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Efficient Deduplication in a Distributed Primary Storage Infrastructure

JOÃO PAULO and JOSÉ PEREIRA, High-Assurance Software Lab (HASLab), INESC TEC,
and University of Minho

A large amount of duplicate data typically exists across volumes of virtual machines in cloud computing
infrastructures. Deduplication allows reclaiming these duplicates while improving the cost-effectiveness of
large-scale multitenant infrastructures. However, traditional archival and backup deduplication systems
impose prohibitive storage overhead for virtual machines hosting latency-sensitive applications. Primary
deduplication systems reduce such penalty but rely on special cluster filesystems, centralized components,
or restrictive workload assumptions. Also, some of these systems reduce storage overhead by confining
deduplication to off-peak periods that may be scarce in a cloud environment.

We present DEDIS, a dependable and fully decentralized system that performs cluster-wide off-line dedu-
plication of virtual machines’ primary volumes. DEDIS works on top of any unsophisticated storage backend,
centralized or distributed, as long as it exports a basic shared block device interface. Also, DEDIS does not
rely on data locality assumptions and incorporates novel optimizations for reducing deduplication overhead
and increasing its reliability.

The evaluation of an open-source prototype shows that minimal I/O overhead is achievable even when
deduplication and intensive storage I/O are executed simultaneously. Also, our design scales out and allows
collocating DEDIS components and virtual machines in the same servers, thus, sparing the need of additional
hardware.
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1. INTRODUCTION

A study conducted by International Data Corporation (IDC) projects that digital infor-
mation will reach 40ZB by 2020, which exceeds previous forecasts by 5ZBs, resulting
in a 50-fold growth from the beginning of 2010 [EMC 2012]. The study also estimates
that by 2020, nearly 40% of the worldwide data will be stored and processed by cloud
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computing infrastructures that rely heavily on Virtual Machines (VMs) for hosting
cloud services and client applications. With this unprecedented growth of data and
the introduction of more expensive storage devices, such as Solid State Drives (SSDs),
space-saving techniques such as deduplication are key to reduce the costs of cloud
infrastructures [D. Iacono 2013]. As a matter of fact, deduplication is currently
accepted as an efficient technique for reducing storage costs at the expense of some
additional processing. Moreover, this technique is no longer an exclusive feature
of archival and backup storage systems, being now increasingly sought in primary
storage systems and cloud computing infrastructures, namely, across VMs’ volumes
[Srinivasan et al. 2012; El-Shimi et al. 2012; OpenSolaris 2014; Hong and Long 2004;
Clements et al. 2009; Ng et al. 2011].

As static VM images are highly redundant, many systems avoid duplicates by storing
Copy-on-Write (CoW) golden images and then use snapshot mechanisms for launching
identical VM instances [HP 2011; Meyer et al. 2008]. In order to further improve
deduplication space savings, other systems also target duplicates found in dynamic
general purpose data stored on the VMs’ volumes. In many situations, these volumes
are used as primary storage for distinct types of services, such as email servers, web
servers, application servers, and Network-Attached Storage (NAS) servers [Koller and
Rangaswami 2010a]. Several clients run these services in independent VMs with their
own volumes, meaning that it is possible to find not only duplicate software, files/emails
in a single VM volume but also across the volumes of distinct VMs deployed at the same
cluster infrastructure. In fact, by finding duplicates for both static and dynamic data in
a cluster-wide fashion, space savings may range from 58% up to 80% [Clements et al.
2009; Meyer and Bolosky 2011, 2012; Srinivasan et al. 2012].

However, in spite of the considerable space savings, primary storage deduplication
in a cluster infrastructure raises novel challenges that are not addressed by traditional
archival and backup deduplication systems.

1.1. Challenges

For archival and backup data, most applications favor storage throughput over latency
as data is usually stored and retrieved sequentially in large batches. However, for pri-
mary data, random access patterns are expected while many applications have strict
latency requirements for their storage requests [Hong and Long 2004; Clements et al.
2009; Paulo and Pereira 2014b]. These differences explain why most of the traditional
archival/backup storage systems use inline deduplication, thus removing duplicates
before storing data. However, finding and sharing duplicates can be a costly operation
that requires additional computational resources and, in most cases, it requires ad-
ditional storage accesses. Doing these additional operations in the storage write path
increases significantly the latency of storage write requests [Quinlan and Dorward
2002; Ng et al. 2011; Srinivasan et al. 2012; Paulo and Pereira 2014b].

As this overhead is unacceptable for many applications writing and updating pri-
mary data, another option is to use off-line deduplication that minimizes the impact
in storage writes by removing the additional computation and storage accesses to
find duplicates from the storage write path [Hong and Long 2004; Clements et al.
2009]. However, as data is only aliased after being stored, off-line deduplication tem-
porarily requires additional storage space. Also, deduplication and storage requests
are performed asynchronously so appropriate mechanisms for preventing stale data
checksums and other concurrency issues are necessary and may degrade performance
and scalability.

As another challenge, primary data volumes have data hotspots that are modified
frequently. For instance, this property is visible in the real traces used to evaluate
our prototype [Koller and Rangaswami 2010a]. More specifically, in the tests with
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a mail server trace, described in Section 5, 39% of the write requests are rewrites,
corresponding approximately to a throughput of 41 blocks being rewritten per second.
This means that an efficient CoW mechanism is needed for preventing in-place updates
on aliased data and potential data corruption. For instance, if two VMs are sharing
the same data block and one of them needs to update that block, the new content is
written into a new and unused block (copied on write) because the shared block is
still being used by the other VM. This mechanism introduces even more overhead in
the storage write path while increasing the complexity of reference management and
garbage collection, thus forcing some systems to perform deduplication only in off-
peak periods in order to avoid a considerable performance degradation [Clements et al.
2009]. Since cloud infrastructure hosts VMs from several clients that provide different
services for different countries with distinct timezones, off-peak periods to perform
deduplication across all these VMs are very scarce or even inexistent. This way, off-line
deduplication has a short time-window for processing the VMs storage backlog and
eliminating duplicates. Ideally, deduplication should run continuously and duplicates
should be kept on disk for short periods of time, thus reducing the extra storage space
required.

Finally, distributed cloud infrastructures raise additional challenges as deduplica-
tion must be performed globally across volumes belonging to VMs deployed on remote
cluster servers [Hong and Long 2004; Clements et al. 2009]. Space savings are max-
imized if duplicates are found and eliminated globally across the entire cluster. Also,
if deduplication is done in a decentralized fashion where each server is responsible for
finding and eliminating duplicates for its hosted VMs, it is possible to increase dedu-
plication parallelism and to scale out to larger clusters [Kaiser et al. 2012]. However,
this is a complex design that requires a remote indexing mechanism, accessible by all
cluster servers, that is used for tracking unique storage content and finding duplicates.
Remotely accessing this index in the critical storage path introduces prohibitive over-
head for primary storage workloads and invalidates, once again, in-line deduplication.
In fact, this negative impact leads to deduplication systems that perform exclusively
local server deduplication or that relax deduplication’s accuracy and find only some of
the duplicates across cluster nodes [You et al. 2005; Bhagwat et al. 2009; Dong et al.
2011; Fu et al. 2012; Frey et al. 2012].

1.2. Assumptions and Contributions

The combined challenges of primary storage and global deduplication are addressed
with DEDIS, a dependable and fully decentralized system that performs optimistic
cluster-wide off-line deduplication of VMs’ primary volumes, while excluding most of
the deduplication processing from the storage write path.

Our design assumes that VMs’ volumes are stored persistently in a storage backend,
also referred to as a storage pool within the article, exporting an unsophisticated shared
block device interface that may be distributed or centralized. For instance, this backend
may be a Storage Area Network (SAN) system or another similar storage environment.
Previously distributed primary off-line deduplication systems, namely DDE and DEDE,
respectively, store VMs’ volumes on the IBM Storage Tank filesystem with built-in
locking operations, and on the VMWares’s VMFS filesystem that has built-in locking,
aliasing, CoW and garbage collection operations [Hong and Long 2004; Clements et al.
2009]. As one of the main novelties of our system, DEDIS does not rely on storage
backends with any of these special mechanisms. Instead, each server hosting VMs is
responsible for performing deduplication for the volumes of those VMs. Although this
decision significantly impacts the system design and favors distinct optimizations, as
discussed in Section 4, it allows decoupling our deduplication system from a specific
storage implementation and avoids performance issues that arise from this dependency.
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In current cloud computing solutions, such as the one provided by OpenStack, an open
-source project for building and managing cloud computing platforms, VMs’ volumes
can be mapped to persistent high performance block storage devices for storing both
the Operating System (OS) and primary data efficiently [OpenStack Foundation 2014,
2016]. In OpenStack, these block devices are managed by the Cinder system that
uses as the default storage backend a traditional Logical Volume Management (LVM)
system. With the DEDIS approach, traditional LVM storage backends without built-in
deduplication may be used, and efficient global deduplication across VMs’ volumes is
achievable without modifying the implementation of these storage backends. In fact,
as shown in the article, our approach only requires modifying the virtual disk I/O
interface of VMs, which, in most hypervisors such as Xen and KVM, is possible with
user-space toolkits, thus, not requiring an intrusive approach where the hypervisor
implementation must be modified [Russell 2008; Citrix Systems, Inc 2014; Jones, M.
2010].

On the other hand, primary storage in-line deduplication systems such as iDedup,
LiveDFS, and DBLK rely on storage workloads exhibiting data locality properties
to reduce the storage overhead caused by deduplication and present systems that
only perform centralized deduplication [Tsuchiya and Watanabe 2011; Ng et al. 2011;
Srinivasan et al. 2012]. DEDIS design does not depend on storage workloads exhibiting
specific data locality properties to achieve low storage overhead, and deduplication
is done in an exact fashion across the whole cluster; more specifically, all duplicate
chunks are processed and eventually shared. For clarity purposes, in this article, we
refer to chunks as the unit of deduplication, which in DEDIS corresponds to fixed-
size blocks. Most systems do not compare the full content of chunks, and use instead
compact signatures of the chunks’ content. These are generally calculated with hashing
functions and we refer to them as chunk signatures or digests [Paulo and Pereira 2014b].

Briefly, DEDIS novel optimistic deduplication approach works as follows: Locally,
in each server hosting VMs, storage writes from these VMs to their volumes, at the
storage backend, are intercepted with a fixed block size granularity and redirected im-
mediately to the correct storage address by a layer that considers aliased chunks. This
decision avoids costly accesses to remote metadata and reference management in the
critical storage path. In each server, written blocks are collected asynchronously and
off-line deduplication is performed globally and exactly across the entire cluster by us-
ing a partitioned and replicated fault tolerant distributed service that maintains both
the index of unique chunks’ signatures and the metadata necessary for reference man-
agement and garbage collection. This service allows DEDIS to be fully decentralized
and to scale-out. Finally, volumes belonging to failed cluster nodes can be recovered and
restarted in other cluster nodes by using a persistent logging mechanism that stores
the necessary metadata in a shared storage pool which, for performance reasons, may
or may not be the same where volumes are stored. Once again, this approach excludes a
dependency on any specific storage backend with special operations while also avoiding
any cross-host communication between servers holding distinct VMs.

As other contributions, we present novel optimizations for improving deduplication
performance and further reducing its impact in storage requests. These are novel opti-
mizations that do not rely on storage workloads exhibiting data locality properties in
order to be efficient. Namely, DEDIS detects blocks that are potentially write hotspots
and avoids sharing such blocks, which reduces significantly the number of CoW opera-
tions and their overhead in storage requests. Storage latency overhead is then further
reduced by using in-memory caches and batch processing, which are also useful for in-
creasing deduplication throughput. Also, DEDIS can be configured to withstand hash
collisions in specific VM volumes by performing byte comparison of chunks before
aliasing them.
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A final contribution is a detailed experimental evaluation of the DEDIS prototype
with both real traces and a realistic benchmark. The results show that in a setup
with up to 32 servers, DEDIS introduces low overhead in storage I/O requests, less
than 14%, while maintaining acceptable deduplication throughput and resource con-
sumption. Also, our design scales out along with the storage backend for large-scale
infrastructures. The evaluation is performed in a fully symmetric setup where servers
run both VMs and DEDIS components. This way, our prototype does not require ad-
ditional servers for running DEDIS services. In fact, in the distributed setup with
several servers, even the storage backend, where VMs volumes and DEDIS persistent
metadata are stored, is composed by the local disks of the same servers.

This work is focused on achieving efficient deduplication and low storage overhead
for random storage workloads. As explained previously and as further detailed in the
next section, this is a common type of workload for primary storage systems that cur-
rent proposals cannot handle efficiently. Nevertheless, in Section 6 we address this
assumption in more detail and discuss future research directions for building dedupli-
cation systems that handle both random and sequential storage workloads efficiently.
Also, the article extends preliminary work [Paulo and Pereira 2014a] by presenting a
new evaluation setup with multiple servers’ configurations and storage workloads, by
presenting a novel cache optimization for improving deduplication throughput while
reducing DEDIS impact on storage requests, and by discussing in more detail the
concurrent optimistic deduplication approach and fault-tolerant design of our system.

The article is structured as follows: Section 2 summarizes background work on pri-
mary storage deduplication and the main differences between DEDIS and state-of-the-
art systems. Section 3 describes the baseline distributed architecture assumed by our
system. Section 4 presents DEDIS components, fault-tolerance considerations, opti-
mizations, and implementation details. Section 5 presents the evaluation of the open-
source prototype. Finally, Section 6 discusses the applicability of this work for sequen-
tial storage workloads and future research directions, while Section 7 concludes the
article.

2. BACKGROUND AND RELATED WORK

Traditional in-line deduplication systems target archival and backup data, favoring
storage throughput over latency. This explains why previous proposals to extend sys-
tems like Venti and HYDRAstor with file system semantics are able to achieve good
performance for stream I/O (sequential reads and writes), while supporting random
block storage requests but with unacceptable performance for primary storage envi-
ronments like the one targeted by DEDIS [Ungureanu et al. 2010; Liguori and Van
Hensbergen 2008; Lessfs 2014]. Other backup systems perform off-line deduplication,
but these systems are either optimized to eliminate duplicates at the file granularity,
reducing the achievable space savings, or rely on centralized indexes [Bolosky et al.
2000; Douceur et al. 2002; Yang et al. 2010]. Unlike these systems, DEDIS is fully
decentralized and eliminates duplicates at the fixed-size block (4KB) granularity. Yet
another possible combination is discussed in RevDedup, where in-line and off-line
deduplication are combined [Li et al. 2014]. Coarse-grained in-line deduplication is
used for newer backups in order to maintain fast restore speeds and to spare storage
space. Then, fine-grained off-line deduplication is done for older backups to further
increase space savings and to optimize the process of deletion of these older backups.
Once again, these optimizations focus on storing, restoring, and deleting large portions
of data in a small time window, thus favoring storage throughput over latency.

Recently, live volume deduplication in cluster and enterprise scale systems is emerg-
ing. Logical LVM systems with snapshot capabilities, such as Parallax, avoid duplicat-
ing data, but only among snapshots of VM volumes and golden VM images with common
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ancestors [Meyer et al. 2008]. In fact, as explained in the work of Jin and Miller [2009],
deduplication is an efficient method for reducing the storage space of VM images, even
when these images do not have common ancestors. However, DEDIS aims not only at
finding redundancy across VM images’ static information, but also across dynamic data
stored on VMs’ volumes belonging to distinct software/applications running at these
VMs.

Other systems like Opendedup and ZFS support multihost in-line deduplication for
dynamic data, but are designed for enterprise storage appliances and require large
RAM capacities for indexing chunks and enabling efficient deduplication [Opendedup
2014; OpenSolaris 2014].

These limitations shift focus to off-line deduplication where processing overhead is
excluded from the storage write path and lower latency is achievable. Primary dis-
tributed off-line deduplication for a SAN file system was introduced in the Duplicate
Data Elimination (DDE) system, implemented over the distributed IBM Storage Tank
[Hong and Long 2004]. A centralized metadata server receives signatures of stored
chunks and deduplicates them asynchronously by resorting to an index of unique sig-
natures stored at the SAN. A CoW mechanism avoids updates on aliased data, while
reference counting information, required for reference management, is stored on an
independent metadata structure.

One of the major drawbacks of DDE is the single-point of failure centralized metadata
server, so this centralized component is avoided in DeDe [Clements et al. 2009]. DeDe
introduces an off-line decentralized deduplication algorithm for VM volumes on top
of VMWares’s VMFS cluster file system. DeDe uses an index structure, also stored in
VMFS, that is accessible to all nodes and protected by a locking mechanism. Efficient
deduplication throughput is obtained by doing index lookups and updates in batch,
while index partitioning allows a scalable design. VMFS simplifies deduplication as it
already has explicit block aliasing, CoW, and reference management. However, these
operations are not commonly exposed in most cluster file systems and the performance
of the deduplication system is highly dependent on their implementation. For instance,
there are alignment issues between the block size used in VMFS and DeDe, implying
additional translation metadata and an additional impact in storage requests latency.
This penalty, along with the significant overhead of CoW operations, confines DeDe
deduplication to run in periods of low I/O load. A proposal for reducing the overhead of
CoW operations in storage requests is described in Microsoft Windows Server 2012 cen-
tralized off-line deduplication system, where it is suggested that deduplication should
be performed selectively on files that meet a specific policy, such as, file age superior to
a certain threshold [El-Shimi et al. 2012]. Such a policy avoids sharing fresh files that
are more prone to generate CoW operations.

DDE and DeDe are the systems that most resemble DEDIS. However, DEDIS is fully
decentralized and does not depend on a specific cluster file system. This distinction
allows removing existing single point of failures while also handling unsophisticated
storage implementations as backend, centralized, or distributed, as long as a shared
block device interface is provided for the storage pool. Decoupling deduplication from
the storage backend changes significantly the design of DEDIS and allows exploring
novel optimizations while avoiding the alignment issues of DeDe. For example, as
detailed in Section 4.5, DeDe’s mechanism to tentatively mark addresses as CoW is
implemented by recurring to the storage backend locking capabilities. Implementing
this mechanism in DEDIS without the lock primitive would require costly cross-host
communication, so we introduce a novel mechanism for avoiding I/O hotspots and,
consequently, CoW operations. Also, as CoW specialization is not provided by our
storage backend, novel cache mechanisms can be used to reduce its impact in
storage requests. In fact, these optimizations are key for running deduplication
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and I/O intensive workloads simultaneously with low overhead, unlike in previous
systems.

Recently, several optimizations were proposed by iDedup, LiveDFS, DBLK, and
HANDS to reduce the storage latency overhead of in-line primary storage dedupli-
cation. These optimizations focus on speeding up the index lookup operations by avoid-
ing disk accesses that are costly and done in the storage write path [Tsuchiya and
Watanabe 2011; Ng et al. 2011; Srinivasan et al. 2012; Wildani et al. 2013]. Briefly,
these systems use Bloom filters and explore the spatial and temporal locality of storage
workloads with novel disk layouts, pre-fetching algorithms, and cache mechanisms. In
fact, many of these optimizations are based on mechanisms previously thought for
archival and backup deduplication [Zhu et al. 2008; Rhea et al. 2008; Lillibridge et al.
2009; Guo and Efstathopoulos 2011; Shilane et al. 2012; Wei et al. 2010; Quinlan and
Dorward 2002; Zhu et al. 2008; Guo and Efstathopoulos 2011; Debnath et al. 2010; Xia
et al. 2011; Fu et al. 2012; Dong et al. 2011]. However, even with these optimizations,
these in-line primary deduplication systems are designed for centralized storage appli-
ances as introducing remote index lookups in the critical I/O path results in prohibitive
storage overhead.

In order to support cluster-wide in-line deduplication, the Dedupv1 centralized sys-
tem was extended to perform deduplication over a shared storage device (SAN) where
each node has exclusive access to its own data partition and index shard, which is stored
in a separate SSD partition [Meister and Brinkmann 2010; Kaiser et al. 2012]. Each
node is responsible for performing data partitioning, hash calculation, and for routing
the requests of chunks to be deduplicated to the nodes with the corresponding index
entries. This approach requires cross-host communication and, since in-line dedupli-
cation is done, it adds unwanted overhead in storage write requests that is reduced
with a write-back cache and a write-ahead log. In DEDIS, cross-host communication
is avoided, and since off-line deduplication is used, there is no need for the write-back
cache and the write-ahead log.

In comparison with other archival, backup, and primary in-line deduplication work,
DEDIS does not require data locality or keeping metadata structures in SSDs to have
acceptable deduplication throughput and reduced storage I/O overhead [Paulo and
Pereira 2014b]. Index lookups are optimized by performing them in batch and outside
from the critical I/O storage path. Also, the index is not assumed to be fully loaded in
RAM and can be partitioned to improve throughput and scalability. DEDIS performs
exact deduplication across all cluster nodes, i.e., all stored chunks are compared against
each other, thus having optimal deduplication gain. Finally, DEDIS deduplication is
decentralized so each cluster node performs deduplication tasks independently and
concurrently.

3. BASELINE ARCHITECTURE

Figure 1 outlines the distributed primary storage architecture assumed by DEDIS.
A number of physical disks are available over a network to physical hosts running
multiple VMs and are used as the storage backend to persist the volumes of these VMs.
We assume that these disks are exported to the physical hosts as an unsophisticated
shared block device interface; for instance, it can be a SAN system or another similar
storage environment. Also, this storage backend may have features like replication and
striping that are transparent to the physical hosts.

Together with the hypervisor, storage management services provide logical volumes
to VMs by translating logical addresses within each volume to the corresponding phys-
ical addresses at the storage backend (physical disks) upon each block I/O operation.
Since networked disks provide only simple block I/O primitives, a distributed coor-
dination and configuration service is assumed to locate meta-information for logical
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Fig. 1. Distributed storage architecture assumed by DEDIS.

volumes, free block extents, and to ensure that a logical volume is mounted at any time
by at most one VM. The main functionality is as follows:

Interceptor. A local module in each storage manager maps VMs logical to physical
storage addresses, storing the physical location of each logical block in a persistent
mapping structure. In some LVM systems, this module supports the creation of snap-
shots by pointing multiple logical volumes to the same physical locations [Meyer et al.
2008]. Logical addresses sharing a physical location must be marked as CoW. Then,
updates to these addresses must write the new content to a free block and update the
mapping accordingly.

Extent server. A distributed coordination mechanism allocates free blocks from the
storage backend (physical disks) when a logical volume is created, lazily when a block
is written for the first time, or when an aliased block is updated (i.e., copied on write).
Storage extents are allocated with a large granularity and are then, within each physi-
cal host, used to satisfy individual block allocation requests, thus reducing the overhead
of contacting a remote service [Meyer et al. 2008].

The architecture presented in Figure 1 is a logical architecture, as physical disks
and, even the instances of the distributed coordination and configuration service itself,
can be contained within the same physical hosts. For simplicity, we assume that the
Xen hypervisor is being used and label payload VMs as DomU and the storage man-
agement VM as Dom0. Also, in DEDIS evaluation, iSCSI and Fiber Channel are used
as the storage networking protocols. However, the architecture is generic and can be
implemented within other hypervisors while using other networked storage protocols.
Since we focus on the added functionality needed for deduplication, we do not target a
specific data structure for mapping from logical to physical addresses. We also do not
require built-in volume snapshot or CoW functionalities, as we introduce our own oper-
ations. Finally, DEDIS operates with fixed-size blocks because the interceptor module
also processes requests at the fixed-size block granularity, and generating variable-
sized chunks would impose unwanted computation overhead [Hong and Long 2004;
Clements et al. 2009].

4. THE DEDIS SYSTEM

4.1. Architecture

The main novelty of DEDIS architecture, depicted in Figure 2, is that it does not require
introducing a centralized component. Instead, in addition to the baseline architecture,
it uses only a distributed module and two local modules. These are highlighted in the
figure by the dashed rectangle and provide the following functionality:
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Fig. 2. Overview of the DEDIS storage manager.

Distributed Duplicates Index (DDI). A distributed module that indexes unique con-
tent signatures of storage’s blocks. Each entry maps a unique signature to the physical
storage address of the corresponding block and to the number of logical addresses
pointing to (sharing) that block. This information allows aliasing duplicate blocks and
performing reference management and garbage collection of unreferenced blocks. Index
entries are persistent and are not required to be fully loaded on RAM to have efficient
lookup operations. Also, entries are sharded and replicated across several DDI nodes
for scalability and fault tolerance purposes. The size of each entry is small (few bytes),
so a single node can index many blocks. This way, the index scales out without having
any single point of failure.

Duplicate Finder (D. Finder). A local module that asynchronously collects addresses
written by local interceptors, which are stored in a dirty addresses queue, and shares
the correspondent blocks with other blocks registered at the DDI. Blocks processed by
this module are preemptively marked as CoW in order to avoid concurrent updates
and possible data corruption. This module is, thus, the main difference from a storage
manager that does not support deduplication.

Garbage Collector (GC). A local module that processes copied on write blocks or,
in other words, aliased blocks that were updated and are no longer being referenced
(aliased) by a certain logical address. The physical addresses of copied blocks are kept at
the unreferenced queue, and the number of references to a certain block can be consulted
and decremented at the DDI. Copied blocks can be freed if the number of references
reaches zero. Both D. Finder and GC modules free unused blocks by registering their
physical addresses in a local free blocks pool that provides unused block addresses for
CoW operations and, when necessary, inserts/retrieves unused block addresses from
the remote extent server.
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4.2. I/O Operations

The operations executed by DEDIS modules are depicted in Figure 2. Bidirectional
arrows mean that information is both retrieved and updated at the target resource.
The GC and D. Finder modules are included in the same process box because both
run in a background multithreaded process within the Xen Dom0, i.e., run in distinct
threads of the same process.

An I/O operation in the Interceptor. The interceptor (a) gets read and write requests
from local VMs, (c) queries the logical-to-physical mapping for the corresponding phys-
ical addresses; and (b) redirects them to the storage backend (physical disks) over the
network. As potentially aliased blocks must be marked in the mapping as CoW by D.
Finder, writes to such blocks must first (l) collect a free block address from the free pool,
(b) redirect the write request to the free block and (c) update the map accordingly. Then,
(d) the physical address of the copied block is inserted in the unreferenced queue to be
processed later by the GC. For both regular and CoW write operations, (h) the logical
address of the written block is inserted in a dirty queue. I/O requests are acknowledged
as completed to the VMs (a) after completing all these steps.

Sharing an updated block in D. Finder. This background module runs periodically
and aliases duplicate blocks. Therefore, each logical address that was updated and
inserted in the dirty queue is eventually picked up by the D. Finder module (i), which
marks the address for CoW (e), reads its content at the storage backend (f), computes
a signature, and queries the DDI in search of an existing known duplicate (j). This is
done using a test-and-increment remote operation, which stores the block’s information
(hash, physical address, and number of references) as a new entry at the DDI if a match
is not found. If a match is found, the counter of logical addresses (references) pointing
to the DDI entry is incremented and, locally (e), the logical-to-physical map is updated
with the new physical address found at the DDI entry and (k) the physical address of
the duplicate block is inserted in the free pool.

Freeing an unused block in GC. This background module examines if a copied block at
the unreferenced queue (g) has become unreferenced with the last CoW operation. The
block’s content is read from the storage backend (f), its signature is calculated, and then
the DDI is queried (j) using a remote test-and-decrement operation that decrements
the number of logical addresses pointing to the corresponding DDI entry. If the block
is unused (zero references), its entry is removed from the DDI and, locally, the block
address is returned to the free pool (k). This pool keeps only the addresses needed for
local CoW operations, while the remainder are returned to the remote extent server (m).
When the queue is empty, unused addresses are requested from the extent server (m).

Each VM volume has its own latency-sensitive interceptor module running as an
independent process. This module does not invoke any remote services and only blocks
in the unlikely case of having an empty local free pool which can easily be avoided by
tuning the frequency of the GC execution. Also, each VM volume has an independent
logical-to-physical mapping, dirty queue, and unreferenced queue. Finally, both in D.
Finder and GC modules, an independent thread processes the operations for each VM
volume. This way, the only metadata structure shared across all VMs, in the same
server, is the free pool that is protected from concurrent accesses by private caches that
reduce access frequency.

The test-and-increment and test-and-decrement operations and the metadata stored
in each DDI entry allow performing the lookup of storage block signatures and cor-
responding physical addresses while incrementing or decrementing the entry’s logical
references in a single round-trip to the DDI. This feature distinguishes DEDIS from
previous systems, like DDE and DeDe that use two distinct metadata structures, and
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Fig. 3. Pseudo-code for intercepting and processing VM writes at the interceptor module.

Fig. 4. Pseudo-code for share operations at the D. Finder module.

allows combining aliasing and reference management in a single remote invocation,
thus avoiding a higher throughput penalty and reducing metadata size [Hong and Long
2004; Clements et al. 2009].

Finally, the interceptor processes storage calls from VM applications and from the
VM operating system, so deduplication is applied to both types of dynamic data.

4.3. Concurrent Optimistic Deduplication

Figures 3 and 4 show the pseudo-code for intercepting a VM write request and for
aliasing a block address at the dirty queue, respectively. The interceptor and D. Finder
modules concurrently update and retrieve information from metadata and storage
blocks. In order to avoid concurrent accesses and, consequently, data corruption, the D.
Finder preemptively marks blocks for CoW (line 15) before reading their content from
the storage pool, calculating signatures, contacting the DDI, aliasing identical blocks,
and freeing the duplicate ones (lines 18 to 25). Blocks marked for CoW are immutable
until they are freed by the D. Finder or GC modules.

However, this mechanism alone is not sufficient. Consider the following scenario:
storage block A is being processed by D. Finder, it was preemptively marked for CoW,
and the request to the DDI was sent to find out if a duplicate block exists at the storage
(line 20). Concurrently, the interceptor receives a write request for the logical address
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Fig. 5. Pseudo-code for garbage collection at the GC module.

pointing to storage block A (line 3), writes the content to an unused storage block B,
as block A is marked as CoW, and updates the corresponding entry at the logical-to-
physical mapping to refer to block B, which has now the latest content (lines 4 to 6).
Then, after this set of events, the response from the DDI is received and a block C, with
the same content as A, is found so the D. Finder module updates the logical address
to refer to block C (lines 22 and 23). In this trace, the most recent content written in
block B is lost and data is corrupted.

A straightforward solution to this issue is to lock the logical-to-physical mapping
during the whole aliasing operation. However, such a decision includes costly remote
calls in the critical section which significantly increases the contention and latency
for concurrent storage requests accessing the same lock. Instead, the D. Finder per-
forms fine-grained locking that excludes remote invocations to the DDI, storage reads,
and other time-consuming operations from the critical section (lines 13 to 17 and 21
to 24/27). Then, the race condition detailed previously must be detected and requires
aborting aliasing operations while generating dangling blocks that must be garbage
collected. Namely, the second condition in line 22 ensures that the block being pro-
cessed (old block) is only aliased and freed if the corresponding logical reference has
not changed concurrently due to a CoW (lines 22 to 27).

Regarding read operations, the logical-to-physical mapping is used in a read-only
fashion for redirecting requests to the corresponding storage blocks. Nevertheless,
accesses to the mapping use the same lock mechanism to ensure that the latest content
is read.

Figure 5 shows the pseudo-code for processing a copied block inserted in the unref-
erenced queue (line 7). Mutual exclusion is used to manage concurrent accesses to this
queue, which is the only metadata structure shared by the GC and interceptor modules.
On the other hand, the GC and D. Finder modules access, concurrently, the DDI and
free pool structures, thus requiring mutual exclusion. As an example, consider that
D. Finder marked a block for CoW, read its content from the storage pool, and is now
calculating its signature (lines 15 to 19). Concurrently, the interceptor receives a write
to the same block and, as it is marked for CoW, redirects the write to an unused block
and inserts the copied block in the unreferenced queue. Then, the GC starts processing
the queue, reads the content of the block from the storage pool, calculates a signature
and performs a test-and-decrement operation (lines 29 to 31). However, at this time, it
is possible that the D. Finder has not yet performed the test-and-increment operation
for that same block. This can lead to a scenario where blocks are freed while still being
in use and, consequently, to data corruption. In our design, this race condition is solved
by running D. Finder and GC modules sequentially for the same VM.
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As discussed previously, the D. Finder aborts a small number of operations due
to concurrent CoWs done before updating the logical-to-physical mapping to reflect
aliasing (line 23). These aborts generate dangling blocks that must be collected and
freed with the GC module (lines 32 and 33). Moreover, blocks that were copied and are
no longer being referenced in the DDI are also freed (lines 34 and 35).

To conclude, due to the high level of concurrency present in DEDIS, these and other
issues were explored in previous work where our algorithm was validated by a model
checker [Paulo and Pereira 2011].

4.4. Fault Tolerance

Writing meta-information persistently is required to ensure that logical volumes sur-
vive the crash and restart of physical nodes. Our proposal uses transactional logs for
tracking changes to metadata structures and allows logical volumes, held by a crashed
physical node, to be recovered by another freshly booted node. The dashed rectangles,
in the previous three figures, highlight the key operations for DEDIS fault-tolerance.

Our design assumes that failures occur at the process or server level. In our current
implementation, all VMs deployed on the same server have their D. Finder and GC
modules running in distinct threads of a single process, so if one thread fails all the
others fail too. On the other hand, if the previous process fails, the interceptor continues
to process I/O requests independently. However, CoW operations must use free blocks
directly from the extent service, as the unused blocks in the free queue are managed by
a thread that was also running in the failed process (line 4).

CoW is the only operation done by the interceptor that modifies the logical-to-physical
mapping. The details of each CoW operation are stored persistently and atomically in
the unreferenced queue before acknowledging the write request as completed (line 7).
When a failure occurs, the information at the queue is used to recover the mapping to a
consistent state. The dirty queue is solely kept in-memory because it holds noncritical
information that, if lost, only has the consequence of missing some share opportunities.
Finally, read operations and non-CoW write operations do not require logging, as they
do not modify any critical metadata structure.

A persistent log registers D. Finder operations immediately after marking logical
addresses as CoW and before unlocking the logical-to-physical mapping, thus, ensuring
that no concurrent mapping accesses are done before the log is written (line 16). Then,
if a failure occurs, the log can be used to check what addresses were marked as CoW
and need to be reprocessed. However, operations registered at the log may have failed
in distinct processing stages; for instance, some operations were contacting the DDI
while other operations were already processing the DDI response and aliasing duplicate
blocks. To ensure that log entries are fully processed exactly once, all steps are replayed
in an idempotent fashion. Namely, each D. Finder operation has a unique ordered
timestamp that is stored persistently in the log and at the DDI when a test-and-
increment is done (line 20). The timestamp is then used to check what operations were
already processed and cannot be repeated.

The persistent logical-to-physical log registers modifications to the logical-to-physical
mapping due to CoW marking and block aliasing and is appended at the end of each
aliasing operation (lines 15, 23 and 28). If a duplicate is found at the DDI, the address
of one of the copies (old block) is inserted in the persistent free pool and this log is
updated while keeping exclusive access to the free pool (lines 25 and 28). This way,
when an operation is being repeated due to a failure and a duplicate is found at the
DDI, if that specific operation is already registered in the logical-to-physical log, it is
guaranteed that the old block was already freed. On the other hand, if the operation is
not registered at the log, the free pool must be checked for the old block address. Since
the log is written while holding exclusive access to the free pool and the thread that
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manages the pool was also running in the failed process, if the address was added to
the pool then it corresponds to the last address inserted.

Reprocessed operations must also account aborts due to concurrent CoW operations
done before updating the logical-to-physical mapping to reflect aliasing (line 23). The
necessary information to identify these events is stored in the unreferenced queue that
must be checked when recovering aliasing operations that found duplicate blocks and
were not registered as completed in the previous log. At the end of each D. Finder
iteration, all operations were registered persistently in the logical-to-physical log, so

remaining logs can be pruned. This also means that aliasing operations only need to
be reprocessed if the failure occurred during an iteration of this module.

The GC has the same approach to fault tolerance, as each operation has a unique
timestamp for ordering CoW operations. The timestamp is calculated when CoW is
performed by the interceptor and it is stored in the corresponding unreferenced queue
entry (line 7). Then, the GC processes entries at the queue but only removes them after
being completely processed and after writing to the logical-to-physical log (line 37). This
way, if a failure occurs, all entries at the queue can be reprocessed in an idempotent
fashion. Namely, test-and-decrement calls to the DDI are persistent and identified by
the timestamp, thus, allowing to replay requests without repeating operations that
were already processed. Then, addresses are inserted in the persistent free pool and
the exclusive access to the pool is maintained until the logical-to-physical log is written
(lines 33 to 36). The recovery process is identical to the one used for aliasing operations.

Both GC and D. Finder update the logical-to-physical log that can be pruned peri-
odically into a persistent version of the logical-to-physical mapping to reduce recovery
time. Log updates done by the GC reflect changes in the mapping due to CoW operations
that are performed in parallel with aliasing operations. This way, the timestamps dis-
cussed previously order both CoW and aliasing operations to the same logical address,
ensuring that the persistent mapping has always the latest modifications.

Regarding storage overhead, only two logging operations are performed in the critical
storage path or when holding the lock of the logical-to-physical mapping, namely, when
the unreferenced queue and the log that registers the beginning of aliasing operations
are written (lines 7 and 16). The overhead of these operations is reduced as follows: The
first log operation only occurs for copied blocks so, as detailed next, a hotspot avoidance
mechanism is used for reducing the number of CoW operations. The overhead of the
second log operation is reduced by grouping several blocks that will be processed by D.
Finder and performing a single-batch log write. Although executed outside the critical
path, the logical-to-physical log is also updated in batch to reduce the overhead of
concurrent accesses to the storage pool.

Finally, in order to recover failed nodes into a distinct, freshly booted node, the logs
and persistent metadata discussed previously are stored in a shared storage device.
If necessary, the impact of logging in storage bandwidth can be reduced by using dis-
tinct storage backends for the logs and for the VM volumes. Then, as described in
Section 3, a fault-tolerant distributed coordination and configuration service is used to
locate and manage the metadata and logical volumes of crashed VMs and for booting
them in a distinct cluster node. Moreover, this service is responsible for providing the
extent server functionality and for tolerating failures of this service. DDI entries can
be stored persistently in a shared storage backend or at the local disks of servers since
DDI nodes are replicated, with a Replicated State Machine (RSM) approach, and can
serve requests for failed replicas. Since the index is sharded across distinct DDI nodes,
all the DDI nodes do not need to be fully replicated. In other words, a specific shard of
the index can be replicated only across a subset of DDI nodes, while the other shards
may be replicated across other groups of DDI nodes. Then, the number of DDI nodes
per group may be chosen accordingly to the desired replication factor. This way, when
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a new index entry is added, replication is only performed for a specific and relatively
small group of nodes. This decision allows the DDI to be fault-tolerant while scaling
out for large infrastructures. We show a concrete example of this sharding and repli-
cation scheme in Section 5 when we evaluate DEDIS prototype in a distributed cluster
infrastructure.

To sum up, when a failure occurs, our current design allows D. Finder and GC
modules to replay unfinished operations without repeating processing steps that were
already completed. After completing all these unfinished steps, the logical-to-physical
log is pruned into the persistent mapping that will correspond to the latest version of
the in-memory mapping prior to the failure.

4.5. Optimizations

In the DeDe system, CoW overhead is reduced by only marking a physical address
to be copied when a duplicate block is actually found at the index [Clements et al.
2009]. In a distributed infrastructure, this approach requires synchronization between
the servers sharing the block and, since DEDIS does not assume a storage backend
with locking capabilities, implementing such strategy is complex and requires costly
cross-host communication. We avoid this cost by introducing other optimizations.

The D. Finder module uses a hotspot detection mechanism for identifying blocks
susceptible to be rewritten in the near future or, in other words, write hotspots. By
avoiding sharing such hotspots, the amount of CoW operations is reduced. In detail,
logical addresses in the dirty queue are only processed in the next D. Finder iteration if
they were not updated during a certain period of time. For instance, in our evaluation,
only the logical addresses in the dirty queue that were not updated between two con-
secutive D. Finder iterations (approximately 5 minutes) and were inserted in the queue
before this period are ready to be shared. This is just an example and the period can
be tuned for each VM volume. Our previous work shows that, with this optimization,
DEDIS performs 70% less CoW operations, which allows a significant reduction of the
overhead in storage requests [Paulo and Pereira 2014a]. CoW overhead is then further
reduced with an in-memory cache of unused storage blocks’ addresses retrieved from
the persistent free pool. This allows pre-fetching to memory-free addresses that will
be served to CoW operations performed by the interceptor. This cache is independent
for each interceptor and it is resilient to failures by registering the pre-fetched unused
addresses in a persistent log. If a failure occurs, this log and the unreferenced queue
can be compared to find what blocks are still in the cache and what blocks were used
for CoW by the interceptor. The log can be pruned when entries at the unreferenced
queue are processed with the GC module.

Another in-memory cache, which can be enabled or disabled in a per VM basis, is
used for reducing the content that must be read back from the storage backend with
the D. Finder module. As explained in Section 4.2, the D. Finder reads back the content
of dirty blocks from the storage in order to calculate their content signatures. Many
of these reads can be avoided if hashes are calculated and inserted into an in-memory
hash cache when write requests are being processed with the Interceptor. Since hash
calculation is now executed in the storage write path, it is important to evaluate its
impact in storage requests, which is done in Section 5. The only hashes that need to
be kept in-memory are the ones from blocks that were written but are still waiting
to be processed with the D. Finder module, so the cache size depends on the period
between share iterations. DEDIS already aims at keeping this interval small in order
to maintain a reduced storage backlog. Also, the cache has a pre-defined maximum
size, and a disk metadata structure is used for keeping the subset of hashes that do
not fit in memory. This way, when a cache miss occurs, instead of reading the full
block from disk, the D. Finder only reads the corresponding hash for the address being
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shared, which reduces the storage I/O bandwidth needed. In our implementation, we
use Berkeley DB to store on-disk hashes [Olson et al. 1999]. Finally, both the cache and
on-disk structure address the concurrency issues described in Section 4.3 and do not
need to be durable. If a failure occurs, the content of the blocks can always be retrieved
from the storage pool.

As other optimizations, the throughput of D. Finder and GC operations is further
improved by performing batch accesses to persistent logs, the DDI, the storage pool,
the extent server, and the free pool. Batch requests allow for efficiently using disk and
network resources and enable DDI nodes to serve requests efficiently without requiring
the full index in RAM.

Finally, our current implementation uses the SHA-1 hashing function which has
a negligible probability of collisions [Quinlan and Dorward 2002]. However, full byte
comparison of chunks can be enabled for specific VM volumes persisting data from
critical applications. Due to the DEDIS optimistic off-line deduplication approach, byte
comparison is done outside the critical storage path, reducing the overhead in storage
requests. However, this comparison requires reading back, from the storage, the content
of the blocks to be shared.

4.6. Implementation

DEDIS prototype is implemented within Xen (version 4.1) and uses the Blktap mech-
anism (version 2) for building the interceptor module. Blktap exports a user-level disk
I/O interface that replaces the commonly used loopback drivers, while providing better
scalability, fault-tolerance, and performance [Citrix Systems, Inc 2014]. Each VM vol-
ume has an independent Blktap process, intercepting disk requests with a fixed block
size of 4KB, which is also the block size used in DEDIS. Also, each VM volume may
have a distinct Blktap driver, so deduplication can be performed only for specific vol-
umes. For instance, it is possible to define policies where deduplication is only applied
to volumes with significant space savings, while other volumes use a default Blktap
driver without deduplication.

The interceptor module is written in C and implements a novel Blktap driver that is
based on the default Xen Blktap driver for asynchronous I/O (Tap:aio). Briefly, the code
that specifies how read and write requests for VM volumes are handled was changed
according to the interceptor module algorithm. As our driver is a modification of the
Tap:aio driver, it also performs asynchronous I/O, meaning that, if possible, it tries to
submit several I/O operations in batch. This is important, mainly for improving the
performance of sequential storage requests. In Section 6, we further discuss the impact
of DEDIS in sequential storage workloads.

The goal of this implementation is to highlight the impact of deduplication and not to
re-invent an LVM system or the DDI. Simplistic implementations have, thus, been used
for metadata and log structures. Namely, the logical-to-physical mapping, dirty queue,
and the free blocks queue cache are implemented as arrays fully loaded in memory
that are accessible by both interceptor and D. Finder modules. Since the Blktap driver
intercepts requests with a size of 4KB, the logical-to-physical mapping also has an
entry for each 4KB block. The mapping is kept in memory to ensure that whenever the
interceptor module accesses it, it introduces a minimum overhead in storage requests.
Nevertheless, changes to this mapping, for instance due to CoW operations, are always
registered persistently to ensure that if a failure occurs, the mapping is restored to a
correct state.

The in-memory hash cache is also shared by the interceptor and D. Finder modules
and it is implemented as a direct-mapped cache that allows finding the hash for a
specific storage block address. This way, depending on the cache size and number of
requests, a percentage of hashes from distinct blocks may end up in the same cache
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slot. When this happens, one of the hashes is kept in memory and the others are written
to disk. On-disk hashes are stored on Berkeley DB and retrieved when cache misses
occur [Olson et al. 1999].

The unreferenced and free blocks’ queues are implemented as persistent queues
with atomic operations. The DDI is a modified version of the Accord high-performance
coordination service, resembling the Apache Zookeeper system, but based on the
Corosync group communication protocol and aimed at write-intensive workloads
[Ozawa, T. and Kazutaka, M. 2014]. Accord is a replicated, transactional, and fully
distributed key-value store that supports atomic test-and-increment and test-and-
decrement operations; therefore, only a few lines of code had to be changed. The extent
server is implemented as a remote service with a persistent queue of unused storage
blocks. This implementation allows measuring the overhead of providing unused blocks
to the free pools of cluster nodes.

Despite being simplistic, all these structures are usable in a real implementation,
this way, the resource utilization (i.e., CPU, RAM, disk, and network) values observed
in our evaluation are realistic. In fact, it is still possible to further improve storage and
RAM space occupied by metadata and persistent logs if more space-efficient structures
are used instead.

5. EVALUATION

DEDIS prototype was evaluated in order to validate the following assumptions. First
is the assumption that deduplication does not overly impact storage performance, even
when both deduplication and I/O intensive workloads run simultaneously. Then, the
assumption that the storage space required for storing VM volumes is significantly
reduced. Finally, the assumption that DEDIS design efficiently handles several VMs
in the same server and scales out for several cluster servers.

5.1. Traces and Benchmarks

Since DEDIS targets dynamic primary data, using exclusively static traces of VM
images is not suitable for its evaluation. On the other hand, traditional synthetic disk
benchmarks do not accurately simulate duplicate content, either writing all blocks with
the same content or with random content.

For these reasons, DEDIS was evaluated with two real dynamic traces that are
publicly available1 and were used previously to evaluate [Koller and Rangaswami
2010a] work for improving the I/O performance of storage workloads with duplicates.
Although this work is distinct from DEDIS because it is not focused on eliminating
duplicates from written content, it presents real dynamic traces that are useful for
evaluating our system. The traces used in our evaluation were collected for a duration
of three weeks and belong to two production systems with different I/O workloads used
daily at the Florida International University (FIU) Computer Science department,
namely a trace from a Web VM and another from a Mail server.

As a distinct tool, the open-source DEDISbench disk benchmark was also used in
our evaluation [Paulo et al. 2012, 2013]. This synthetic benchmark allows simulating
realistic content and realistic storage access patterns.

5.1.1. Web VM Trace. The Web VM trace belongs to a VM running two web servers,
one hosting the FIU departments’ online course management system and the other
hosting the departments’ web-based email access portal. The operations collected in
the trace only correspond to I/O operations for the hosted root partitions containing the

1http://sylab-srv.cs.fiu.edu/doku.php?id=projects:iodedup:start&s[]=traces#traces.
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Table I. Web VM and Mail Server Traces’ Statistics for a 1-Week Period

Storage size (GB) Storage accessed (%) Data written (GB) Data read (GB)
Web VM 70 2.80 11.46 3.40
Mail server 500 6.27 482.10 62.00

OS distribution. The http data for these web servers was stored on a network-attached
storage and it is not included in the trace.

Table I shows key statistics for the Web VM I/O workload for a one week period,
as described in the work of Koller and Rangaswami [2010a]. This is a write-intensive
workload where only a small percentage (2.80%) of the total storage space available for
this system (70GB) is written/read. This means that there will be hotspot blocks that
are frequently rewritten and, if shared, these blocks must be copied-on-write. Also, a
static analysis of the data at the storage device supporting the root partitions of this
system shows that, for an aligned fixed-block size of 4KB, ≈20GB are in use, while the
remaining blocks are unused, zeroed blocks. Moreover, ≈63% of the blocks in use are
duplicates, which is a significant percentage.

5.1.2. Mail Server Trace. The Mail server hosts’ user inboxes for the FIU Computer
Science department. As shown in Table I, this is an active system with intensive I/O
when compared with the Web server. Again, this is a write-intensive workload, where
a small percentage of the storage system is accessed during the 1-week period. This
way, write hotspots are also expected for this trace. A static analysis of this workload
with an aligned fixed-block size of 4KB shows that ≈278GB of the total available space
(500GB) are in use. The percentage of duplicate blocks, excluding zeroed blocks, is
similar to the Web trace, i.e., ≈63%.

Although the FIU traces are publicly available, the mechanism to replay these traces
is not. We have implemented in C a replay tool. Briefly, the input files of both traces
specify for each write/read operation, with an aligned block size of 4KB, the timestamp,
the offset, and the content of the block as an MD5 hash. Our mechanism uses this
information to replay each operation, while having in mind the timing of the operation,
the duplicate content to write, and the storage offset where blocks are written/read.
The latency and throughput of each operation are measured by our tool, which is also
able to replay traces with a parametrized speedup.

Since we do not have access to the static storage content stored by these two systems,
the content written by the replay tool only corresponds to the dynamic data that was
written for the specific period of time represented in the traces. Since, in both traces,
only a small percentage of the stored data is accessed, it is expected that the number of
duplicates generated in the traces will also be significantly smaller than the percentage
observer for the full static content.

5.1.3. DEDISbench. Synthetic benchmarks are also widely used for evaluating storage
systems. However, benchmarks such as, Bonnie++, PostMark, and Fstress do not use a
realistic distribution for generating duplicates and the data written in each benchmark
operation either has the same content or it has random content with no duplicates at all
[Coker 2015; Katcher 1997; Anderson 2002]. In both cases, the deduplication engine will
process an abnormal number of duplicates, which will affect not only the storage and
deduplication performance metrics, but also the values reported for the space savings
and resource usage of the deduplication system [Tarasov et al. 2012]. On the other
hand, benchmarks like IOzone and Filebench define a percentage of duplicate content
over the written records or the entropy of generated content [Norcott 2015; Al-Rfou
et al. 2010]. However, these methods are only able to generate simplistic distributions
that do not specify, for example, distinct numbers of duplicates per unique data as
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found in a real storage system. To our knowledge, the work of Tarasov et al. [2012]
presents the only benchmark that is able to simulate complex duplicate distributions,
but it is designed for evaluating incremental backup storage systems where backups
are done periodically in large batches, thus, not simulating the mutation rate found,
for instance, in the two real traces previously described.

DEDISbench is an open-source synthetic benchmark implemented in C that mim-
ics the functionality of two widely used storage benchmarks, namely, IOzone and
Bonnie++. Briefly, the benchmark allows performing read or write storage requests
at fixed-size block granularities, with a size chosen by the user. Storage operations can
be issued directly over a block storage device or over files created by the benchmark in
a file system.

Additionally, DEDISbench implements novel features for evaluating primary dedu-
plication systems under a more realistic scenario. First, the content of written blocks
can follow a content distribution extracted from real datasets, thus, mimicking the
percentage and distribution of duplicates found in a real storage system. In more de-
tail, DEDISbench is able to process an input file specifying a distribution of duplicate
content and to use this information for generating a synthetic workload that follows
such distribution. The input file states the number of unique content blocks for a cer-
tain amount of duplicates. For instance, there are 5,000 blocks with 0 duplicates, 500
blocks with 1 duplicate, 20 blocks with 5 duplicates and 2 blocks with 30 duplicates.
With the previous information, DEDISbench generates a cumulative distribution that
defines the probabilities of selecting specific block identifiers. Blocks are duplicates
when they share the same identifier. Identifiers with high probability of being chosen
correspond to blocks with many duplicates, while identifiers with lower probabilities
correspond to blocks with few duplicates. Unique blocks without any duplicate are also
contemplated in the distribution and have unique identifiers. For each write operation
issued, a random generator and a cumulative distribution function are used to select
the correct identifier and, consequently, the content to write.

The input file describing the duplicate distribution can be generated by the users
or automatically with DEDISgen, an analysis tool used for processing a real dataset
and extracting from it the correspondent duplicate content distribution. In this evalua-
tion, we use the input file generated by DEDISgen after analyzing the primary storage
system for our group research projects, which store dynamic data from real test ap-
plications [Paulo et al. 2013]. This workload has ≈1.5TB and 25% of the stored blocks
(with a size of 4KB) are duplicates.

As another important feature that allows simulating frequent accesses to a small
portion of the dataset, DEDISbench supports an access pattern, based on the TPC-C
NURand function, that simulates hotspot random disk accesses. This access pattern
mimics a primary storage environment where a small percentage of blocks are hotspots
with a high percentage of accesses, while most blocks are only accessed sporadically. As
seen in the previous two real traces, hotspots are common and increase the number of
block rewrites and, consequently, the amount of CoW operations. Since CoW is a costly
operation for storage latency, it is important to test the effects of hotspots in dedupli-
cation systems [Clements et al. 2009]. In fact, in our previous work, DEDISbench was
used to evaluate two open-source deduplication systems, Opendedup and Lessfs, and
these novel features were key to uncover performance issues that were not detectable
with the Bonnie++ and IOzone benchmarks [Paulo et al. 2012].

5.2. Traces Evaluation

To evaluate DEDIS prototype with the Web VM and Mail server traces, the experi-
mental setup used was the following: tests ran in a server equipped with an AMD
Opteron(tm) Processor 6172, 24 cores and 128GB of RAM. A single VM ran in this
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Table II. DEDIS and Tap:aio Write Throughput and Latency Results for the Web VM Trace

Replay Speed 1 10 20 40 80 160 320 640
Storage Trace 4 78 111 247 380 796 1,582 3,995
throughput Tap:aio 4 78 111 247 380 815 1,581 4,173
(IOPS) DEDIS 4 78 111 247 380 815 1,580 4,197
Storage Tap:aio 0.0096 0.0095 0.0095 0.0119 0.0125 0.0083 0.0093 0.0079
latency (ms) DEDIS 0.0099 0.0101 0.0108 0.0368 0.0439 0.0127 0.0105 0.0095

server and was configured with 4GB of RAM and two volumes, one holding the VM OS
and another holding the traces data. The VM OS volume, with 20GB, was stored in
a local 7200 RPMs SATA disk, while the trace volume was stored in a raw partition
(500GB) created on an HP StorageWorks 4400 Enterprise Virtual Array (EVA4400),
that was connected to the AMD server with Fiber Channel. This partition was used as
the storage backend and stored the trace volume, configured with 20GB for the Web
VM trace tests and with 290GB for the Mail server trace tests, which corresponds to
the storage space in use by each of these services when the traces were collected.

As the traces already contemplate data from the OS where the services were running,
the VM OS volume was not considered in the evaluation, so it was configured with a
default XEN driver without deduplication. The trace replay mechanism only wrote/read
data to the trace volume, and DEDIS was also only active for this volume, ensuring that
deduplication was only done for the I/O operations generated by the replay mechanism.

Local DEDIS modules, a single DDI instance, and the extent service ran in the AMD
server, while persistent metadata and logs belonging to all these components were
also stored in the storage backend provided by the EVA storage system, ensuring that
another server could access these logs and recover failed components, if necessary. In
this single server setup, we used a single DDI instance, so we did not test the impact
of replication that is discussed in the distributed tests.

The replay mechanism ran at the VM, so I/O operations were measured at the VM
(DomU). Deduplication, CPU, metadata, RAM, and network utilization were measured
at the host (Dom0). Measurements were taken for stable and identical periods of the
workloads, excluding ramp up and cool down periods, and include the overhead of all
DEDIS modules, as well as the overhead of persistent logging.

In order to assess DEDIS overhead, we compared it with Tap:aio, the default Blktap
driver for asynchronous I/O. As explained previously, this was the base driver used
to implement the DEDIS interceptor module and it does not perform deduplication.
This comparison ensures that the storage overhead observed was directly related with
DEDIS. Unfortunately, a comparison with DDE or DeDe was not possible, as these
systems are not publicly available.

5.2.1. Web VM Trace Results. For both Tap:aio and DEDIS, we ran 60-minute tests,
the first 40 minutes with parallel I/O (with a block size of 4KB) and deduplication,
and then, for the subsequent 20 minutes, deduplication was performed, isolated from
the I/O workload. We chose this setup to understand the differences when performing
deduplication in parallel with I/O and in isolated periods. Five minutes were used as
the interval between D. Finder and GC iterations to obtain several iterations of the
modules during the test and to minimize the storage backlog.

Tables II and III show the throughput and latency for write and read requests for the
first 40 minutes with concurrent deduplication and I/O. As shown in the tables, when
replaying the trace at a normal speed (1x), the overhead of our system, when compared
with Tap:aio, is almost negligible. As the throughput for the trace is relatively low
and, in the first 40 minutes, read requests are nonexistent, we repeated the tests with
increased speedups. Also, we compared the throughput of DEDIS and Tap:aio with
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Table III. DEDIS and Tap:aio Read Throughput and Latency Results for the Web VM Trace

Replay Speed 1 10 20 40 80 160 320 640
Storage throughput (IOPS) Trace - 30 64 100 178 299 439 943

Tap:aio - 30 46 100 178 325 439 1,032
DEDIS - 30 45 100 178 326 439 1,033

Storage latency (ms) Tap:aio - 0.76 1.11 0.93 0.41 0.18 0.08 0.03
DEDIS - 0.78 1.14 1.00 0.45 0.18 0.09 0.03

Table IV. DEDIS Deduplication Throughput and Space Savings Results for the Web VM Trace

Replay Speed 1 10 20 40 80 160 320 640
Deduplication throughput (MB/s) 1.73 18.39 27.31 28.04 31.10 28.62 22.71 23.23
Shared space (MB) 5 43 113 175 203 111 132 96

the optimal trace throughput in order to understand if the EVA storage backend was
becoming saturated and could not handle the load at an increased throughput. We have
increased the replay speed up to 640x and stopped in this value because increasing
the replay speed to 1,280x would replay the full three weeks trace in ≈27 minutes
and we wanted to maintain a 40-minute run. Comparing the throughput of DEDIS,
Tap:aio, and the default trace throughput, it is visible that values are similar. In the
160x and 640x tests, the throughput of reads for DEDIS and Tap:aio are a bit lower
than expected, which is then compensated by the write throughput, which is slightly
higher.

When the replay speed increases, DEDIS overhead for both read and write latency
also increases slightly. However, the latency overhead in write requests is never su-
perior to 0.04ms, and in read requests, is never superior to 0.07ms, which are small
values. Moreover, when compared with the results discussed in the DeDe system’s
paper, where each VMFS CoW operation requires ≈10ms to complete, and where ev-
ery block must be aligned before being read/written, this is a clear improvement. For
instance, in the 80x test, more than 30% of the write requests are CoW operations.
Although our hotspot avoidance mechanism avoids ≈50% of these operations, if the
performed CoW operations took 10ms, then the overhead would be significantly higher.

Table IV shows deduplication statistics for the 60 minutes run. Firstly, the deduplica-
tion throughput is similar for the first 40 minutes when deduplication runs in parallel
with I/O and for the subsequent 20 minutes when running isolated. Note that dedu-
plication throughput includes all operations processed by the D. Finder module and
not only the operations that actually shared blocks. Also, all the operations included in
this metric require marking the blocks as CoW, contacting the DDI, and processing its
response. The deduplication throughput tends to increase when more write operations
are done and, consequently, the D. Finder module has more blocks to share in a single
cycle, thus leveraging the batch optimizations described previously in the article. For
the test with a speedup of 80x, the deduplication throughput is ≈30MB/s, which is a
clear improvement over the DeDe system where blocks are shared at ≈2.6MB/s.

Similarly, the shared space tends to increase when more blocks are written and
shared. Note that the content written by the replay tool and shared by DEDIS cor-
responds to the dynamic data specified in the trace. Since traces only access a small
percentage of the original dataset, the number of duplicates generated will be signif-
icantly smaller than the number observed in the work of Koller and Rangaswami
[2010a] for the full dataset.

The table also shows a decrease in the space savings and deduplication throughput
when the speed of the trace is higher than 80x. When the speed of the trace is increased,
hotspot blocks are more likely to emerge. In fact, for the 80x and 160x tests, we observed
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Table V. DEDIS and Tap:aio Resource Consumption Results for the Web VM Trace

Replay Speed 1 10 20 40 80 160 320 640
CPU (%) Tap:aio 0.00 0.14 0.44 0.91 1.55 2.25 3.57 5.18

DEDIS 0.00 0.33 0.81 1.79 2.95 3.76 5.48 8.08
RAM Tap:aio 6.14 6.15 6.14 6.15 6.15 6.15 6.15 6.15

DEDIS 89.40 92.88 95.24 96.03 96.55 96.95 96.47 96.59
Persistent metadata (MB) DEDIS 116 130 139 145 150 144 143 152

Table VI. DEDIS and Tap:aio Write Throughput and Latency Results for the Mail Server Trace

Replay Speed 1 10 20 40
Storage throughput (IOPS) Trace 126 1,661 4,097 8,862

Tap:aio 126 1,661 4,077 8,813
DEDIS 126 1,661 4,076 8,645

Storage latency (ms) Tap:aio 0.0085 0.0065 0.0067 0.0070
DEDIS 0.0086 0.0080 0.0073 0.0101

Table VII. DEDIS and Tap:aio Read Throughput and Latency Results for the Mail Server Trace

Replay Speed 1 10 20 40
Storage throughput (IOPS) Trace 96 622 560 618

Tap:aio 96 622 578 629
DEDIS 96 622 590 572

Storage latency per node (ms) Tap:aio 0.18 0.18 0.21 0.32
DEDIS 0.22 0.18 0.25 0.86

that the number of CoW operations avoided by the DEDIS hotspot detection mechanism
increased from ≈160,000 to ≈470,000. This means that many write requests are not
shared, as they are hotposts that would generate CoW operations. Since the throughput
of writes only doubles between these two tests, it is a noticeable decrease in the amount
of shared space. The same happens for the 320x and 640x tests.

Table V shows the CPU, RAM, and persistent metadata used by DEDIS and Tap:aio.
The CPU and RAM values include the resources consumed by all DEDIS components
and by the DDI node that ran collocated in the AMD server. As expected, the CPU
increases slightly when tests run at a higher speed. For the original trace speed (1x),
the amount of CPU used by DEDIS and Tap:aio is very small, and our analysis scripts
that use the Linux top utility reported the consumption as 0.00 due to the precision
of the utility. The amount of RAM required by DEDIS is acceptable even for a server
with substantially less RAM than the AMD server used. As the amount of space shared
with this trace is small, the persistent metadata space is not clearly compensated by
the deduplication space savings. However, in the next tests we show that for a storage
workload with slightly more duplicates, the persistent metadata space is compensated.

5.2.2. Mail Server Trace Results. The Mail server trace experiments ran with an identical
configuration to the previous tests, while the trace volume was configured with a size of
290GB. Tables VI and VII show for Tap:aio and DEDIS the throughput and latency for
read and write requests for the first 40 minutes of the tests when I/O and deduplication
ran simultaneously. When replayed at the original speed (1x) this trace does more
operations per second than the Web VM trace. When replayed with a speedup of 80x, it
is noticeable in both DEDIS and Tap:aio results that the storage backend is no longer
keeping up with the desired trace throughput and, this way, we stopped the evaluation
at the 40x speedup threshold. In fact, for the 40x test, the storage backend saturation
is already slightly visible.
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Table VIII. DEDIS Deduplication Throughput and Space Savings Results
for the Mail Server Trace

Replay Speed 1 10 20 40
Deduplication throughput (MB/s) 19.62 24.96 25.13 18.16
Shared space (MB) 455 1,146 1,350 1,869

Table IX. DEDIS and Tap:aio Resource Consumption Results for the Mail Server Trace

Replay Speed 1 10 20 40
CPU (%) Tap:aio 0.41 5.27 9.57 18.18

DEDIS 0.90 8.14 14.93 28.22
RAM Tap:aio 6.15 6.15 6.16 6.18

DEDIS 652.45 653.20 653.32 653.54
Persistent metadata (MB) DEDIS 670 698 709 727

For write requests, the overhead of DEDIS is never superior to 0.003ms, which once
again is a negligible overhead. For most read tests, the overhead is inferior to 0.03ms.
However, in the 40x test, the overhead is ≈0.5ms. As the trace has both sequential and
random I/O, this increase in overhead is probably caused by a set of sequential reads
that, due to deduplication, may be reading fragmented blocks. The work described
in this article is focused mainly on random workloads. Nevertheless, in Section 6,
we discuss fragmentation and sequential workloads, and we point out some existing
solutions that could be incorporated in the DEDIS design to handle these challenges.

Table VIII shows deduplication statistics for both the first 40 minutes with parallel
I/O and the subsequent 20 minutes with isolated deduplication. Again, the deduplica-
tion throughput is similar for the period when deduplication is running both isolated
and simultaneously with the I/O workload. The space savings and throughput of dedu-
plication increase with the speed of the trace, as expected. However, for the 40x test,
there is a small decrease in deduplication throughput that can be explained by the
storage backend saturation that is already slightly noticed in the storage write and
read requests results.

Although, the deduplication throughput is slightly lower than the one observer for
the Web VM trace, the shared space is significantly higher. In fact, the shared space
for a speedup of 10x and for higher speedups compensates the persistent metadata
space required, shown in Table IX. Since these tests use a trace volume with 290GB,
the logical-to-physical mapping requires more space. As this structure is stored both
on disk and RAM, the extra space is visible both in the RAM and persistent metadata
consumption. As explained previously, DEDIS prototype uses simple structures to im-
plement this mapping, so it should be possible, as future work, to reduce its size with
more efficient approaches. Finally, the CPU consumption increases slightly with the
speed of the trace, while the overhead introduced by DEDIS is small.

5.3. Benchmark Evaluation

DEDIS was also evaluated with DEDISbench and with a very similar setup to the
previous ones. DEDISbench ran in the VM and wrote data into the trace volume that
was configured with a size of 20GB.

Table X shows the storage I/O and deduplication metrics for a 40 minute run of
DEDISbench performing hotspot random writes (with a block size of 4KB) and for the
subsequent 20 minutes, when deduplication ran isolated from the I/O workload. As
DEDISbench does stress testing with a random workload, the throughput and latency
are higher than the ones observed for the two traces with the original speed (1x). In
this test, DEDIS overhead in storage writes throughput is ≈10%, while the latency
overhead is ≈8% (0.9ms). In DeDe, only the alignment of the VM blocks with VMFs
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Table X. DEDIS and Tap:aio Results for DEDISbench

Storage
throughput

(IOPS)

Storage
latency

(ms)

Deduplication
throughput

(MB/s)

Shared
space
(MB)

CPU
(%)

RAM
(MB)

Persistent
metadata

(MB)
Tap:aio 1,307 0.75 − − 6.81 6.28 −
DEDIS 1,174 0.84 18.77 421 6.29 95.98 150

introduces this percentage of overhead, meaning that the values from this test also
show improvement over previous work.

The deduplication throughput value is similar to the one achieved for the Mail Server
trace, while the shared storage space is slightly smaller but also compensates the space
required by the persistent metadata. The RAM overhead is similar to the one found for
the Web VM trace since the trace volume has the same size (20GB). The CPU overhead
introduced by DEDIS is negligible. In fact, since the Tap:aio driver processes some
more I/O operations, the CPU consumption is slightly higher than the one observed for
DEDIS.

All the previous results show that DEDIS overhead is small in a setup with a single
server and a single VM. Such is possible even when deduplication is being performed
simultaneously with an acceptable throughput. Next, we test DEDIS in a setup with
multiple VMs per server and in a setup with multiple servers.

Running the same real trace in several VMs is not realistic because it would generate
exactly the same content and access pattern several times. Although it is possible to
split the traces into subworkloads and run each subworkload in a distinct VM, this
would reduce the trace realism and it would be a nontrivial task.

On the other hand, DEDISbench instances may run in different VMs and, as long as
each instance is simulating the same content distribution, then the storage backend
where VMs volumes are stored will end up with that realistic distribution. More specif-
ically, each DEDISbench instance generates unique blocks in an unique way across all
VMs. Then, since the same real distribution is being simulated in each benchmark in-
stance, blocks with similar identifiers/content will be generated according to the distri-
bution specification, even if these instances are running in different VMs. Additionally,
the hotspot random access pattern used in DEDISbench is also different for each VM.
This way, and since the previous conclusions extracted from the traces and DEDIS-
bench results are similar, we choose to use the latter exclusively for the next tests.

Finally, we did not show results for a DEDISbench storage read test because a similar
test is already presented at the end of this evaluation section.

5.4. Multiple VMs per Machine Evaluation

DEDIS was first evaluated in a setup with several VMs running on the same server. The
experimental setup was very similar to the previous one. An independent DEDISbench
instance ran in each VM and wrote data into an individual trace volume, with 20GB,
independent from the OS volume and stored at the storage backend. A single DEDIS
process ran in the AMD server, although each VM trace volume had a distinct thread
for running the D. Finder and GC algorithms. As explained previously, the only shared
metadata structure that required synchronization across these threads was the local
free blocks pool. A single DDI instance and the extent service ran in the same AMD
server, as in previous tests.

DEDIS and Tap:aio were evaluated with up to eight VMs and with a random write
workload, i.e., in each VM, DEDISbench performed random hotspot writes for 40
minutes with a subsequent pause of 20 minutes when deduplication ran isolated. As
depicted in Figures 6(a) and 6(b), the overhead in storage throughput and latency
introduced by DEDIS is always below 15%, which is still near the overhead for a
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Fig. 6. DEDIS and Tap:aio results for up to eight VMs with a random hotspot write workload.

Table XI. DEDIS Aggregated Deduplication Results for up to Eight VMs
with a Random Hotspot Write Workload

# VMs 1 2 4 8
Deduplication throughput (MB/s) 18.77 25.02 41.72 15.69
Deduplication space saved (MB) 421 633 686 320

Table XII. DEDIS and Tap:aio Resource Consumption for up to Eight VMs
with a Random Hotspot Write Workload

Number VMs 1 2 4 8
CPU (%) Tap:aio 6.82 6.90 7.26 11.16

DEDIS 6.29 6.75 8.87 12.44
RAM Tap:aio 6.28 12.58 24.67 49.23

DEDIS 95.98 181.22 348.52 669.16
Persistent metadata (MB) DEDIS 150 202 341 413

single VM. Also, the overhead does not increase with the number of VMs per server;
in fact, the maximum overhead was observed for the test with two VMs per server. As
expected, when the number of VMs increases, these share the storage bandwidth and,
as a consequence, the aggregated throughput remains similar while the latency of
storage requests per VM is higher. However, for the test with eight VMs and for both
Tap:aio and DEDIS, a small decrease of the throughput is noticeable, showing that
the storage backend is becoming saturated with the concurrent load of the eight VMs.

In Table XI, this saturation is also noticeable. The deduplication throughput slightly
increases while more VMs are being added and the throughput of the storage is also
increasing. Then, with eight VMs per server, the deduplication throughput drops along
with the storage throughput to a value closer to the deduplication throughput observed
for a single VM per server. The decrease is also visible in the shared space because
the VMs are writing less data and the deduplication engine is sharing it slower. As a
matter of fact, in the next tests, we show that when the storage backend scales with
the number of VMs, the deduplication throughput and shared space also scale.

Finally, Table XII shows that DEDIS RAM and persistent metadata increase linearly
when more VMs are being served by the same server, which is explained by most
metadata structures being independent for each VM. The CPU consumption remains
small, even when more VMs are added.

5.5. Multiple Servers Evaluation

The setup used to evaluate DEDIS scalability for several cluster servers differs from
the previous ones. Tests ran in cluster nodes equipped with a 3.1GHz Dual-Core Intel
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i3 Processor, 8GB of RAM, a 7200 RPMs SATA disk, and connected by a gigabit switch.
VMs were configured with 4GB of RAM and a single virtual disk volume with 20GB.
A symmetric setup where each server ran a single VM, local DEDIS modules, and
a DDI instance was used for all tests. The only component that ran in an isolated
server was the extent service. The main advantage of using this setup was that no
additional servers were required for running exclusively DEDIS or DDI components,
thus resembling the setup of a traditional LVM system. Each server ran a single VM,
since these servers’ resources are more limited when compared to the AMD server.

DDI entries were partitioned and replicated with a replication factor of two. In each
replication group, holding a distinct shard of the DDI, one of the replicas was used to
process requests, while the other was kept only for fault-tolerant purposes. This way,
for the setup with two servers, a single shard was used, for the setup with four servers,
two shards were used, and so on. For instance, for a setup with four servers, server one
and three processed requests for two distinct shards. Then, in order to cope with the
failure of these two servers, server two replicated server one, and server four replicated
server three. With this new setup, the overhead of replicating the DDI is contemplated
in the results.

The distributed storage backend was also provided by the local disks of the cluster
servers. More specifically, each server exported to the other servers an iSCSI device
with 45GB. VM volumes were then stored in these devices with block-level striping.
This way, the number of iSCSI devices grew with the number of servers, i.e., for a setup
with two servers there were two iSCSI disks, for a setup with four servers there were
four iSCSI devices, and so on. This design allowed scaling the storage pool with the
number of VMs while spreading the volumes across distinct iSCSI devices. Persistent
metadata and logs belonging to DEDIS and the extent server were also stored in the
distributed storage pool, ensuring that all servers could access these logs and recover
failed components, if necessary. DDI persistent data was kept in the local disk of
each server, since replication was used to ensure fault-tolerance. Due to the scope
of the evaluation, our storage pool implementation only performed striping without
maintaining any redundancy for tolerating disk failures. In a production environment
the storage backend should have replication enabled in order to tolerate the failure of
storage servers for both the Tap:aio and DEDIS environments. However, this is just a
test setup and our main motivation is to show that DEDIS introduces low overhead in
a distributed storage system that scales with the number of servers.

In order to simulate a realistic environment where both static and dynamic VM data
are deduplicated, we chose to store both OS and DEDISbench data in the same VM
volume. Also, in a realistic environment, as the one discussed in LiveDFS, when a VM
volume is created with a specific OS and other static information, it is more common to
perform in-line deduplication while loading the volume into the storage backend than
only performing deduplication later after storing the volume with duplicate content
[Ng et al. 2011]. This way, we implemented a similar mechanism for loading new VM
volumes into the storage. Briefly, upon loading, VM volumes are divided into 4KB blocks
that are examined and actually stored only if they have useful content, thus excluding
zeroed blocks that are then lazily allocated when needed. Moreover, deduplication
is performed for each block being loaded to the storage. Duplicates are found inside
the same VM volume and across other VM volumes already at the storage, with an
algorithm that is very similar to the one used by DEDIS. The metadata and DDI
structures used, while loading the VMs, are the same that are used by DEDIS when
the VMs are deployed and running. This way, if a VM volume is being loaded while other
VMs are already running at the cluster, the loading mechanism will also contemplate
duplicate blocks from running VMs. The only difference from DEDIS algorithm is that
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Table XIII. DEDIS Optimizations Results for Two Cluster Nodes with a Random Hotspot Write Workload

DEDIS wo/cache DEDIS w/cache DEDIS byte
Aggregated storage throughput (IOPS) 1,710 1,854 1,807
Average storage latency per node (ms) 1.08 1.00 1.05
Aggregated deduplication throughput (MB/s) 2.52 31.46 3.92

in-line deduplication is used instead, meaning that duplicates are eliminated before
being stored.

When the VM instance starts running, the associated volume will have the necessary
boot information already at the storage backend. Since zeroed blocks are not allocated
immediately, these are lazily allocated when needed by the interceptor module. Lazy-
allocation is resilient to failures in a similar fashion to CoW. When the interceptor
receives a write request for a block that must be lazily allocated, it gets an unused
address from the free pool, updates the logical-to-physical mapping, and registers
the operation at the persistent unreferenced queue. Then, the GC is responsible for
processing the queue and persisting the mapping modifications in the logical-to-
physical log. Deduplication uses the same logs as D. Finder to ensure that modifications
to the logical-to-physical mapping and to other persistent structures are resilient to
failures.

To conclude, this mechanism allows evaluating DEDIS in a more realistic scenario
where VMs’ volumes are launched by a mechanism that shares static information.
Then, the dynamic information written by DEDISbench is shared with DEDIS. Also,
the OS information rewritten while DEDISbench is running, is copied-on-write, if
necessary, and shared by DEDIS. The operations done by our launching mechanism
use the same metadata structures as DEDIS, require no additional storage space, and
have no additional impact while the experiment is running.

5.5.1. DEDIS Optimizations. We started by evaluating some of DEDIS optimizations in a
setup with two cluster nodes. In order to evaluate the in-memory hash cache described
in Section 4.5, we compared two versions of DEDIS, one using this mechanism (DEDIS
w/cache) and another without it (DEDIS w/o cache). Also, to understand the overhead
of doing byte comparison of blocks before sharing them, we have evaluated another
version of DEDIS, similar to DEDIS w/cache, but using byte comparison optimization
(DEDIS byte).

Tests ran in a setup with two servers, each with a single VM. Two servers were used
to ensure that there were at least two DDI nodes and that replication costs would be
properly assessed in the results. Table XIII shows the storage I/O and deduplication
metrics for a 40 minute run of DEDISbench performing hotspot random writes, and for
the subsequent 20 minutes when deduplication ran isolated from the I/O workload.

The results show that the storage I/O latency is reduced and the aggregated through-
put increased when the in-memory hash cache is used. Improvements are even more
noticeable for the aggregated deduplication throughput, increasing from 2.52MB/s to
31.46MB/s.2 This gain is achievable because block digests are precalculated and looked
up in the in-memory cache. Even when cache misses occur and the hashes must be
fetched from the on-disk Berkeley DB, the storage bandwidth used is significantly
smaller than the one that would be used for reading back the full content of 4KB blocks
from the storage. In terms of metadata space, the on-disk Berkeley DB required 15MB
of disk space per server. The in-memory cache was configured to use 16MB of RAM
per server that, for these tests, allowed obtaining a cache hit ratio of 69%. It is also
important to refer that, for both DEDIS versions, the deduplication throughput value

2In the DEDIS w/cache test, the D. Finder module processed more than one million operations.
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Fig. 7. DEDIS and Tap:aio results for up to 32 cluster nodes with a random hotspot write workload.

was similar when deduplication was running in parallel with the I/O benchmark and
when it was running isolated.

Table XIII also shows the overhead of performing byte comparison over hash compar-
ison. The overhead is small for storage latency and throughput but it is more noticeable
in deduplication throughput. Byte comparison requires reading back the content of the
two blocks being shared from the storage which reduces the benefits of the hash cache.
This cost presents a tradeoff between performance and resilience to collisions of the
SHA-1 algorithm that must be considered for the VMs where deduplication is being
applied. In most cases, the negligible probability of collision of the SHA-1 algorithm is
acceptable and the hash comparison is preferred [Quinlan and Dorward 2002; Paulo
and Pereira 2014b].

The impact of other optimizations, such as the hotspot avoidance mechanism, were
already discussed in previous work, so we do not address them here in detail [Paulo
and Pereira 2014a]. Nevertheless, these optimizations were used in these tests and
had a positive impact in the results. For instance, in the DEDIS w/cache test, the
hotspot mechanism avoided approximately 80% of CoW operations (≈300,000 opera-
tions per server). Finally, in terms of CPU, RAM, and network bandwidth, the three
DEDIS versions had similar consumptions. We further discuss resource consumption
and deduplication space savings in the next section where we evaluate DEDIS proto-
type in a larger cluster.

5.5.2. DEDIS Scalability and Performance. The prototype, with hash comparison and all
the optimizations, was then evaluated in a setup with up to 32 servers, where each
server ran a single VM, a DDI instance, and local DEDIS components. The extent service
was the only component that ran in an independent server. DEDIS and Tap:aio were
evaluated with a random write workload, i.e., DEDISbench performed random hotspot
writes for 40 minutes with a subsequent pause of 20 minutes when deduplication ran
isolated.

Figures 7(a) and 7(b) show the average storage latency and aggregated throughput
for both Tap:aio and DEDIS, running with 2, 4, 8, 16, and 32 cluster nodes. Storage
latency slightly increases when more VMs are serving I/O requests, with both Tap:aio
and DEDIS. It occurs because in a symmetrical system, where all volumes are evenly
stripped across all servers, an increasing share of requests are routed to remote nodes,
thus incurring network overhead. Note that with 32 servers, only a small share of load
is handled locally.

When compared with Tap:aio results, the latency overhead introduced by DEDIS is
at most 11%, regardless of the number of servers. Similarly, the throughput overhead
is at most 14%, the maximum value observed in experiments, with 4 and 32 servers.
These results show that DEDIS introduces low overhead in a worst case scenario when
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Fig. 8. Deduplication results for up to 32 cluster nodes with a random hotspot write workload.

Table XIV. Percentage of Deduplication Operations that Eliminated
Duplicates for up to 32 Servers

# Servers 2 4 8 16 32
% Benchmark operations shared 16.9 17.0 17.2 17.3 17.5
% All operations shared 33.4 38.6 45.7 51.6 57.0

deduplication and intensive I/O are running concurrently. Also, DEDIS overhead, as a
percentage, is not directly affected by the number of cluster nodes, meaning that our
design scales along with the storage backend.

Figure 8(a) shows the aggregated deduplication throughput for the same tests which
scale close to linearly with a growing number of servers. Again, in settings with a
very low number of servers, the share of accesses to the local disk that avoid network
overhead is still significant and provides a slight advantage. Also, the throughput is
evenly distributed across the distinct cluster nodes, showing that storage bandwidth
is fairly distributed and that no node is starved. The key component in our design,
which allows deduplication to scale out, is the decentralized DDI service that can be
partitioned across distinct nodes. As our results show, these shards can be collocated
with VMs and other DEDIS components without having a significant impact in the
overall performance. For the 32 servers run, the average deduplication throughput per
server was approximately 10MB/s, which is still an improvement over the DeDe system
where blocks are shared at ≈2.6MB/s [Clements et al. 2009].

When more VMs are writing data into the storage, there is a higher probability
of finding more duplicates across their volumes. This is shown in Table XIV where
the percentage of deduplication operations that found and eliminated duplicates is
detailed. The table comprises the percentage of duplicates found solely for processed
DEDISbench operations and for all operations, including both the benchmark and the
VM-loading mechanism. Both values show that when more servers are added, the
percentage of duplicates increases, which is only possible because DEDIS does exact
cluster-wide deduplication. The percentages of duplicates found for all operations are
higher because, in our tests, we have used the same VM image for all servers, so
preallocated blocks of VM images were fully deduplicated by our loader. Also, there
was some redundancy inside the same VM image that was eliminated before being
loaded to the storage pool. Note that unused zeroed blocks from VM images were not
deduplicated and were later lazily-allocated, so we have not included these blocks in
these results. Using the same image for all VMs allows evaluating all cluster nodes in
the same condition and ensures that extracted I/O metrics are not affected by using
distinct configurations. Although this approach does not simulate a cluster with distinct
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Table XV. Average Resource Consumption, Per Node, for the Hotspot Random
Write Test with 32 Cluster Nodes

CPU (%) RAM (MB) Network (KB/s) Persistent metadata (MB)
Tap:aio 3.90 6.25 − −
DEDIS 6.44 197.25 247.89 96.10

VM images, it is common for many cloud providers to have a set of standard images
that are widely used for launching new VMs. Therefore, the amount of fully duplicate
images is significant in real-world deployments.

For the experiment with 32 VMs, the loading mechanism deduplicated approximately
31GB while DEDISbench was running, and in the subsequent 20 minutes, approxi-
mately 5.9GB of dynamic content was shared, which corresponds to 17.5% of the total
number of blocks processed by the D. Finder module that processed approximately
8.7 million requests. Note that the DEDISbench hotspot workload simulates a high
percentage of rewrite operations, which is important for generating more CoW op-
erations and assessing their overhead, but also reduces the duplicates processed by
DEDIS due to the following reasons: First, the hotspot avoidance mechanism avoids
many share operations for blocks frequently rewritten, and that would probably be
copied-on-write after being shared. Also, even without the avoidance mechanism, a
block may be rewritten several times between two share iterations, but it will only
be shared once when the D. Finder asynchronously collects it. Nevertheless, the per-
centage of processed blocks that were actually shared is near the duplicate content
simulated with DEDISbench, which is 25%. Regarding the other tests, the results and
conclusions are similar to the ones described for the 32 servers experiment.

Figure 8(b) shows the storage space required after loading the VMs images into the
storage and running the I/O benchmark in each VM. This figure compares DEDIS
with an LVM system without deduplication, but that supports lazy-allocation of un-
used blocks. DEDIS used approximately 50% of the space that the LVM system would
require. Moreover, a storage system without lazy allocation would require 640GB for
storing the 32 VM volumes instead of the 43GB used by DEDIS. These values do not
include, however, the storage space needed for persistent metadata and logs, which we
detail next and show that it is clearly compensated by the space savings.

Table XV shows the average resource consumption per server for the 32 servers
experiment. We chose this specific run but, once again, the other tests have similar
results and conclusions. The CPU, RAM, and network values include the resources
consumed by all DEDIS components and by the DDI nodes that ran collocated in the
cluster nodes. The persistent metadata values also include the VM loading mechanism
that shared persistent structures with DEDIS and used the DDI to deduplicate VM
images.

In terms of CPU usage, DEDIS introduced a small percentage of overhead when
compared to Tap:aio. As expected, DEDIS required more RAM for its in-memory caches
and for performing deduplication. Nevertheless, DEDIS used less than 3% of the total
RAM of each cluster node. The network usage for the 32 servers, more specifically,
the network bandwidth used for contacting the DDI nodes and for supporting their
replication was less than 250KB/s. Regarding metadata consumption, the DDI, DEDIS,
and the loading mechanism required 96.10MB of storage space per server. Globally, for
the 32 servers, it used ≈3GB of storage space that were clearly compensated by the
37GB of space deduplicated by DEDIS and the load mechanism.

Finally, it is important to refer that, in our tests, resource consumptions were evenly
distributed across the servers. Also, in the 32 servers experiment, the extent service
used less than 1% of CPU, 2% of the server RAM, and 2GB of persistent metadata for
indexing ≈1TB of storage blocks.
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Table XVI. DEDIS and Tap:aio Results for up to 32 Cluster Nodes with a Random
Hotspot Read Workload

Aggregated storage throughput (IOPS) Average latency per node (ms)
Tap:aio 8,238 0.24
DEDIS 8,698 0.23

5.6. DEDIS Read Performance

A setting with two servers was also used for assessing DEDIS overhead in random
hotspot read workloads. In these tests, DEDISbench wrote data in the first 30 minutes,
then stopped for 30 minutes, and finally ran again for another 40 minutes performing
random hotspot reads. The first 60 minutes were used to populate the storage and have
DEDIS sharing duplicate blocks. The last 40 minutes were used to run the benchmark
and check storage read performance in a deduplicated storage. In the test with the
Tap:aio driver, the storage was also populated, but without any sort of deduplication.

Surprisingly, Table XVI shows that DEDIS outperforms Tap:aio in both storage la-
tency and throughput. This probably happens because, in a deduplicated storage, some
of the reads for distinct addresses will end up reading the same shared block from the
storage. This allows using OS read caches more efficiently while reducing the disk arm
movement [Koller and Rangaswami 2010b]. It is important to refer that the interceptor
module and the Tap:aio driver use the O_DIRECT flag for reading/writing content to
the storage backend, thus avoiding the OS caches of the Dom0 server. On the other
hand, the VM cache is enabled for both DEDIS and Tap:aio in order to have a fair
comparison. Finally, these results refer to a random workload that does not suffer from
storage fragmentation, which we discuss further in the next section.

To conclude, these results prove that our design has negligible impact in random
storage read requests and that, in some cases, deduplication can even increase their
performance.

The results presented in this section allow us to conclude that DEDIS introduces
low storage overhead, even when both deduplication and intensive storage random I/O
are performed concurrently. This is true for several storage workloads, for setups with
multiple VMs per server, and for setups with multiple servers. Also, the evaluation
results presented in this section required ≈26 hours of computation, only for DEDIS
tests. In this period, more than 734GB (≈192 million blocks) were written into the
storage and more than 86GB (≈20 million blocks) were deduplicated. Tap:aio tests
required ≈23 hours and wrote more than 780GB (≈204 million blocks) into the storage.
These tests generated ≈50MB of logs that were then analyzed to extract the results
presented in this article.

6. DISCUSSION

Deduplication research is traditionally focused on sequential storage workloads
[Quinlan and Dorward 2002; Ungureanu et al. 2010]. On the other hand, random
I/O workloads, common in primary storage systems, are less researched and still have
outstanding challenges that prevent efficient deduplication with acceptable storage
overhead [Hong and Long 2004; Clements et al. 2009]. This is the main reason why the
work discussed in this article is focused on random storage workloads.

Obtaining low overhead for both types of workloads with the same system is yet an-
other problem. As an example, HydraFS achieves good results for stream I/O while sup-
porting random I/O but with moderate performance [Ungureanu et al. 2010]. DEDIS
was built with some characteristics in mind that should allow it to perform reason-
ably for sequential I/O. Our interceptor module is implemented using asynchronous
I/O and many of DEDIS logging operations are done in batch to reduce the overhead
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of processing one request at a time. This way, if sequential writes are issued and these
do not rewrite any previously shared data, it is expectable that DEDIS performance
will be comparable with Tap:aio. However, if sequential requests generate several CoW
operations, DEDIS overhead will be more noticeable.

A possible future contribution and interesting research direction would be to build a
hybrid system that bundles these distinct researches and achieves low storage overhead
for both types of I/O access patterns. Since DEDIS solution can be used in a per volume
basis, it would be easy to use this driver for volumes with random workloads and use
a specific driver optimized for sequential throughput for other volumes. However, even
more interesting would be to have a hybrid deduplication system that can change its
algorithm for subworkloads issued in the same volume.

Similarly, DEDIS design does not address the fragmentation introduced by dedu-
plication, which has negligible impact in random storage reads but significantly im-
pacts sequential storage reads. This topic also has several research work that could
be applied to DEDIS in the future. Deduplication systems optimized for sequential I/O
usually use chunks with larger sizes or group chunks into segments to improve the
throughput of stream I/O operations and to reduce fragmentation [Zhu et al. 2008;
Lillibridge et al. 2009]. Other systems reduce fragmentation by doing selective dedu-
plication only over some chunks or by rewriting some chunks in order to maintain
the sequential storage layout for the groups of blocks that will suffer most from frag-
mentation [Kaczmarczyk et al. 2012; Srinivasan et al. 2012]. The latter ideas could
be incorporated in the DEDIS off-line deduplication algorithm as future work. As an-
other idea, it would be interesting to understand if storage replication could be used
to provide both fault-tolerance and, when possible, to asynchronously replicate some
blocks and place them in specific storage locations that would ensure their sequential
layout and reduce the fragmentation effects. Once again, the hybrid deduplication sys-
tem could include these optimizations for improving the efficiency of sequential read
requests.

7. CONCLUSIONS

We present the design, implementation, and evaluation of DEDIS, a dependable and
distributed system that performs offline deduplication across VMs’ primary storage
volumes in a cluster-wide fashion. DEDIS design is fully decentralized, avoiding any
single point of failure or contention, thus, safely scaling-out. Our design is compat-
ible with any storage backend, distributed or centralized, as long as it exports a
shared block device interface. Moreover, we present novel optimizations for improv-
ing deduplication performance and reliability while reducing the impact in storage
requests.

The evaluation of DEDIS Xen-based prototype with both real traces and benchmark-
ing tools shows that DEDIS has a small impact in storage requests while providing
an acceptable deduplication throughput, even when several VMs are hosted in the
same cluster server. Moreover, our evaluation in up to 32 cluster nodes shows that
deduplication and primary I/O random workloads can run simultaneously in a fully
decentralized and scalable system while keeping low latency and throughput overhead,
less than 14%, and a baseline single-server deduplication throughput of approximately
10MB/s with low-end hardware. Such is not possible in previous primary deduplication
proposals and is fundamental for performing efficient deduplication and reducing the
duplicate storage backlog in infrastructures with scarce off-peak periods [Clements
et al. 2009; Hong and Long 2004]. Also, the resulting net space savings are clearly
worthwhile in face of an acceptable consumption of CPU, RAM, and network resources.
These results allow us to conclude that efficient distributed deduplication is achievable
in primary storage cloud infrastructures.
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Finally, DEDIS source-code is open-source and is publicly available for anyone to
deploy and benchmark.

8. AVAILABILITY

DEDIS source code and additional information can be consulted at http://www.
holeycow.org/Home/deduplication.
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