

 

Fig.  17. Total system costs for all case studies (at the end of the 20 years project lifespan). 
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To further analyze the effect of size in the aggregated resources, Table 9 shows the total aggregator 

costs (including energy and DER system costs) per house at the end of the project lifespan (20 

years) for the different district sizes and its equivalent market shares.  

Table 9 

Total costs per household. 

Number of 

clients 

Market 

share 

Case study 

A 

Case study 

B 

Case study 

C 

 (millions) (%) (k€) (k€) (k€) 

0.04 0.076% 19.02 19.00 16.77 

0.1 0.19% 18.24 18.70 15.82 

0.2 0.38% 18.18 18.63 15.39 

0.4 0.76% 18.19 18.60 14.88 

1 1.9% 18.08 18.24 12.00 

2 3.8% 18.10 18.29 12.11 

4 7.6% 18.24 18.39 14.51 

8 15.2% 18.42 18.65 15.89 

 

Case studies A and B had larger costs per household in comparison with Case study C. This can 

be explained by the larger variability of prices on the stochastic scenarios. The total system costs 

per house decreased as the number of aggregated resources increased (the aggregator had greater 

market share and a larger amount of manageable resources), up to a point when a minimum cost 

has been reached (around 1 – 2 million of clients), then the costs increased slightly. Once again, 

this phenomenon can be explained by the overall lower prices and flatter price curves, where the 

aggregator benefited from buying energy cheaper, but his income of selling energy has been 

affected at the same time (the price is cheaper and the income is lower). Hence, an optimal point 

has been achieved where the aggregator found the best compromise in costs and profits, as can be 

seen in Fig.  18. 



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

43 

 

 

Fig.  18. Total costs per household (at the end of the 20 years project lifespan). 

Additionally, the total costs of the proposed systems have been compared with a base case 

following a business-as-usual approach (not implementing any DER systems). The base case total 

cost has been calculated with (1) but with DER capacity and related costs equal to zero (the only 

terms considered are vCostEE, vCostET, vCostPowE and vCostPowT). Hence, this comparison 

served to assess the benefits of the optimal management of loads and DER systems under different 

aggregation scales. To create a fair assessment, each case study has been compared with its own 

base case (equal input parameters) without implementing any distributed energy resources, as 

described in (45). The results of such comparisons can be found in Table 10 and have been 

illustrated in Fig.  19. It can be seen that, similarly to previous analysis, profitability increased with 

market share up to 3 – 4%, where the maximum benefits have been achieved (31%, 28% and 51% 

for case studies A, B and C, respectively).  

𝑡𝑜𝑡𝑎𝑙𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =
𝑣𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒 − 𝑣𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑁𝑒𝑤

𝑣𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒
 

(45) 

 

The results presented in both Table 9 and Table 10 suggest that an aggregator can benefit 

significantly from participating in the market, even with a relatively small market share (less than 

1%). 

0

5

10

15

20

0% 2% 4% 6% 8% 10% 12% 14% 16%

Co
st

s p
er

 h
ou

se
ho

ld
 (k

€)

Market share

Total costs per household

A B C



C. Calvillo, A. Sánchez, J. Villar, F. Martín. Optimal planning and operation of aggregated distributed energy 
resources with market participation. Applied Energy. vol. 182, pp. 340-357, November 2016. [Online: August 2016]  
JCR impact factor: 7.182 (2016) 

44 

 

Table 10 

Percentage of total savings in comparison with the base system costs of each case study. 

Number of 

clients 

Market 

share 

Case study 

A 

Case study 

B 

Case study 

C 

(millions) (%) (%) (%) (%) 

0.04 0.076% 27.9% 24.8% 32.0% 

0.1 0.19% 30.9% 25.9% 35.8% 

0.2 0.38% 31.1% 26.2% 37.5% 

0.4 0.76% 31.0% 26.3% 39.6% 

1 1.9% 31.5% 27.8% 51.3% 

2 3.8% 31.4% 27.6% 50.9% 

4 7.6% 30.9% 27.1% 41.1% 

8 15.2% 30.2% 26.1% 35.5% 

 

 

Fig.  19. Percentage of economic benefits in comparison with the base case. 
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Table 11 summarizes such effects for the three case studies. It can be seen that the benefit can get 

up to 28% in costs savings with a market share of around 2% in case study C. However, the 

deterministic cases did not show such a large benefit due to market share. This phenomenon 

occurred because the lower variability on prices provided less incentives to exercise market power. 

𝑠𝑎𝑣𝑖𝑛𝑔𝑠𝑃𝑒𝑟𝐶𝑙𝑖𝑒𝑛𝑡 =
𝑣𝐶𝑜𝑠𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡 − 𝑣𝐶𝑜𝑠𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑒𝑤𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡

𝑣𝐶𝑜𝑠𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡
 

(46) 

 

Table 11 

Percentage of savings per house in comparison with the smallest district. 

Number of 

clients 

Market 

share 

Case study 

A 

Case study 

B 

Case study 

C 

(millions) (%) (%) (%) (%) 

0.04 0.076% 0% 0% 0% 

0.1 0.19% 4.09% 1.54% 5.66% 

0.2 0.38% 4.41% 1.92% 8.17% 

0.4 0.76% 4.34% 2.08% 11.22% 

1 1.9% 4.92% 3.99% 28.40% 

2 3.8% 4.85% 3.73% 27.75% 

4 7.6% 4.11% 3.16% 13.44% 

8 15.2% 3.14% 1.80% 5.21% 

 

6. Concluding remarks  

This paper presents two different optimization models corresponding to three different approaches 

(stochastic, deterministic with the average scenario and deterministic with the most likely scenario 

out of the stochastic ones) for planning and operating distributed energy resources managed by a 

price-maker aggregator, participating in the electricity market. 

From the numerical results, it can be concluded that the aggregation of distributed energy resources 

can be very profitable for both aggregator and prosumers. With relatively small market shares (1% 
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– 2%), the economic benefits of such approach can get up to 51% with respect to the case of not 

installing DER systems and managing load. It is important to remark that these economic benefits 

are for the aggregator or retailer participating in the market. However, it is sensible to consider 

that these benefits could be translated to a large extent to the final prosumer as well. 

Indeed, the aggregator´s price-maker approach is not commonly found in the literature, as it 

represents a more complex non-linear and/or mixed-integer problem to solve (mainly addressed 

by metaheuristic methods). However, it can be seen in the analysis developed that the market price 

change is related to the size of the aggregator, and that this price change affects both the costs of 

buying energy and the profit of selling energy at a wholesale level. Therefore, even for relatively 

small aggregations, the impact on electricity prices should always be considered in order to find 

optimal strategies.  

Comparing the models presented in this paper, the deterministic case studies proposed delivered 

similar results in the final costs. However, there is an important difference with the stochastic 

approach in both planning and overall costs. For instance, the stochastic model implemented 

battery systems for all district sizes and the deterministic models did not. In addition, if adequately 

formulated, a stochastic price-maker model is more robust to price changes and can achieve 

important economic benefits under different price scenarios.  

Authors believe that by using adequate planning and operation approaches, like the one presented 

in this paper, and if the available regulation is DER friendly, it is likely that the role of the 

aggregator will continue to grow in importance, boosting the introduction of distributed energy 

resources and other related smart grid technologies. 
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