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ABSTRACT Network human operators’ decision-making during grid outages requires significant attention
and the ability to perceive real-time feedback from multiple information sources to minimize the number
of control actions required to restore service, while maintaining the system and people safety. Data-driven
event and alarm management have the potential to reduce human operator cognitive burden. However, the
high complexity of events, the data semantics, and the large variety of equipment and technologies are key
barriers for the application of Artificial Intelligence (AI) to raw Supervisory Control and Data Acquisition
(SCADA) data. In this context, this paper proposes a methodology to convert a large volume of alarm
events into data mining terminology, creating the conditions for the application of modern AI techniques
to alarm data. Moreover, this work also proposes two novel data-driven applications based on SCADA
data: (i) identification of anomalous behaviors regarding the performance of the protection relays of primary
substations, during circuit breaker tripping alarms in High Voltage (HV) and Medium Voltage (MV) lines;
(ii) unsupervised learning to cluster similar events in HV line panels, classify new event logs based on the
obtained clusters and membership grade with a control parameter that helps to identify rare events. Important
aspects associated with data handling and pre-processing are also covered. The results for real data from
a Distribution System Operator (DSO) showed: (i) that the proposed method can detect unexpected relay
pickup events, e.g., one substation with nearly 41% of the circuit breaker alarms had an ‘atypical’ event in
their context (revealed an overlooked problem on the electrification of a protection relay); (ii) capability to
automatically detect and group issues into specific clusters, e.g., SF6 low-pressure alarms and blocks with
abnormal profiles caused by event time-delay problems.

INDEX TERMS SCADA, power system protection, data-driven, digital substation, alarm message,
contextual knowledge.

ACRONYMS
AI Artificial Intelligence.
CCU Central Control Unit.
DSO Distribution System Operator.
HV High Voltage.
IDF Inverse Document Frequency.
IED Intelligent Electronic Device.
MV Medium Voltage.
NLP Natural Language Processing.

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Palensky .

NTP Network Time Protocol.
PCA Principal Component Analysis.
RTU Remote Terminal Unit.
SAS Substation Automation Systems.
SCADA Supervisory Control and Data Acquisition.
SS Substations.
TF-IDF Term Frequency-Inverse Document Frequency.

I. INTRODUCTION
The evolution of the energy utility digital ecosystem led to
the generation of large volumes of data that must be analyzed
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to extract actionable insights. Artificial Intelligence (AI) is
quickly redefining how utilities manage their infrastructures
and is being applied to different use cases with positive
effects [1].

In the control center, human operators depend on the
alarm events generated in Substations (SS) and network
equipment for grid supervision, outage detection and diag-
nosis. However, the evolution of protection relays, the quick
adoption and growing monitoring capacity of internet-of-
things assets and new devices (e.g., Phasor Measurement
Unit) has exponentially increased the volume of data that
human operators need to analyze in short periods of time
[2], [3]. As an example, in E-REDES, the Portuguese
Distribution System Operator (DSO), historical data from
2020 shows that a daily average of 295,000 events were
registered on the Supervisory Control and Data Acquisition
(SCADA) system, considering only assets in the High
Voltage (HV) and Medium Voltage (MV) grid. HOPS, the
Transmission System Operator (TSO) of Croatia, reported,
for one month, multiple cases with more than 100 alarms
in 10-min periods [4]. This makes real-time analysis
of network state very complex and time-consuming. For
instance, Feng et al. proposed an alarm optimization strategy
combining time-delay mechanism, decision trees and a
hash algorithm to reduce the number of invalid alarms
due to voltage/current very short-term fluctuations around
upper/lower limits, auto-enclosure and repeated alarms due
to permanent equipment malfunction [5].

Intelligent alarm processing in power systems is not
new; the first works were mainly rule-based expert systems
that filtered and prioritized alarms to provide information
to human operators [6]. According to Sun et al., current
alarm-classification methods are mainly based on rules and,
thus, the authors propose a new classification method based
on information theory (using four definitions for information
entropy) and on an analytic hierarchy process to classify
alarmmessages (using alarmmessage entropy as indices) [7].
Moreover, as indicated in [8], the majority of said early works
were essentially fault location systems. In order to address
this issue, expert systems have been widely applied at the
research and industry levels [9], but more recent works focus
on artificial neural networks [10], rough set theory [11],
Petri Nets [12] and Bayesian networks [13], among others.
Nevertheless, alarm data can be exploited for other use
cases. Miao et al. described a logic-based methodology
to identify malfunctioning relays and breakers [14], where
the logic expressions are not learned from data (i.e., built
with domain knowledge). Hor and Crossley proposed an
unsupervised rough classification technique to select the
reference Intelligent Electronic Devices for each fault type
and reduce the volume of information displayed to the
operator [15]. This method also showed the ability to
assess the operating performance of the protection system.
However, the extracted rules only covered a limited number
of simulated fault scenarios. Wang et al. combined spiking
neural P systems with rough set theory for fault equipment

identification of SS, including uncertainties regarding the
status information of protective devices [16]. An alternative
approach, named analytic model-based methods, was pro-
posed in [17] to measure the mismatch between the expected
and actual alarm event, employing time constraint networks
to capture the temporal logic among event occurrences; it
was used to cluster alarms into related groups, identify
abnormal or missing alarms and relate causes with alarm
events. A similar principle was applied in the mixed integer
linear programming (MILP) model formulated in [18],
focusing on detecting malfunctioning circuit breakers or
relays. Wang et al. formulated a MILP model for iden-
tification of false alarms sent by remote bi-directional or
unidirectional fault indicators via linearized mathematical
expressions [19]. Xu et al. proposed a supervised data-driven
method that uses dynamic time warping distance to measure
similarity between observed and hypothetical alarm sequence
and detect faulty protection devices [20].

The aforementioned approaches presume that alarm data
is available in a structured format and is fully readable by
data-driven methods. However, despite the adoption of the
IEC 61850 standard, a major challenge identified in [21]
is to turn semi-structured/unstructured alarm information
into algorithm-readable semantic, without neglecting its
hierarchical and topological structure of data. In this context,
recent advances in Natural Language Processing (NLP), such
asWord2vec combined with Convolutional Long Short-Term
Memory Networks [22], are being applied to pre-process
and extract knowledge from unstructured data (e.g., fault
classification). Zhang et al. mapped fault alarms to fault
diagnosis models by using an analytical method (based on
the protection configuration and protective relays setting
principles) and semantic alarm data analysis with preinstalled
semantic templates [23]. Another work is the data processing
method from [24], based on the semantic framework of
alarm information and that uses the horspool algorithm
for string matching. Moreover, knowledge graphs are a
promising technique to combine multi-source heterogeneous
information such as alarm andmetering data, social networks,
operational rules, etc. [25].

The work in the present paper focuses on exploring
historical SCADA data of outage events and the cor-
responding operators’ actions, proposing two data-driven
functions capable of supporting the human operator decision-
making. The first function, called Alarm2Insights, uses data
mining techniques to create a simplified topological map
and identify the anomalous operation of directional and non-
directional HV and MV line protections close to real-time.
The second function, called EventProfiler, uses unsupervised
learning to identify and group similar historical events
(i.e., with similar messages) from control panels of HV
lines (protection, switching, abnormal measurements, etc.),
A description is then assigned to each group by the dispatch
center operator and a classification process, based on the
clusters obtained from historical data and a membership
grade using the Mahalanobis-Wasserstein distance, is applied
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to classify new event logs. This second tool aims to support
the post-mortem analysis of events required to determine a
probable cause to a given outage.

Compared to the state-of-the-art, the main innovative
contributions from this work are:
• To the best knowledge of the authors, this is one of
the first works to use raw operational data from a
DSO (in contrast to [14]–[16]) and propose techniques
capable of converting a large volume of alarm events into
data mining terminology (e.g., vector representation –
embedding) and a compact dataset with useful (or
‘smart’) data. The most similar work is [24] that
proposed an alarm data processing technique to work
with natural language data like in [22] and specifically
designed for one use case (i.e., fault diagnosis and trace).
In contrast to [23], the present work does not require
the definition of semantic templates or analytical rules
to extract knowledge from alarm data.

• Unsupervised data-driven methodology for protection
system malfunction assessment. The developed method
follows the same principle of analytic methods like [17],
[18], but it is fully data-driven and does not require
solving an optimization problem or construction of
mathematical expressions that mimic protection system
expected operation like in [18], [19]. Moreover, it does
not require a hypothetical time series of alarms, like in
the supervised learning approach from [20].

• Data-driven methodology (not based in optimiza-
tion problems like in [17]) to segment and cat-
egorize historical event log data, helping human
operators to identify different groups of occur-
rences in HV lines automatically, and exclusively
based on their event profiles (i.e., without using a
pre-existing class in a supervised learning fashion,
e.g., [5]). The present work can also leverage from the
information-based approach proposed in [7] to evaluate
the information value of alarm messages and alarm
pre-processing.

The remainder of this paper is organized as follows:
Section II describes the data analytics framework, including
the main aspects and challenges of the raw dataset and an
overview of the data pre-processing pipeline. Section III
describes the algorithm for protection functions normality
modeling and section IV includes the alarm segmentation
approach and detection of rare events. Section V presents
results for real data from a DSO. The conclusions and topics
for future works are discussed in section VI.

II. DATA ANALYTICS FRAMEWORK
A. DATA DESCRIPTION
Figure 1 presents an overview of E-REDES standard
Substation Automation System (SAS) architecture composed
of four different layers, namely: remote management, local
management, bay level and process level. This system pro-
vides protection, control, automation, monitoring and com-
munication functionalities that are critical for a successful

FIGURE 1. Standard substation automation system architecture of
E-REDES (adapted from [26]).

supervision and operation of the distribution grid. A detailed
description of the SAS architecture can be found in [26].

The dataset used in this work is composed of 8,631,091
historical events, retrieved from the DSO’s dispatch center
central SCADA database (see Figure 1 ‘Remote Manage-
ment’ group). The data spans from January 1st, 2014 to
June 30th, 2020, containing events from 22 primary
SS geographically spread across mainland Portugal. Two
types of events can be found in an outage event log,
namely:

• Remote Terminal Unit (RTU) event log: Equipment state
changes, measurements or alarm signals occurring at
any given physical equipment of a SS (e.g., power
transformers, capacitor banks, feeders and busbars);
some examples of alarm signals, on which we focused
in particular, include the opening or closure of a circuit
breaker, the triggering of a maximum current or voltage
protection relay or a drop in the pressure of an SF6 gas-
insulated transformer. However, most of the historical
events are merely informative, such as the switching
of the illumination at the SS or a measurement of the
current intensity at a specific phase of a transformer.

• Command event log: Control actions that dispatch center
operators may take during an event. For each action,
a pair of events is always generated, one indicating the
beginning of the action and another with the status of
its conclusion, naturally with some time delay between
them. Some examples include an attempt on manually
closing a circuit breaker or (de)activating a specific
panel’s protection.

The following structure (illustrated in Table 1) is available
for each event:

• Timestamp (RTU): Timestamp of events from Intelligent
Electronic Device (IED) and other SS equipment at the
SS local management layer, namely RTU or Central
Control Unit (CCU), depending on the SAS architecture;

• Timestamp (SCADA): Timestamp of SS events and
operator commands’ events in the SCADA database;
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TABLE 1. Simplified example of an event log from the SCADA database.

• Event description: Summary of the signal (alarm or com-
mand) that triggered the event creation. Identifies the
SS, equipment panel, event’s description and respective
equipment state;

• Event tag: Structured key representation of the event’s
description;

• Operator ID: This field indicates an operator ID for
events originated at SCADA level, since these are
triggered by an operator manual command; it is used to
distinguish between events generated at SS level and at
dispatch center SCADA level.

Note that the Event description and respective Event tag
are normalized between similar substations and panels, which
means that they are not restricted to a single event. For
example, the Event tag indicating the status of a circuit
breaker (open or closed) is always like ‘‘XX-YY-DJEST’’,
where ‘‘XX’’ indicates the Substation and ‘‘YY’’ the panel.
The total number of unique Event description found in the
historical raw dataset, considering them to be SS and panel
agnostic, is 937. The normalized event descriptions and states
are available in the functional specifications of E-REDES’
protection system [27].

B. DATA PRE-PROCESSING
The historical raw dataset is composed of many heteroge-
neous records that, despite sharing the basic structure of
Table 1, presented a series of challenges to their correct
interpretation and use:
• Time delays due to synchronization problems between
SS equipment RTU and SCADA system prevent the
clear establishment of a sequential data reordering
process. Different reasons lead to this problem. The
considered SS are at different stages of modernization,
which does not guarantee the synchronization of all
events, which is the case in modern Distribution
Automation Systems (e.g., IEC 61850 based) where
a master clock is used to synchronize all SS devices.
Time delays greater than 2 seconds were detected for
nearly 10% of the total number of records, spanning
from a few seconds to years. Differences of 1-2 seconds
and smaller are considered normal and inherent to
communication times, but larger differences arise exclu-
sively at RTU/CCU level, signaling the malfunctioning
of either the internal GPS clock of the SS or the
communication hardware (i.e., failures in Network Time
Protocol (NTP) syncing or delays between the SS

and the dispatch center time references). For instance,
some events were registered in dispatch center SCADA
database days after they happened; in other cases, the
SS internal clock was stuck at the Unix epoch time,
i.e., 1970-01-01 00:00:00, or other events were placed
in 2034. This is critical since it affects the establishment
of a sequential data reordering between events from
SS equipment and dispatch center operators’ remote
commands. As will be explained below, this problem
was circumvented through the establishment of a
pre-processing sorting logic that made these events
usable.

• The event description and respective tag’s nomenclature
for equivalent records (i.e., the same event occurring
at the same panel of the equivalent SS) change
across different equipment vendors and age. This has
a direct impact when performing an intra-substation
analysis since recent event messages might have small
differences compared to older ones.

• Establishing an unequivocal connection between the
SCADA/RTU records and complementary information
in metadata files was not always possible given the
lack of an update to the latter, which would reflect the
different equipment’s technology and newly installed
assets.

Considering the aforementioned challenges, a data pro-
cessing pipeline was developed (see Fig. 2). First, the data
was sorted to represent, as accurately as possible, the real
temporal sequence of events generated during an outage.
This was accomplished through a combination of RTU
and SCADA timestamps with an incremental integer field
representing each event entry order in the SCADA system
database.

Then, a rule-based algorithm was applied to a) identify
changes in event descriptions and tags (i.e., due to technology
vendor updates) and b) create a standard nomenclature for
event descriptions and tags with similar meaning. These
rules were defined based on a sensitivity analysis performed
together with E-REDES and were only applied to the event
log from HV lines’ panels. Keep in mind that these proce-
dures do not remove major differences among technologies
that could encrypt certain behavior of SS equipment, since
it only normalizes the nomenclature of equivalent event
messages. Finally, the equipment’s state for each description
is normalized, indicating its normal or abnormal state (e.g.,
for a circuit breaker that is normally closed, a registry
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FIGURE 2. Data pre-processing pipeline.

indicating an ‘open’ state would be classified as abnormal).
The state considered as normal was determined for each
SS equipment, by assessing the most frequent state in all
historical events related to that specific equipment. This
approach was validated by the DSO, particularly for circuit
breakers, since network reconfigurations took place at MV
level, where the normal state of some of the equipment is
switched.

An extra step is also performed for the EventProfiler
function, which is explained in section IV.

C. MODEL CHAIN
Fig. 3 depicts a simplified diagram of the main steps
from data-preparation to functions’ execution. The functions
described in sections III and IV aim to extract mean-
ingful insights from the pre-processed data (section II),
through a combination of data mining and AI tech-
niques, thus helping dispatch center operators to rapidly
identify:
• Anomalous behaviors regarding the performance of
protection relays functions associated with HV and MV
lines (i.e., abnormal or missing protection functions’
pickups at any given bay).

• Similar events (i.e., with similar log messages) in large
historical datasets to classify new outages’ events into
previously defined clusters and detect unique or rare
events.

III. ALARM2INSIGHTS: DETECTION OF ABNORMAL
BEHAVIORS IN SS PROTECTION RELAYS FUNCTIONS
The data-driven approach is illustrated in Fig. 4 and divided
in three phases, described below.

A. PHASE 1: INPUT CREATION
An input episode is created every time a circuit breaker
opening alarm is detected in either an HV or MV line
panel. Each episode is composed of the circuit breaker alarm
event description and the sequence of events created in
the time (minutes) preceding that alarm (see Fig. 4 ‘Input
Episode’ group).

FIGURE 3. Model chain for the data-driven analysis of SCADA alarms.

B. PHASE 2: KNOWLEDGE DISCOVERY
In this phase, two statistically-based insights are extracted
from the historical input episodes: 1) Simplified topological
map for SS equipment; 2) Identification of typical protection
relays functions behavior during circuit breaker opening
alarms in MV line panels.

1) SIMPLIFIED TOPOLOGICAL MAP
First, each input episode is represented by the set of SS
panels referenced at least once in the original context. This
initial pre-processing step removes information regarding
the event description in each panel (see Table 1), but
retains information about which panels logged in the alarm
context.

Then, the new sequences of events are grouped according
to the circuit breaker alarm panel (see ‘Group by Alarm
Panel’ reference in Fig. 4), and the Inverse Document
Frequency (Inverse Document Frequency (IDF)) [28], used
in NLP, is calculated for each group:

IDF(tag)j = log
Nj
ntag,j

(1)

For each circuit breaker opening alarm j, Nj represents the
total number of historical input episodes for that alarm and
ntag,j the number of episodes containing a specific tag (i.e.,
panel identifier). For each panel identifier, an IDF reference
value is calculated.

This IDF-based approach shows which SS panels fre-
quently (i.e., with lower IDF values) log in the context of each
circuit breaker alarm. This statistical information compre-
hends topological relationships between SS equipment panels
during alarm events; thus, in this case, it is considered as a
simplified topological map representation. Based on the IDF
values, we then create an operational filter for contexts from
past and new alarm episodes, which keeps the event log for
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FIGURE 4. Processes flow for the Alarm2Insights function.

SS panels that frequently log in the historical contexts of
such circuit breaker alarm. Note that information-theoretic
metrics to represent joint informational content, such
as mutual information [29], can also be used to con-
struct/reconstruct electrical network topology from SCADA
measurements.

2) TYPICAL PROTECTION RELAYS FUNCTIONS BEHAVIOR
First, the historical data is normalized by replacing the SS
panel identifier with a general equipment type identifier
(e.g., ‘substation A panel B - event description 1’ is
replaced by ‘MV line panel - event description 1’) and only
events regarding protection relays functions are kept. This
normalization step is applied to the historical input episodes
from all SS.

Then, the IDF is calculated over the normalized sequences
to display the typical behavior of protection relay functions’
pickups. A ‘common’ classification is assigned to frequent
protection functions’ pickup events (i.e., with IDF values
lower than 0.5), while ‘uncommon’ or ‘rare’ classifications
are assigned to protection functions’ pickup events with
higher IDF values (i.e., between 0.5 and 1.2, and higher than
1.2 respectively). The IDF thresholds were defined based
on a sensitivity analysis, using the methodology presented
in Fig. 5 and can be quickly adjusted by the operators to
increase or decrease the sensitivity of the tool to rare events.
This functionality is especially relevant as some installation
or panel may show specific behaviors that are frequent (and
apparently common) in that specific installation (e.g., caused
by an old and persistent problem), but rare when compared
with the predominant (and normal) behavior of the remaining
distribution grid SS.

C. PHASE 3: EXECUTION
Each new input episode is initially pre-processed using the
simplified topological map IDF-based filter created in the
‘Knowledge Discovery’ phase, and the events for panels with
higher IDF values are discarded. Then, a Term Frequency-
Inverse Document Frequency (TF-IDF) approach is used to
obtain a vector representation of both historical and new event
sequences for the current circuit breaker alarm. Subsequently,
the cosine similarity metric is used to calculate the similarity
between the current context vector representation and the
remaining historical contexts. The subset of most similar
contexts (i.e., cosine similarity superior to 0.7) is used as ref-
erence to profile the typical relay pickups behavior - achieved
by calculating the IDF value for each event tag in the
context.

D. OUTPUTS
For each circuit breaker alarm, the following feedback is
provided to the control center operator:

1) Abnormal relay pickup events detected by comparing
current events with the typical behavior of historical
contexts for that fault-type. This output is only
available for MV lines.

2) Typical relay pickups events (i.e., on a global and SS
level) that do not appear in the context of HV and MV
lines’ alarms.

It is important to underline that, for the first output,
two types of typical relay protection function behaviors are
considered, retrieved from historical episodes of:

• Circuit breaker opening alarms registered in all the SS.
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FIGURE 5. Methodology used for the definition of IDF thresholds for
alarm2insights. Note: E-REDES protection functions functional
specifications are available in [27].

• The current circuit breaker opening alarm (i.e., in the
same SS).

The combination of these two types of behaviors enables
the detection of overlooked problems in specific SS (i.e.,
by comparing with the global typical behaviors) or even the
identification of SS with abnormal dynamics in protection
pickup events, as presented in Section V. For MV line panels,
a rule-based classification was used to aggregate historical
data per fault-type, which contributed greatly to improve
the definition of typical relay pickups behavior during each
fault.

IV. EVENTPROFILER: EVENT LOG PROFILING AND
CLASSIFICATION
This data-driven function explores historical events which
occurred in HV lines and is composed of four separate phases,
described below.

A. PHASE 1: DEFINITION OF BLOCKS
As mentioned in section II-B, this function requires an
additional data pre-processing step to identify context blocks
(or simply blocks). A block is a set of events that represent one
occurrence or ‘problem’ in the SS. Hence, each block begins
once an abnormal state is detected on the event log (e.g.,
relay pickup event) and ends once every equipment returns
to its normal state, or if there is an action by a dispatch center
operator. There are two types of blocks: 1) blocks without any
operator intervention (e.g., faults solved through automatic
re-closing or other grid automatic system) and 2) blocks
where an operator intervention is required. In both cases, the
number of events per block range between a minimum of 3
and a maximum close to 7000. In this phase, all information
regarding the SS and the panel where the event occurred is
removed from the event tags, due to its irrelevance for both
processes - clustering and classification.

B. PHASE 2: WORD EMBEDDING MODEL
At this point, each block is a set of event tags, like text, that
we need to convert into a numeric representation to apply a
clustering method. Since the goal is not only to preserve the
tags’ information but also their relative position in the blocks,
this phase resorts to a word embedding model to represent the
tags. In this context, similarly to NLP tasks, each block is seen
as a text and each tag as a word. This means that our dataset is
a collection of texts and all the historical records are used to fit
a word embedding model. In this work, we use the Word2vec
algorithm, proposed by [30] with the continuous Skip-Gram
model, in order to obtain the word embedding model. This
model is then used to represent each record into a new dense
representation with predefined and fixed dimension, in which
similar records are characterized by similar encoding values.

C. PHASE 3: CLUSTERING
At this stage, the main goal is to identify similar groups
of context blocks. One ought to select a clustering method,
or methods, and a distance to be used as similarity measure.

1) SIMILARITY MEASURE
Each block is represented by a numeric matrix with a fixed
number of correlated attributes (i.e., defined by the word
embedding model) but a variable number of lines (equal to
the number of events in the block). This means that, for each
block, we have several values for each one of the correlated
variables. Therefore, we use the Mahalanobis-Wasserstein
distance [31] since it is suitable to work with correlated
variables and is based on the variables’ distributions.

Considering the unidimensional case, we have the Wasser-
stein distance between two random variables f and g, with
F and G distribution functions. This metric is considered
an extension of the Euclidean distance between quantile
functions and is defined in [31] as:

dW (F,G) :=
(∫ 1

0
(F−1(t)− G−1(t))2dt

)1/2

(2)
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where F−1 and G−1 are the quantile functions of the two dis-
tributions. In an analogousway, theMahalanobis-Wasserstein
distance is a generalization of the Mahalanobis distance for p
correlated variables and is defined as:

d2MW (Fi,Fi′ )

=

p∑
h=1

p∑
k=1

∫ 1

0
s−1hk

(
F−1ih − F

−1
i′h

) (
F−1ik − F

−1
i′k

)
dt, (3)

where F−1ih is the quantile function of the distribution F

for variable h and of the ith block; and
[
s−1hk

]
p×p

is the

inverse of the codeviance matrix where each element is the
codeviance of a dataset described by the two distribution
variables (h and k). This matrix, the codeviance of a dataset,
CODEVF , described by two distribution variables is given by:

CODEVF (Xj,Xj′ ) =
n∑
i=1

[αi − βi − γi]

+ nδ +
n∑
i=1

µijµij′ − nµjµj′ (4)

with
• αi = ρQQ(F

−1
ij ,F

−1
ij′ )σijσij′ ;

• βi = ρQQ(F
−1
ij′ , F̄

−1
j )σjσij′ ;

• µij is the first moment of Fij (the same for µij′ );
• ρQQ(F

−1
ij ,F

−1
ij′ ) is the QQ correlation between the jth

distribution and the j
′th distribution of the ith individual;

• γi = ρQQ(F
−1
ij , F̄

−1
j′ )σijσj′ ;

• ρQQ(F
−1
ij′ , F̄

−1
j ) is the QQ correlation between the

barycenter distribution of the jth variable and the j
′th

distribution of the ith individual;
• δ = ρQQ(F̄

−1
j , F̄−1j′ )σjσj′ ;

• ρQQ(F
−1
ij , F̄

−1
j′ ) is the QQ correlation between the

barycenter distribution of the j
′th variable and the jth

distribution of the ith individual;
• σij is the standard deviation of Fij (the same for σij′ );
• σj is the standard deviation of F̄j (the same for σj′ ); and
• ρQQ(F̄

−1
j , F̄−1j′ ) is the QQ correlation between the

barycenter jth distribution and the barycenter j
′th

distribution.
More information about this distance can be found in [31].

The Mahalanobis-Wasserstein distance was initially pro-
posed to measure distances between histograms. However,
as mentioned in [32], besides the fact that the Wasserstein
distance can be computed to compare any two empirical
distributions (discrete version), f and g, with n quantiles, and
is defined in [33] as:

dM (f , g) =

(
1
n

n∑
i=1

∣∣∣F−1(i) − G
−1
(i)

∣∣∣2)1/2

, (5)

the Mahalanobis-Wasserstein distance can also be easily
adapted to multivariate empirical distributions, which is the
case of the data in this work.

FIGURE 6. Process diagram for EventProfiler clustering phase.

2) CLUSTERING METHODS
Knowing that the events that characterize a specific problem
may or may not be unique to said problem raises questions
about the method used in the clustering process. This means
that, if on the one hand, we can have some characteristics
that overlap between groups, which require soft clustering
methods, on the other hand, we can have some distinct
characteristics for other groups, which require hard clustering
methods. Based on this, we decided to combine the two
approaches in the clustering process, as illustrated in Fig. 6,
and two clustering algorithms were used: a) hard clustering
type, i.e., hierarchical clustering with Ward’s agglomerative
method [34]; b) soft clustering type, i.e., fuzzy clustering
fanny algorithm [35].

To assess the stability of the results from the hierarchical
clustering, we applied the bootstrap hierarchical clustering,
using a different number of clusters and bootstrapping
1000 samples for each run. This method is carried out first,
and only the clusters with a high Jaccard similarity (greater
than 0.95 for blocks of type 1 (without operator action);
0.83 for type 2 (with operator intervention) are considered
for inclusion in the final clusters. Since we are interested
in highly stable clusters and only a Jaccard similarity value
smaller or equal to 0.5 is referred in the literature as an
indication of a ‘‘dissolved cluster’’ [36], these two values
were empirically determined, based on three random samples
of size 100 extracted from the set of blocks described in
Section IV-A, andwith the support of a domain expert (human
operator). Initially we compared the clusters obtained for the
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three samples using as threshold the values of 0.8, 0.85 and
0.95. The value that led, in the three samples, to the highest
number of clusters with a clear profile, and the lowest number
of clusters with an ambiguous profile (from the domain
expert’s point of view) was then used as center around which
we added and subtracted multiples of 0.01 to find the most
suitable threshold for each case. In the end, we obtained the
threshold of 0.95 for blocks of type 1 and 0.83 for blocks
of type 2. The resulting number of clusters plus one is used
as the k parameter’s value (number of clusters) in the fanny
algorithm (see Fig. 6).

The results from both algorithms are combined in a
way that only the most stable clusters are preserved. More
specifically, sets of context blocks that are grouped at least
95% (or 83%, for type 2 blocks) of the times in the
hierarchical clustering or have a membership grade over at
least 95% (75% for type 2) in the Fuzzy clustering. These
blocks are the core of each cluster, and the clusters reflect the
typical patterns in the data.

Themain output of this phase is a report with 1) the number
of blocks that form the cluster and 2) the IDF for each unique
event that appears in the cluster.

D. PHASE 4: CLASSIFICATION
The classification process is based on the clusters obtained
in the previous process (classification models). First,
the block is converted into a numeric matrix (using
the same word embedding model) and then, based on the
Mahalanobis-Wasserstein distance in Eq. (3), the member-
ship grade in Eq. (7), uj, is computed for each cluster j through

tuj =
1∑k

c=1(
dist(j)
dist(c) )

( 2
r−1 )

(6)

with a normalization step

uj =
tuj∑k
c=1 tuc

, (7)

where dist(c) is the minimum distance to cluster c, k is
the number of clusters, and r is the membership exponent
(r = 1.2). It is worth mentioning that the membership grades
do not allow to identify blocks that are outliers, i.e., blocks so
different that they end up far from all the clusters. Therefore,
in addition to the membership grades, we also computed
a normalized control parameter, control, that quantifies the
relative overall distance to all the clusters:

control =
k∑
c=1

dist(c)
10d(1, 2)

. (8)

Due to the presence of data codeviance in the calculation of
the distance between two blocks, Eq. (3), it is necessary to
standardize the distances, in order to compare them with a
threshold value. In fact, when a block is added to the set
of clusters’ blocks, the distances between these blocks are
affected, but the relationship between them remains the same.
Therefore, one can use the distance between two clusters’

fixed blocks as a reference and obtain normalized distances,
i.e., comparable with the threshold. Hence, in Eq. (8), d(1, 2)
is the distance between the first pair of blocks belonging to
the clusters and the scalar 10 is used to reduce the magnitude
and give the control parameter an interpretation similar to an
average value.

Considering that the control parameter enables distinguish-
ing new blocks with a profile similar to the ones represented
in the clusters from those who are very different, we may
interpret the set of membership grades as the fraction of
similarity between the new block and the clusters, i.e., the
set of membership grades of a new block represents the
distribution of similarities to all clusters. For this reason,
when one of the elements of the membership grades vector
is at least 0.5, it means that the new block has at least 50% of
its similarity associated with that cluster and the remaining
similarity is distributed by the other clusters. So, when that
happens, we may assume that the block has the same profile
of that cluster.

The output of this process is consolidated in a report which
provides the following information:

• If the control parameter is higher than the clusters’
blocks’ mean value plus three standard deviations,
a warning is issued in the report.

• If one of the membership grades is higher than 0.5, then
the block is classified as belonging to the corresponding
cluster.

• If the membership grades are all less than 0.5, then the
report presents the two clusters with highestmembership
grade, but does not classify the block.

• If the block lacks records that are common to all blocks
of the cluster it has been assigned to, an alert message is
sent to the operator.

• If any record in the block is new to the word embedding
model, a warning is issued in the report.

V. RESULTS AND DISCUSSION
This section presents the numerical results obtained with the
Alarm2Insights andEventProfiler functions for real data from
E-REDES (described in section II).

A. ALARM2INSIGHTS RESULTS
The results of this function are obtained with a leave-
one-out cross-validation approach over the entire historical
data (i.e., all the substations event log data). Each execu-
tion (see Section III-C) is applied over an input episode
extracted from the pool of historical episodes being the
‘Knowledge Discovery’ phase (see Section III-B) ran over
the pool of historical episodes minus the episode being
analyzed.

1) IDENTIFICATION OF RARE RELAY PICKUP EVENTS
An initial inspection of the historical data revealed a small
subset of SS with distinct event log patterns during faults in
MV lines. This occurs due to specific event tag terminologies
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FIGURE 7. PCA-based visualization for phase-to-phase outage events in
MV lines.

originated from differences in protective relays equipment
vendors and technology. Since this data-driven function
relies on historical data from all SS, it is important to
analyze these differences first, and assess their potential
impact on the final output. Fig. 7 and Fig. 8 capture and
demonstrate the terminology differences that exist in circuit
breaker alarm contexts for phase-to-phase and phase-to-
ground faults in MV lines respectively, as each fault type
also has specific protective relay pickup events (originating
different sequences of events). This analysis was performed
by applying the following steps over historical event log data
from all SS:

1) Select contexts for circuit breaker alarms in MV lines;
2) Calculate the IDF over the selected contexts in order to

obtain a rarity value for each event;
3) Apply k-means clustering over the IDFmatrix to create

event terminology clusters. Each cluster represents a
different terminology. The number of clusters was
empirically defined according to the number of termi-
nologies identified in the historical data;

4) Use Principal Component Analysis (Principal Com-
ponent Analysis (PCA)) for dimensionality reduction
and plot the first 2 components (i.e., with highest
variance). Each point has a color attribute, representing
a terminology type, and a size attribute, representing a
percentage of the total number of outage events where
that terminology is used.

As depicted by the figures, there are up to four terminology
types, namely T1, T2, T3 and T4. The predominant type
(i.e., T1) is used in 13 out of 22 SS, containing more than
75% of the total number of occurrences in the historical
data for these two fault types. This was an important finding
due to the data-driven nature of the Alarm2Insights function.
Events from the minor terminology types (i.e., T2, T3
and T4) deviate from the typical system behavior (mainly
driven by terminology T1) and might be misclassified as

FIGURE 8. PCA-based visualization for phase-to-ground outage events in
MV lines.

FIGURE 9. Comparison between percentage of outages with and without
‘rare’ events in the event log of a) phase-to-ground faults and b)
phase-to-phase faults.

‘rare’ by the function. In this analysis, the focus is on
SS that use terminology T1, providing specific examples
of real anomalies, as well as potential false alarms due to
terminology changes.

Fig. 9 depicts the results obtained by applying the
identification of rare relay pickup events over the historical
data from the SS with ‘T1’ terminology. Both figures
compare the percentage of circuit breaker alarm contexts per
SSwith: a) at least one event classified as ‘rare’ (see ‘with rare
events’ label in the figures); b) without any event classified
as ‘rare’ (see ‘without rare events’ label), representing the
expected normal behavior.

An analysis of Fig. 9 reveals that, for phase-to-ground
faults (see left plot), three SS (i.e., S0, S5, S7) have more
than 15% alarm occurrences with at least one rare event in its
context. The following conclusions were drawn:
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FIGURE 10. Alarm2Insights input episode example for a circuit-breaker
opening alarm in MV line VERMOIL (bay identifier 3301) from a SS in
Ranha, Portugal.

• For S0, only 29% of occurrences contained anomalies.
A close inspection showed that this SS included MV
lines for two grid voltage levels, 15kV and 30kV, with
different terminologies per level. In fact, events from
the 15kV line panels use terminology ‘T3’. These ‘rare’
events were therefore considered as misclassifications.

• In S5, nearly 41% of the circuit breaker alarms had
a ‘rare’ event in their context. An in-depth analysis
revealed an overlooked problem on the electrifica-
tion of a protection relay that was originating the
pickup of an unwanted backup protection function.
These ‘rare’ events were considered as correctly
classified.

• S7 included most of occurrences without any ‘rare’
event. However, analogous to the findings in S5,
a similar electrification problem was also detected, but
during a shorter time span, therefore affecting a smaller
number of occurrences (15%). These ‘rare’ events were
also considered as correctly classified.

Regarding phase-to-phase faults (see Fig. 9, right plot)
most of the events classified as ‘rare’ appear due to
simultaneous protection relay pickup triggers in other MV
lines, mainly due to generation feed-in and line induction
phenomena.

As previously stated, there are still some false positives in
the outputs of this function, mainly due to event terminology
type changes. A solution for future work is to consider
creating models per SS terminology, i.e., use the k-means
clustering method mentioned above.

2) DETECTION OF POTENTIAL MISSING PROTECTIVE RELAYS
TRIGGERS
Fig. 10 depicts a real example of this function input episode,
and Fig. 11 the respective output for a circuit-breaker alarm
event log during a phase-to-phase fault, with the expected
protection relay pickups.

An analysis of Fig. 11 shows that, for this specific circuit
breaker opening alarm (i.e., in SS MV line panel ‘3301’,
VERMOIL), most of the events have IDF value lower than
0.5, meaning that all refer to ‘common’ pickup events of
protection relays.

This example also shows this function’s behavior when
uncommon or rare events are detected in the alarm event

FIGURE 11. Alarm2Insights output for input episode illustrated in Fig. 10.

FIGURE 12. IDF-based profile of an output cluster, for type 2 blocks.
Events sorted by IDF values for reporting purposes.

log. A closer look shows that there is a level three
overcurrent relay pickup event, classified as uncommon,
which is expected since such high pickup currents are not
as frequent as the lower level pickup currents. Also, there is
a simultaneous level one overcurrent relay pickup event in
another MV line (i.e., in SS MV line panel ‘3311’, LEIRIA),
which is one of the main ‘rare’ events detected in phase-to-
phase faults.

The missing tags detection mechanism is straightforward
as it searches for events that i) have low IDF values
(i.e., lower than 0.5), and ii) do not appear in the cur-
rent alarm context. Therefore, any of the common relay
pickup events (see Fig. 11 events with ‘common’ rarity
classification) for this fault type, and that are missing in
the alarm context, will be clearly pinpointed to the human
operator.

B. EVENTPROFILER RESULTS
The first processing phase (see Section IV-A) led to
838 type 1 blocks and 420 type 2 blocks. In this analysis,
we have considered 75% of the blocks to train the clustering
methods and the remaining 25% to evaluate the classification
method.

For each cluster a summary report was issued, listing
the tags present in the blocks, their internal representation
and also their IDF, indicating how prevalent they are in
the blocks forming the cluster. An example can be seen in
Fig. 12, for a type 2 cluster. The cluster designation was
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FIGURE 13. Issue descriptions provided by human operators for type 1
clusters.

assigned manually, upon inspection of the contents of the
blocks by a domain expert. This particular cluster, manually
designated by the domain expert as protection trip with
failed auto-reclosing, includes outages events where a circuit
breaker opens due to a distance protection trip, followed by
an unsuccessful automatic reclosing cycle and a subsequent
action by the human operator. It is important to emphasize
that human domain knowledge remains fundamental to
extract interpretable information from the clustering results,
and it will not be fully replaced by autonomous AI functions
(see [37] for an interesting discussion about human-AI
interaction in power systems).

Fig. 13 shows the number of type 1 clusters per issue
description (i.e., defined by the domain expert). The sixteen
clusters were categorized according to four major categories,
with two (e.g., issue 1 and 2) representing actual outages’
events in HV lines. Besides separating real occurrences
from test (or maintenance) actions, minor variants were
also identified by different clusters within each issue (e.g.,
circuit breaker openings due to tripping of specific groups of
protection functions).

Fig. 14 provides a similar summary for type 2 clusters.
These were categorized into seven major issues and, similarly
to the previous scenario, some included multiple clusters
representing specific variants (e.g., different protection relay
trips and outages with or without auto-reclosing cycles)
while others were composed exclusively of one cluster.
Other issues were automatically detected and grouped into
specific clusters, such as SF6 low-pressure alarms and
blocks with abnormal profiles caused by event time-delay
problems (see Section II-B), which may help to discover such
anomalies.

The classification of the remaining 25% of blocks not used
in the clustering process supported the analysis of the types of
situations in each SS. The comparison is feasible since these

FIGURE 14. Issue descriptions provided by human operators for type 2
clusters.

FIGURE 15. Distribution of the four type 1 issues, considering blocks
created between January 2019 and June 2020.

blocks correspond to events that occurred in the same period
(January 2019 to June 2020).

Fig. 15 and Fig. 16 illustrate the distribution of each
issue description by SS and block type, respectively. It is
important to mention that the number of HV lines may differ
between SS, which would bias the results. Therefore, each
plot bar refers to the total number of occurrences in the SS,
divided by the respective number of HV lines connected to
that SS.

In the case of type 1 blocks (see Fig. 15), most correspond
to issue 1 (see Fig. 13), which is normal, as there are multiple
variants belonging to this type of issue, covering most of the
outages’ events. This summary also shows that S20 has a
large share of blocks corresponding to tests or maintenance
actions in the HV lines, in contrast to the remaining SS.
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TABLE 2. Designation assigned to each block that occurred at both ends of a line.

FIGURE 16. Distribution of the seven type 2 issues, considering blocks
created between January 2019 and June 2020.

S19 and S21 did not register any context block for the period
under analysis.

Regarding type 2 blocks (see Fig. 16), most are classified
into clusters representing less relevant situations for dispatch
center operators (issues 4 and 7). Interestingly, most of
the blocks corresponding to real outages events belong to
outages ‘with lockouts caused by protection trips’ (i.e.,
issues 1 and 5), apart from S18, in which a large share
of outage events also include auto-reclosing cycles prior
to the protection trip lockout event. Also, S18 and S20
have a minor share of occurrences where the circuit breaker
opened following an auto-reclosing failure event (different
from issue 2, where there was still a successful auto-reclosing
before the protection trip lockout). S3, S7, S14, S16 and
S19 did not register any context block during the evaluation
period.

In this work, we focused on providing insights for each
HV line panel. However, some of the outages might affect
both ends of HV lines (i.e., in different SS), even leading
to simultaneous circuit breaker openings. This classification
step is useful for dispatch center operators to quickly profile
the system response behavior, paving the way for more
complex analysis - combining, for instance, blocks created
in both extremes of one HV line. Table 2 lists some of said
combinations in the historical dataset. Each line represents an
occurrence affecting extremes of an HV line. For a particular
panel, if more than one block is included, the classification
results for each will appear separated by a slash. They
are an example of situations where the same classification

TABLE 3. Alarm2Insights computational processing times.

TABLE 4. EventProfiler computational processing times.

in one panel is associated with different classifications on
the opposite panel, showing a way to provide insights on
the history of occurrences for a line or combination of
panels, but also helping to reduce the cognitive load for an
operator, avoiding the need to inspect a sequence of event
logs and summarizing an occurrence through a set of cluster
descriptions.

C. COMPUTATIONAL TIMES
Tables 3 and 4 present the computational times of
Alarm2Insights and EventProfiler functions consider-
ing 8 and 22 SS. Alarm2Insights function tests were
performed in a Intel(R) Core(TM) i7-6700 CPU, with 12 GB
RAM. EventProfiler function tests were performed in a
Intel(R) Core(TM) i7-2600 CPU, with 16 GB RAM. Both
machines run on a 64-bit Windows 10 operating system.

In both functions there is an almost linear increase of
the computational times with episode creation, knowledge
discovery and clustering phases. Besides, in order to integrate
new historical data, these phases only need to be performed
on a monthly basis. For operational purposes, the most
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relevant phases are software execution and classification,
where the change in computational times was marginal.

VI. CONCLUSION
The results obtained in raw SCADA data from a DSO
highlight the potential of applying data-driven functions
(based on AI and machine learning methods), supporting the
operators’ decision-making process by categorizing the high
volume of event log data (EventProfiler function), while also
helping to uncover potential problems in SS protection relays
(Alarm2Insights function).

Information presented in a much clearer, insightful and
error-proof manner eventually leads to better informed deci-
sions that empower and enhance the role of dispatch center
operators. The detection of trends and anomalies in large
event log datasets, otherwise overlooked, already proved
beneficial to increase human operator situational awareness,
both close to real-time and post-mortem. The results in
section V-A show that the DSO could detect protection relays
malfunction earlier, and quickly take the necessary actions
to solve it, and the outputs from the EventProfiler function,
as showed in section V-B, can help dispatch center operators
to identify normal occurrences (e.g., fault with successful
auto-reclosing cycle) and anomalies on the SCADA alarm
data without having to manually analyze hundreds of
individual events. Despite the different operational challenges
identified and tackled by each function, the combination of
both approaches provides different and complementary layers
of information in both close to real-time and post-mortem
event analysis.

The integration of both functions with the Distribution
Management System requires further work (e.g., standard-
ization of event tags, minimizing the impact of time delays
between RTU and SCADA events, parallel processing),
in order to improve the real-time reliability and favor its
daily use by dispatch operators. Topics for future work
include: a) integrate network topology information; b) create
separate models according to the SS equipment generation
or vendors (departing from the PCA and clustering process
discussed in section V); c) generate synthetic data for SS or
specific lines with few historical events. This work represents
a first step towards AI-assisted operation of electrical
grids [37].
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