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Abstract: When compared with traditional local shops where the customer has a personalised service,
in large retail departments, the client has to make his purchase decisions independently, mostly
supported by the information available in the package. Additionally, people are becoming more
aware of the importance of the food ingredients and demanding about the type of products they buy
and the information provided in the package, despite it often being hard to interpret. Big shops such
as supermarkets have also introduced important challenges for the retailer due to the large number
of different products in the store, heterogeneous affluence and the daily needs of item repositioning.
In this scenario, the automatic detection and recognition of products on the shelves or off the shelves
has gained increased interest as the application of these technologies may improve the shopping
experience through self-assisted shopping apps and autonomous shopping, or even benefit stock
management with real-time inventory, automatic shelf monitoring and product tracking. These
solutions can also have an important impact on customers with visual impairments. Despite recent
developments in computer vision, automatic grocery product recognition is still very challenging,
with most works focusing on the detection or recognition of a small number of products, often under
controlled conditions. This paper discusses the challenges related to this problem and presents a
review of proposed methods for retail product label processing, with a special focus on assisted
analysis for customer support, including for the visually impaired. Moreover, it details the public
datasets used in this topic and identifies their limitations, and discusses future research directions of
related fields.

Keywords: retail; grocery products; computer vision; object detection; object recognition; text
detection; text recognition; product label analysis

1. Introduction

The retail industry has been integrating technological innovations throughout its
product chain in order to reduce costs and, cumulatively, improve customer experience,
since increasing profit margins and attracting customers are the primary goals of any
entrepreneur. In the retail context, the automatic detection and recognition of products has
allowed a more efficient use of resources and revolutionised the way customers buy. They
want the purchase process to be simple and fast; therefore, they value payout and tools
that allow them to find desired items, know the product’s availability and avoid payment
queues. Automatic self-checkout systems are the solution to fill the last need. Real-time
inventory management, in particular automatic shelf monitoring, is also possible with
computer vision tools, with out-of-stock shelves being detected in real-time by capturing
images of racks. By the same philosophy, there is an opportunity to verify if the product
displays and store layout follow the plan known as a planogram. Self-service technology is
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being applied to create autonomous stores and to permit a self-guided shopping experience,
and product recognition devices can add value to the customer experience by assisting
them in the correct purchase of the product.

In a grocery environment, food and nutrition labelling are extremely important, as the
information allows consumers to make more conscious food choices, appropriate to their
needs and preferences, contributing to the correct storage, preparation and consumption
of food. Although interpreting grocery labels may not be an easy task, either due to a
lack of food literacy of consumers to understand some of the available information or due
to other types of limitations, including visual clutter. This motivates the development of
auxiliary tools, democratizing access to information and developing inclusive strategies;
particularly, visually impaired people have strong limitations in carrying out daily activities,
which include grocery shopping independently. Several studies have addressed this issue,
focusing on the detection or recognition of specific products, often under unique conditions.
Automatic grocery product detection and recognition in a real environment raise many
challenges [1,2], which are even more relevant in the case of images captured by visually
impaired people as this disability prevents them from understanding if the image includes
the product or if it is legible and readable. As a result, the items can appear in arbitrary poses
and perspectives, cropped, with partial occlusions, with great differences of illumination,
with reflection due to glossy product packages, at various distances from the camera, in a
cluttered background, or in a blurred image due to camera shake, among others. This will
have an impact on the performance of the implemented solution as the quality of the image
is the basis for successful product recognition.

When taking photos or filming grocery items, some methods apply image- or frame-
processing strategies to select or improve image quality, such as multi-frame super-resolution
techniques. Others frameworks use a system beep to warn the user when a product or label
is detected. Beyond the problem of the quality of the image, recognition of similar logos
and different products with identical appearances is challenging. Identifying subtle details
is critical for a fine-grained product classification, since small variations in packaging are
very common among products of the same category. Classification between a product’s
subcategory can be a difficult task, even for humans, for example, when identifying several
flavours of cereals, differences in the quantity of shower gel, or the type of hair of the same
shampoo brand. Intraclass product recognition systems must differentiate such minor
variations in an uncontrolled environment. Furthermore, new products are launched fre-
quently and their appearance is likely to change over time to attract consumers’ attention;
also, due to marketing strategies, the same product may present slight variations in the
packaging (e.g., during a promotional campaign) or the items may be integrated to be sold
together. Figures 1 and 2 represent these common challenges for fine-grained classification.

Deep learning and Convolution Neural Networks (CNN) have been shown to be
successful in object recognition, much like in many other application scenarios. Different
levels of automatically learned features have proven to be more accurate and discriminatory
than manually extracted features. Although deep learning methods are extensively used,
there are two main drawbacks: (1) the performance is impaired by small training sets
and (2) when the model is trained to learn new classes/tasks the previously learned
classes/tasks are not preserved. In the grocery context, retraining the complete network
with all classes when a new product appears in the market may be unfeasible since even
the smallest supermarket has thousands of products available [3]. The wide variety of
articles is, on the other hand, a constraint in creating an adequate dataset. Deep neural
networks outperform traditional detection and recognition techniques, but they are often
bottlenecked by limited datasets. The amount of labelled data is as important as the quality.
Ideally, the images of each product should be taken in a real environment, from different
perspectives and lighting conditions, in multiple retail stores. Manually annotating the
object’s location and providing, in detail, the attributes of each product (e.g., brand, flavour,
type, size, etc.) are expensive tasks. It becomes even more cumbersome when all the
textual information on the package is to be provided. For all these reasons, databases are
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limited and under-represented. Some researchers try to propose adaptable frameworks, and
several systems introduce data augmentation during the training, e.g., models [4,5] generate
synthetic context with the generative adversarial network (GAN) [6], some resort to transfer
learning [7] and others [8,9] used a reference database with images of products taken under
a controlled environment from several points of view for the training phase to mitigate this
gap. The match classification approach is also convenient to handle new grocery products.
Even after the minimisation of this issue, there are still challenges with the object’s detection
and identification, given the domain shift, complex background, image quality, intra-class
similarity and limitations of computational resources. For recognizing grocery products,
visual features are no longer the only option. Today, textual information—or a combination
of the two—is already commonplace.

(a)

(b)

Figure 1. Illustration of differences introduced by marketing strategies, namely differences in flavours
between same parent brands (a), and small variations in the packaging of the same product (b).

Figure 2. Same brand with a different appearance and orientation. Logos extracted from LogoDet-3K
dataset [10].

Regardless of the techniques that each method chooses to overcome the different
challenges, the system should assist the buyer throughout the process of selecting and
taking the product. In other words, it should detect and recognise the products displayed
on the racks, based on images or videos captured by the user, and guide him to acquire the
correct product. After determining the product category, the client should be provided with
more information about subcategories, such as sub-brands, flavours, types and quantities.
All this relevant information is available on the label, although sometimes not in the best
way. Therefore, in the next stage, the system should detect the label and identify the regions
of interest (RoI), which could be logos, alphanumeric characters, words and symbols.
The extracted RoI is to be processed to translate useful information. Finally, the classifier
identifies the product based on text features or recognised texts. A conceptual pipeline
summarizing these steps is represented in Figure 3.



Appl. Sci. 2023, 13, 2871 4 of 38

Figure 3. Conceptual pipeline of assisted retail product label analysis.

In the literature, there are some reviews of product recognition approaches in retail
stores. The authors of [11], focused on stock tracking and planogram matching, and de-
scribed classification systems of products on shelves; however, only traditional methods
were covered. In [12], the authors conducted a comprehensive review of the detection meth-
ods of retail products. Despite including deep learning methods, the feature descriptors are
predominantly hand-crafted. A more recent paper [1] presented a review of publications
based on deep learning retail product recognition, without emphasizing the difficulties
and solutions raised in the detection of objects in the supermarket. This extensive sur-
vey includes several areas of retail recognition, such as self checkout, stock management,
planogram and products on shelves, but label information was not considered. The addi-
tion of text information has improved the ability to distinguish between visually identical
products, but the research based on this perspective of retail product recognition is just start-
ing. Therefore, reviewing grocery label analysis systems and complementary information
about scene text recognition can help advance this new field.

This paper provides a complete overview of suggested approaches for grocery product
label processing, with a particular emphasis placed on assisted analysis for customer
support, discussing the main problems and shortcomings and suggesting future research
directions. It also offers a general panorama of technological applications. The execution
of new applications requires adequate datasets; hence, we included an extensive list of
publicly available datasets that can be used by researchers. Unlike other previous reviews,
this paper addresses techniques for the full pipeline, from product detection on the shelf
to label processing, including individual object selection automatic image acquisition and
label detection.

The organization of the rest of the paper is as follows: Section 2 identifies some existing
applications of retail product recognition. Section 3 illustrates techniques of pre-processing
and image selection. Section 4 describes the available datasets, both those related to grocery
products and those related to text recognition. Section 5 reviews the works for grocery
product detection and recognition, while Section 6 introduces an overview of product label
analysis. Finally, Section 7 analyses the current challenges and offers some guidelines for
future research.

2. Technological Review

The use of technology has evolved and the use of smartphones in daily routine has
increased significantly. The extraordinary capabilities of these devices revolutionised,
among others, the applicability of computer vision systems. The broad use of smartphones
in our daily lives makes mobile applications accessible, easy to implement and portable,
and has boosted the emergence of an ever-increasing number of apps. Nevertheless,
the introduction of grocery product recognition systems is not limited to mobile phones.
In this section, we briefly described different kinds of applications that have incorporated a
grocery product recognition system. These are mainly divided into two methods: barcode-
based systems (Section 2.1); label-based systems (Section 2.2).

2.1. Barcode Based System

A barcode is a unique identifier for each product, which is currently easily readable and
with few probabilities of error. Hence, most grocery product recognition applications use
this technology to identify the product. Usually, the user points the reader (e.g., a camera)
at the barcode until the software detects it. The reader typically translates the information
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and searches for the item in a database. The database is not stored in the device, so these
apps require an internet connection to identify items. Another drawback is that the barcode
is placed in an arbitrary position which leads to the constant need to look up the location
of the barcode. Some barcode-based applications that use object detection/recognition
algorithms are listed below.

RoboCart [13]

A robotic shopping assistant for the visually impaired proposed in 2005 that guides
users through grocery aisles and identifies the products by a barcode reader. Among some
limitations, it is not an easily portable device.

Seeing AI [14]

An app launched by Microsoft, designed for blind and visually impaired users. Users
can use it to recognise documents, products, people, scenes and currency, among other
features. The identification of a product is possible through a barcode scanner. Since
locating the barcode is challenging for people with limited or no vision, the app provides
a location guide. The user should rotate the product, and the movement is guided by a
sequence of tones that grows more rapidly as he gets closer to the barcode. When the
product is identified, the system provides some available information, such as name, weight
and ingredients.

Yuka [15]

This app makes consumers aware of the product labels, and ultimately allows them to
make healthier choices, through the item’s barcode. For that purpose, it provides detailed
information about the product and a score out of 100 for food items, and classification
into four risk categories for cosmetics. There is a possibility to activate the offline mode,
with the constraint of downloading the product database to the mobile phone, reducing
the memory space and later becoming outdated.

Open Food Facts [16]

A collaborative project designed to help consumers decipher food labels and make
more conscious food choices regarding the impact on their health and the planet. Be-
yond the brands, ingredients and allergens, the consumer can also find the Nutri-score,
the NOVA rank, and the carbon footprint. The application uses a barcode scanner to
identify the product and provide some information.

2.2. Label-Based System

Previously described solutions rely on an internet connection, which may not be
possible. This problem can be overcome by using computer vision algorithms that recognise
the detected label based on visual features or textual information.

Lookout—Assisted Vision [17]

An application released by Google with the purpose of helping visually impaired
people explore their surroundings. The system enables six kinds of activities: image
description, text reading, food package identification, page capture, currency identification
and object information. The system has two ways to identify the food package: via a
barcode scanner, and the front of a food package recognition. The user should put the
product in front of the camera to use the food label reader; if the product is in the wrong
position, the system will warn the user to move the product until the front of the item is
clearly visible. By downloading the database, the recogniser can work offline, with the
inconvenience of reducing free memory space. The main limitation of this application is
that it only recognises the front side of the package.
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Alexa Accessibility—Show and Tell on the Echo Show [18]

Amazon Echo Show is a smart display, similar to a laptop, which is integrated with
the virtual assistant Alexa to help with daily tasks. Show and Tell is an accessible Alexa
feature designed to identify grocery items using the Echo Show’s camera. With the product
in front of the camera, the user only has to ask “What am I holding?” to activate the
functionality. When the product is not identified, Alexa tells the user to turn the item,
to find further rich information. Additionally, the beep sound system guides the user in the
correct placement of the product. It may also provide a brief description of the product,
stored in a database. Since the Show and Tell feature is only available on the Echo Show, its
usefulness is restricted to home usage.

OrCam MyEye [19]

In addition to identifying products from barcode recognition, it also identifies products
by reading the text label. The system applied in product recognition is the same as in reading
books and newspapers; it will not provide information beyond legible words. The user
must point to the product/text that he wants to be recognised. Without visual information
and guidance on product placement, the possibility of the system not recognizing the words
greatly increases.

Wine Searcher [20]

As the name suggests, it is an app for the wine and spirit industry. The aim is to inform
the user about the specifications of the wine (the grape variety, the regions it comes from
and the producers), the critics’ score and, especially, it offers a price comparison tool using
a search engine in online mode. The identification of the product is achieved by scanning
the label. The system functionality is limited to a category of products enabling a focused
recognition, but preventing applicability to other areas. On the other hand, the application
was designed for visual people, so there are no additional features to help users obtain a
good-quality image.

Amazon GO [21]

A chain of automatic stores that uses thousands of CCTV cameras, computer vision
and machine learning methods to analyse if the customer picks up or puts back an item
on the shelf and identifies what the item is. Even with a sophisticated system, its results
are not entirely reliable, requiring auxiliary systems such as Bluetooth and weight sensors
on shelves.

Technological advances have led to the appearance of products that try to respond
to the needs of consumers and retailers. Nevertheless, existing limitations highlight the
importance of additional research. Table 1 summarises the comparison of the aforemen-
tioned technologies.

Table 1. Comparison between existing technological applications.

Applications Barcode Detection Label Detection Guidance Mode Portable

RoboCart [13]
√

× × RFID ×
Seeing AI [14]

√
×

√
Both

√

OrCam MyEye [19]
√ √ √

Offline
√

Yuka [15]
√

× × Both
√

Open Food Facts [16]
√

× × Online
√

Lookout [17]
√ √ √

Both
√

Alexa Echo Show [18]
√ √ √

Online ×
Wine Searcher [20] ×

√ √
Online

√

Amazon GO [21] ×
√

× Online ×
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3. Image Pre-Processing and Selection

The input image data affect subsequent steps of an object detection and recognition
solution. In particular, when captured by non-experts or visually impaired people, the
pre-processing and selection of the images are important steps. Image pre-processing tech-
niques can be divided into two main groups: corrections, e.g., of lighting, noise or colour;
enhancements, e.g., illumination, blur or focus.

In [22], the authors analysed the calibration parameters (camera distortion correction
and gamma correction) of Micro Aerial Vehicles (MAVs) and Unmanned Aerial Vehicles
(UAVs) and image parameters (quantization, compression, resolution, colour model, addi-
tional channels). By analysing each parameter individually, they could demonstrate the
different impacts each one has on object detection. While some require more memory and
others do not perform noticeably differently, camera resolution was discovered to be crucial
to this task. Cropping, filtering, rotating and flipping images is frequently performed
during pre-processing. Typically, these tasks are completed manually, with a bulk of images
undergoing the same transformations. To automatise this process, the researchers of [23]
created a deep reinforcement learning framework with an agent in charge of deciding
which, and if, an image needs additional transformation, and created an environment
that performs these changes. They concluded that this method assisted in automating the
pre-processing of different data types, primarily images.

To process fast low-light images, Chen et al. [24] proposed an end-to-end learning
approach employing a fully convolutional network. The outcomes demonstrated effective
noise suppression and accurate colour transformation. Real-time processing was achieved
for low-resolution images but not for full high-resolution ones.

Ledgi et al. [25] proposed a Generative Adversarial Network for image super-resolution
(SR) called SRGAN. The authors achieved this by constructing a perceptual loss function
for photo-realistic single-image super-resolution using a ResNet architecture and GAN
concepts. Compared to other approaches, this solution produced good visual and objective
metrics results.

The burst image technique captures several frames that can be combined to pro-
duce a higher-resolution image when used with super-resolution algorithms. The BIP-
Net [26] framework aims to improve and restore burst images. In contrast to other ap-
proaches [27,28] that assume that the scene is static and create a solution to remove noise
and enhance low-resolution images, this algorithm focuses on motion. The previously
aligned burst image features are concatenated using pseudo-burst features fusion. In con-
trast to [29], which uses a registration-based super-resolution method on each frame to
fuse into a high-resolution image, it uses an edge-boosting burst alignment module to
prevent mismatching features. The BIPNet framework is effective for tasks requiring high
resolution, low-light enhancement, and denoising. This method has a low computational
complexity, which is advantageous when using a mobile device.

An approach to denoise burst images captured from a mobile phone was proposed by
Godard et al [30]. A fully convolutional deep neural network was used for each frame after
it had been stabilised. An improved image was then produced by combining the data from
each one using a parallel recurrent network. Despite their promising results, their deep
learning strategy was computationally expensive and required considerable memory and
processing power.

Lecouat et al. [31] conducted a fast and low-memory-requirement method. They
proposed a high dynamic range and image super-resolution reconstruction using raw
image bursts as input . This enhanced photos with low-light conditions, noise, camera
shake and moderate object motion. This approach improved low-light, noisy, camera-shake
and moderately moving object photos.

Another approach is a burst super-resolution transformer (BSRT) [32]. It receives a low-
resolution raw capture from a smartphone and tries to correct the noise and misalignment
issues with the raw data. To resolve this, the authors implemented a Pyramid Flow-Guided
Deformable Convolution Network to help with the performance of the alignment and to
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decrease the noise. To improve the algorithm’s efficiency even more, they added Swin
Transformer blocks and groups to enhance the performance of the burst super-resolution
task. Results of this algorithm demonstrated that they excelled over earlier approaches,
such as HighRes-net [33] and deep burst super-resolution [27].

An adaptive feature consolidation network (AFCNet) [34] for multi-frame super-
resolution serves as another illustration of the use of transformers in combination with
burst super-resolution. It extracted multi-scale local-global features using an encoder–
decoder transformer, which improved feature alignment. A multi-image super-resolution
(MISR) that also integrates transformers is TR-MISR [35]; it was applied to the fusion
of low-resolution image features. This solution lessened the limitations of multi-image
super-resolution transformers.

To maintain high-resolution representations with low-resolution inputs, Zamir et al. [36]
proposed a method for real image restoration and enhancement using multi-scale residual
blocks. Their approach entails extracting semantically richer and more spatially precise
features from three parallel fully convolutional streams, which will exchange and ag-
gregate information using an attention-based mechanism called selective kernel feature
fusion. The proposed method outperforms other image denoising, enhancement and super-
resolution algorithms, producing images with reduced noise, sharp edges, smooth homo-
geneous regions, improved colour reproduction and a natural and vivid appearance with
appropriate contrast.

Nguyen et al. [37] considered combining three algorithms: Radial Brightening ac-
cording to [38]; Contrast Limited Adaptive Histogram Equalization (CLAHE) [39]; and
Retinex [40] for multi and single-scale to find the best optimal image pre-processing tech-
niques for image enhancement. They ran 15 tests to see how each algorithm and the order
in which they were combined affected the enhancement task before applying them to
Canny Edge detection. According to reported results, CLAHE-based combinations per-
formed better because they improved detection efficiency, while Retinex reduced sharpness
and Brightening showed no discernible change.

EnlightenGAN [41] is a deep-learning-based technique that uses GANs to produce
enhanced images from low-light inputs. According to the research results, it performed
better than alternative approaches in subjective and objective metrics. Before running an
ImageNet-pretrained ResNet-50 classifier, the authors tested the model for the extremely
dark [42] dataset due to the increasing interest in image pre-processing for boosting object
classification. The findings indicate that the image enhancement task improved classifica-
tion by 22.02% to 40.92%.

Given that labels contain textual information that may have to be processed, it is also
important to know how to make the text on the captured image more readable. Fuelled
by the increased interest in safeguarding historical documents, Koshy et al. [43] tested
pre-processing methods on digitalised receipts. Their analysis included thresholding,
morphology, and blurring methods for pre-processing.

4. Related Datasets

The development and capability of an algorithm and the evaluation of its performance
are strongly dependent on the availability of data representative of the target scenario.
Datasets of the real-world domain are of greater interest because these data can increase a
model’s efficiency and robustness. For this paper’s target scenario, we considered two main
groups of datasets: those intended for the detection and recognition of grocery products
and the ones oriented to the detection and recognition of texts in the wild.

4.1. Datasets for Grocery Product Detection and Recognition

Several image datasets have been made available, targeting different aspects or scenar-
ios related to grocery product detection or recognition. Figure 4 presents some examples of
possible images. Next, these datasets are briefly described and a comparison is summarised
in Table 2.
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(a) (b) (c)

Figure 4. Image examples of a set of publicly available datasets: (a) CAPG dataset [44]; (b) GroZi
3.2k dataset [45]; (c) GroceryStore dataset [46].

Products-6K [8] provides images from Greek supermarkets. The dataset contains
12,917 studio-quality images associated with 6348 stock-keeping units (SKUs). The reference
images were captured in a clean environment with white background, while 373 query
images of 104 classes were captured under real supermarket conditions, taken by a mobile
phone camera. Products can be displayed on the shelf or in hand, with photos taken from
different sides of the product. A fine-grained description and some textual information are
provided, but texts were not labelled by human annotators and text location information is
missing. The annotations, whether class or textual, are in Greek as well as the description
found on the packages themselves.

GroZi-120 [47] consists of 120 Swiss market product categories that are very different
from each other. The training set includes 676 images selected from the web containing
products captured under ideal conditions. Training images contain just one single product
instance viewed from different front-side perspectives. The test set has 4973 frames of 29 real
videos from grocery racks to represent the challenging natural environment. The product
images that appeared in the frames were cropped to create a query image set. As these
images are of products on the shelf, only the front view was captured and the low resolution
of the images adds another degree of difficulty. Ground-truth includes the image class and
bounding box.

GroZi-3.2k [45] contains image of Swiss products on supermarket racks. Inside the
food category, there are 27 coarse classes and 3235 training images. Training images
collected from the web are taken in a controlled environment with a white background.
Query set images are composed of 680 high-quality images captured from 5 real-life retail
stores using a mobile phone. Ground-truth includes relative coordinates of the bounding
boxes and product labels, such as coffee, cereals and milk.

Grocery Store [46] includes images of fruits, vegetables and carton items captured
with a smartphone camera in different Swedish grocery stores. The dataset also includes a
studio-quality image per item. For food label reading purposes, 1745 images of carton items
(e.g. juice, milk, yoghurt) can be used. Most of the products are held by a hand and a few
of them are displayed on shelves. A total of 31 fine-grained classes are annotated, which
includes the super category and the brand with the flavour/type. Other files are accessible,
one with a brief description in English and the other with more detailed information in
Swedish, such as ingredients, nutrition values, manufacturer, volume and manufacturing
country. It should be noted that the dataset is designed for the classification and recognition
of objects and not for their detection.

Freiburg Groceries Dataset [48] consists of 4947 images of 25 coarse grocery classes.
The training images were taken predominantly in stores, but some in apartments and
offices in Germany, using four different camera phones. In addition to having photos from
several domains, the products are seen from various perspectives and light conditions.
To have a variable degree of clutter, images contain one or several instances of one of 25
classes. As annotated classes, we have cereal, pasta and cake, among others. Data are
labelled only at the image level.
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D2S dataset [49] is a dataset designed for automatic checkout machines or inven-
tory systems. It contains images of German products (such as fruits, vegetables, cereal
packets, pasta and bottles) from 60 categories placed on a table to simulate the real envi-
ronment. The training set includes 4380 images that involve one or more products of a
single class with a clean background. There are 16,620 test images with a more complex
background, showing single or multiple objects of different classes. The overlap of some
objects causes partial occlusion and each scene is acquired with three different lighting
conditions. The annotations include label pixels for semantic segmentation methods and
bounding box coordinates for bounding box detection. The supercategory and subcategory
are also annotated.

Unitail-Det [50] aims to support weel-aligned grocery product detection on shelves. A
total of 11,744 quality images of shelves in supermarkets were captured, achieving 1,740,037
quadrilateral annotations. Quadrilateral bounding boxes are more accurate in covering
objects. Additionally, another set of 500 images of 3024 × 4032 resolution is provided with
another domain. The number of quadrilateral instances annotated is 37,071. There is a large
diversity of products, including the most common grocery, delicatessen, textiles, electronics,
and household products and medicines, among others.

Unitail-OCR [50] was created to sustain retail product recognition through product
matching via robust reading. In the gallery of products to be recognised, there are 1454
fine-grained products with frontal photos. Among these products, there are 10,709 labelled
text regions located and 7565 legible word transcriptions. For testing purposes, 10k images
of products were cropped, as well as the text on the packaging. In total, 18,972 text regions
were detected, but only 13,416 are legible and have been transcribed for text recognition.
A vocabulary list is provided with all words presented. The characteristics of this dataset
meet the existing needs in terms of detection and text recognition of supermarket products.

RPC dataset [5] consists of 83,739 images of Chinese products; 53,739 single-product
exemplary images for training; 30,000 checkout images for validation and testing. Each
training image is captured in controlled conditions with four cameras from different views.
Designed for automatic checkout applications, the test images contain several products
placed on a table. The images are grouped into three degrees of clutter, according to the
number of items presented. A hierarchical structure annotation of 200 fine-grained product
categories can be coarsely categorised as 17 meta-classes. Essentially designed for the
automatic checkout scenario, the dataset can be used for detection and counting tasks.

CAPG Grocery Product Dataset [44] contains 102 grocery products of 3 types of
products belonging to 5 different brands: box-like packaged products (69 classes); bag-
packaged products (15 classes); tube-packaged products (18 classes). For each class, a photo
is taken under controlled conditions as the training set. Within each class, there can be
sub-classes representing different sizes or flavours of that product; therefore, the variance
of the visual features among sub-classes is small. The dataset is adequate for fine-grained
grocery product recognition, being present in 177 sub-classes. As the testing set, 234 images
of products on racks from 2 Chinese stores were collected.

RP2K [51] is a large dataset that contains 2395 unique SKUs of the Chinese market
that can be grouped into 7 coarse categories. In that sense, products of different sizes,
flavours/types are classified as another class. Like the previous dataset, it was created
for fine-grained image classification, but with substantial annotations that include class,
category, brand, flavour/type, size and shape. Since the real environment is also a con-
cern, 384,311 cropped images of retail products on the shelves were extracted in physical
supermarkets.

Store shelf images and product images for retail [52] is a public dataset available on
the Kaggle website. It represents 100 categories of retail products. For each one, 3 photos
with different perspectives were taken with a product placed on the supermarket floor,
which makes a total of 300 photos. Another 3153 images were captured from supermarket
shelves, taking into account the lighting conditions and visibility to provide legible photos.
No data annotations were made available.
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Open Food Facts dataset [16] is the base of the mobile application with the same
name. The users can add photos and information about food products. Therefore, it is a
dataset which is continually being updated. To date, there are approximately two and a
half million photos captured under real or ideal conditions. There are products from almost
every corner of the globe, but they are predominantly from France, the United States and
Spain. For each item, it tries to provide as much information as possible, which includes
brand, category, quantity, packaging, ingredients, origins of ingredients, allergens, traces,
additives, added vitamins, minerals, amino acids and others, as well as the Nutrition Score,
Nova classification that categorises the degree of processing of foods, and Eco Score.

SKU-110K [3] is a dataset designed to support product detection in a densely packed
setting. The images contain thick retail shelves with identical items. The location of items
is labelled by bounding boxes. Wanting to represent a variety of situations, the images
contain thousands of supermarkets, which are located in the United States, Europe and
East Asia. The dataset is divided into training, validation and test set, with 8232, 587 and
2940 images, respectively. As the photographers are not subject to any viewing settings,
the images present many scales, viewing angles, lighting conditions and noise levels.

WebMarket [53] dataset is available on Kaggle and contains 300 images of retail racks.
It was designed for object detection; therefore, only the products’ location is labelled.

Outside the supermarket context, there are also logo-oriented databases that can help
train the model to be more robust in the presence of small variations of those logos. Most
of these datasets are divided into categories, food brands being the obvious option. Some
that might be interesting are Logo-2K+ [54], LogoDet-3K [10], FoodLogoDet-1500 [55] and
WebLogo-2M dataset [56].

4.2. Scene Text Recognition Datasets

Less attention has been given to the processing of text in grocery or retail labels. Hence,
there is a lack of information and specific datasets about product labels, forcing the text
reader modules to be trained on scene text datasets, as shown in Figure 5. The benchmark
datasets to support scene text recognition (STR) can be divided into three groups: synthetics,
regular, and irregular datasets.

Synthetic datasets were created because labelling and its verification are very time-
consuming. Artificial distortions of the image are often applied to obtain a higher quantity
of realistic images and, automatically, the annotation of object localization follows the same
distortion. Next, the most relevant synthetic datasets are described.

MJsynth [57] is a large-scale dataset for horizontal text recognition that contains 8.9 M
English word box images. The process of generating synthetic data is the following: (1) font
rendering; (2) border and shadow rendering; (3) base colouring; (4) projective distortions;
(5) natural data blending; (6) noise. The generated word samples have a fixed height of
32 pixels and a variable width according to the length of the word.

SynthText [58] contains 800,000 generated scene images that contain several horizontal
text instances displayed on multi-perspectives. The text samples used to create these images
were extracted from an English text dataset that includes nouns, numbers, symbols and
punctuation marks. Initially, data were designed for scene text detection by labelled text
region location, but with labelled extracted text regions, SynthText has also been used for
scene text recognition. Label information is rich, annotated at the text-strings-, word- and
character-level bounding boxes. The data have more than 7 M cropped word boxes and
almost 30 M characters.
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Table 2. Comparison between grocery and logo datasets. The letter “R” means reference images, and “Q” queries images. The indicated resolution is estimated.

Datasets #Images #Classes Objective Labels Language Resolution

Products-6K [8] 12,917 R
373 Q

6348 R
104 Q

Classify products on the shelf or
in a hand by matching system.

SKU classes, image class
Textual information Greek 800 × 800 R

3024 × 4032 Q

GroZi-120 [47] 676 R
4973 Q 120 Detected and classify products on

the shelf by matching system.
Image class,
Bounding box Swiss 183 × 162

GroZi-3.2k [45] 3235 R
680 Q 27 Detected and classify products on

the shelf by matching system.
Object superclass,
Bounding box Swiss 421 × 500 R

3264 × 2448 Q

Grocery Store [46] 1745 31
Classify subcategory products
essentially in hand and get
detailed information of the product.

Image sub-class,
small description and
detailed information

Swedish 348 × 348

Freiburg [48] 4947 25
Classify super-category product
essentially on the shelf.
Photos contain one category.

Image class German 256 × 256

D2S-Densely Segmented [49] 4380 R
19,620 Q 60

Designed for automatic checkout
or inventory system. Detect and
classify products on a table.

Instance segmentation
Bounding box
Object super-class
Object subclass

German 1920 × 1440

Unitail-Det [50] 11,744
+ 500

1,740,037
+ 37,071

Detect all products displayed
in a supermarket. Quadrilateral bounding boxes English 1216 × 1600

3024 × 4032

Unitail-OCR [50] 1454 R
10,000 Q 1454

Classify cropped image products
by three steps: text detection, text
recognition and product matching.

Image class
Quadrilateral text loca-
tion. Text transcription

English 194 × 504

RPC [5] 53,739 R
30,000 Q 200

Designed for automatic checkout
or inventory system. Detect and
classify products on a table.

Bounding box
SKU class
Hierarquical classes

Chinese 1817 × 1817

CAPG Grocery [44] 18 R
236 Q 18 Detected and classify products on

the shelf by matching system.
Bounding box
SKU class Chinese 261 × 600 R

4032 × 3024 Q

RP2K [51] 384,311 2395 Classify cropped image products
capture on the shelf. SKU class Chinese 153 × 251

Store images for Retail [52] 300 R
3153 Q 100 Grocery product classification No labels English a 2272 × 1704 R

757 × 568 Q

Open Food Facts dataset [16] +2.5 M +2.5 M Image classification and
extensive product information

SKU class, Additional information
such as common name, allergens,
Nutri-score, Nova score

Multi-lingual width × 400

SKU-110K [3] 11,762 110,712 Detect all objects on shelves Bounding box Multi-lingual -

WebMarket [53] 300 - Detect all objects on shelves Bounding box English 2272 × 1704
a The language is not mentioned. The observed images contain English products/logos.
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(a) (b) (c) (d)

Figure 5. Image examples of publicly available datasets for scene text recognition. (a) ICDAR19-
LSVT [59]. (b) MSRA-TD500 [60]. (c) CUTE80 [61]. (d) SCUT-CTW1500 [62].

Regular STR datasets collect several text images of the real world that are relatively
easy to detect and recognise. Some images are noisy, with variations in illumination
and scale or low resolution, but all text instances have horizontal orientation and are
easily separated.

IIIT5K-Word [63] contains 5000 cropped words extracted from images crawled from
Google Image Search. Some examples of query words used in the search engine are
“billboards”, “signboard”, “house numbers”, “house name plates” and “movie posters”.
The images are split into 2000 words for training and 3000 for testing. For each photo,
two lexicon lists are provided: a 50-word lexicon and a 1000-word lexicon. IIIT5K-Word is
labelled at the word and character level.

Street View Text [64] is a dataset that contains 350 images downloaded from Google
Street View, searched by English business names. Hence, the most frequent words belong to
business signage. The dataset was designed for text detection and word recognition, but all
words in the photo are not referenced in the ground-truth label. A lexicon list is given for
each image and the aim is to find words entered in the lexicon, which may correspond
to the scenario where a blind person searches for supermarket products with a grocery
list which is the lexicon. In selecting images, the focus was on obtaining frontal texts by
minimizing the skew angles. Some of the images are noisy, blurry and of low-resolution.
The median height of the images is 55 pixels, but image quality varies greatly. From 350
images, 101 are for training and 249 for testing. There are 725 words labelled: 211 for the
training set and 514 for the test set.

ICDAR2003 [65] was created for the ICDAR 2003 Robust Reading competitions to
support the reading of texts of natural scenes. It contains 509 images, 258 for training and
251 for testing. Bounding boxes surround text instances, and ground-truth text location
is given. For the word recognition task, there are 1156 word images in the training set
and 1110 images for evaluation. Excluding words less than three characters and ones that
contain non-alphanumeric characters, the result is 867 text regions. Character recognition
is also possible by ground-truth character labels; there are 6185 characters for training and
5430 for testing.

ICDAR2013 [66] had three challenges. For reading text in Born-Digital Images (Web
and E-mail), 561 images were collected with a minimum size of 100 × 100 pixels, with 420
used for training and 141 for evaluation. The dataset is labelled for text location, text seg-
mentation and word recognition. For the last task, words with fewer than three characters
were excluded, resulting in 3564 cropped words in the training set and 1439 in the test set.

Char74k [67] collects 1922 images of sign boards, hoardings and advertisements taken
in the streets of India. Some photos were taken of products in supermarkets and shops,
with English and Kannada texts present in this dataset. Focusing on the English dataset,
12,503 characters were annotated and 4798 were labelled as bad images due to excessive
occlusion, low resolution or noise. In character classification, they distinguish upper and
lower cases, which makes a total of 62 classes with the inclusion of digits. They also
created a complementary English dataset with 3410 hand-printed characters generated by
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55 volunteers. A third English dataset was synthetically generated by 254 different fonts in
4 styles (normal, bold, italic and bold+italic), reaching 62,922 characters.

As labelled grocery products have texts of countless positions, shapes and densities,
the aforementioned datasets are unsuitable for the scope of this paper. On the other
hand, irregular datasets cover complicated text scenes, such as curved texts, with different
perspectives, orientations and positions.

ICDAR 2015 [68] is a dataset addressed to Challenge 4 of the ICDAR2015 Robust
Reading Competition. About 1500 images were acquired with Google Glasses without
paying attention to the position, perspective or quality. As a result, the dataset includes
blurry, noisy and low-quality images. As in real scenarios, texts may have different styles,
arbitrary shapes and orientations, and even be curved and illegible. The dataset was
designed for text localization and word recognition. A total of 4468 training instances were
labelled with a quadrilateral bounding box, and its transcription is provided when the
word is readable. Otherwise, the illegible word is annotated as “###”. For testing the model,
the dataset contains 2077 text images..

MSRA-TD500 [60] consists of 500 images captured by a pocket camera in indoor
and outdoor scenes. Each image contains Chinese, English or a combination of both
languages. Texts have different sizes, fonts, directions and colours. The primary application
of this dataset is multidirectional text detection, where text lines are confined by rotatable
rectangles.

SVT Perspective [69] is a dataset based on the StreetViewText dataset, which consists
of collecting photos from Google Street View, using English business names as a means of
searching. SVT Perspective contains images of the same addresses, but the selection focus
on non-frontal texts, choosing texts viewed from different perspectives and of arbitrary
orientations, summing to 238 images. They preserved the same lexicon of SVT and labelled
only words presented in the specific lexicon for that image. In total, 639 words were
annotated using quadrilaterals. The heights of cropped words vary from 9 to 330 pixels.

CUTE80 [61] consists of 80 curved text images for natural scene image recognition.
Therefore, images suffer complex backgrounds and variations in text scale, font, orientations
and perspective. A set of polygon points for each curved text line labels 288 word instances.

COCO-Text dataset [70] is based on the MS COCO dataset, which contains images of
complex everyday scenes. The COCO-Text dataset contains non-text images and legible
and illegible text images. It is the first large-scale dataset for text detection and recognition
in natural scenes, including 63,686 images with 239,506 labelled text regions in the new
version. For every word, the segmentation mask is annotated. Moreover, each word is
categorised into three attributes: machine-printed vs. handwritten, legible vs. illegible,
and English vs. non-English.

Total-Text [71] dataset was intended to make a more significant contribution to the
availability of curve-orientated texts, providing 1555 images that include horizontal, multi-
oriented and curved texts. The dataset provides labels at word level by polygon bounding
box. Ful annotations are provided for text detection, recognition and segmentation of
11,459 English text instances.

SCUT-CTW1500 [62] is a multi-lingual dataset that contains English and Chinese
texts. At least one curved text appears in 1500 images from different web sources and
texts have arbitrary shapes and orientations. In the last version of annotations, Chinese
texts are labelled with “###” because their weight is not significant. Polygon bounding box
coordinates are provided at the setence level.

VinText [72] is a dataset of Vietnamese scene images. The 2000 images contain text
instances from several perspectives, sizes, orientations and shapes, providing about 56 k
quadrilateral bounding boxes and word-level transcriptions. According to the authors,
Vietnamese script is similar to Portuguese script, and the transfer learning technique might
be interesting to Portuguese scenarios.

ICDAR 2017-MLT [73] is a multi-lingual text dataset with 7200 training images, 1800
validation images and 9000 test images. The photos were extracted from various sources
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and represent a high diversity of domains, such as street views and pictures in microblogs.
Variety is also presented in text format, including horizontal, multi-perspective and vertical
texts. Chinese, Japanese, Korean, English, French, Arabic, Italian, German and Indian
languages are equally represented in this dataset. For each language, there are at least
2000 images; however, each image may contain more than one language. Ground-truth
quadrilateral bounding box is provided at the word level. Text recognition and script
identification are possible because each recognizable word is associated with a script class
and the transcription. There are 84,868 training word images and 97,619 test instances for
these tasks.

ICDAR 2019—RRC-MLT [73] is also a multi-lingual dataset that consists of 20,000
images of 10 different languages, where for each language 2000 photos were selected.
In addition to the nine languages mentioned, Bengali is now presented. The training set
contains 10,000 images with bounding box coordinates and another 10,000 images compose
the test set. For the text recognition task, 89,177 cropped text instances are provided
as training images and 102,462 as test images. ICDAR 2019 is not only distinguished
from ICDAR 2017 by having added another language to the list but also by being more
challenging. The weight of curved and vertical images is higher than in ICDAR 2019. They
continue to have texts of different sizes, aspect ratios and directions.

ICDAR 2019—Art [74] joins images of Total-Text, SCUT-CTW1500, curved texts of
LSVT and 7111 newly collected images with high arbitrary shape, multi-oriented and
curved text instances. The aim is to support models to be robust against diverse text formats
and language variants, since there are Chinese and Latin texts. There are 10,166 images
divided into 5603 training images and 4563 for evaluation. Text instances are annotated
at the word level, enclosed by quadrilateral or polygon bounding boxes. The dataset is
labelled for text detection, recognition and spotting tasks.

ICDAR2019—LSVT [59] is a large dataset containing photos captured from different
mobile phones in the streets of China. There are 50,000 fully annotated images and 400,000
training images with weak annotations. Photos are considered fully annotated when text
instances are transcribed and the corresponding ground-truth location is also provided.
On the other hand, they are weakly annotated when they only have the transcription of the
text of interest in these images.

The properties of the aforementioned scene text datasets are summarised in Table 3.
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Table 3. Comparison between Scene Text Datasets.

Datasets #Training /
Test Images #Text Instances Annotation Orientation Curved Language

MJSynth [57] ∼8.9 M ∼8.9 M Word Multi-oriented Not curved English

SynthText [58] ∼800 k ∼8 M Text-string/ Word/ Character Multi-oriented Not curved English

III5K-Words [63] 380/740 2000/3000 Word/ Character Horizontal Not curved English

Street View Text [64] 101/249 211/514 Word Horizontal Not curved English

ICDAR2003 [65] 258/251 1156/1110 Word/ Character Horizontal Not curved English

ICDAR2013 [66] 420/141 3564/1439 Word/ Character Horizontal Not curved English

Char74k [67] - ∼78,000 Character Horizontal Few curved Latin

ICDAR2015 [68] 1000/500 4468/2077 Word Multi-oriented Few curved English

MSRA-TD500 [60] 300/200 - Word Multi-oriented Few curved Chinese and English

SVT Perspective [69] 238 639 Word Multi-oriented Few curved English

VinText [72] 2000 ∼56,000 Word Multi-oriented Few curved Vietnamese

CUTE80 [61] 80 288 Word Multi-oriented Curved English

COCO-Text [70] 43,686/20,000 118,309/27,550 Word Multi-oriented Curved English

Total-Text [71] 1555/300 111,666/293 Word Multi-oriented Curved English

SCUT-CTW1500 [62] 1000/500 7683/3068 Word Multi-oriented Curved Chinese and English

ICDAR2017—MLT [73] 9000/9000 84,868/97,619 Word Multi-oriented Curved 9 Languages

ICDAR2019—MLT [73] 10,000/10,000 89,177/102,462 Word Multi-oriented Curved 10 Languages

ICDAR2019—Art [74] 6603/4563 50,029/48,426 Word Multi-oriented Curved Chinese and English

ICDAR2019—LSVT [59] 430,000/20,000 - Word Multi-oriented Curved Chinese and English
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5. Product Detection and Recognition

Humans can easily locate and identify objects of interest (such as people, animals,
buildings or cars) in an image or video. Object detection and recognition are computer
vision tasks that intend to reproduce this ability. The interest in this area dates back
more than three decades and the progress of objection detection and recognition can be
divided into two periods based on the main strategies: traditional handcrafted-feature-
based methods and deep-learning-based methods. Manual feature extraction suffers from
a lack of robustness due to the diversity of aspects of the class and strongly depends on the
experience of the researcher. The problem becomes more challenging when dealing with a
large number of different classes. Convolutional Neural Networks (CNN), a type of deep
learning algorithm, outperformed traditional techniques by learning robust and high-level
feature representations of an image.

Object classification, particularly in the paper’s target scenario, can be integrated into
a hierarchical system. Coarse classes include objects of macro-categories; on the other hand,
fine-grained classes refer to objects of sub-categories. In the retail context, Coca-Cola can be
classified as a drink, as a soft drink, as its brand (Coca-Cola) or with more details, e.g., as
Coca-Cola Zero and Coca-Cola Zero 330 mL. The class level provided by a model is imposed
by the annotation levels of the dataset. Moreover, the model’s architecture is not always
able to correctly identify products with great detail. The first studies were mostly designed
to predict coarse classes, while more recent papers were focused on identifying products
according to a fine-grained classification. This section reviews relevant retail/grocery
product-recognition proposals.

Michele Merler et al. [47] tested three traditional feature extraction methods (histogram
of colour, SIFT [75] and Haar-like features) for product detection and recognition, and cre-
ated the GroZi-120 dataset for training and test purposes. The small number of classes and
great shape variability among classes can help the model performance. A more extensive
dataset, the GroZi-3.2k, was designed in [45]. The same authors proposed and evaluated
a model that extracts SIFT feature descriptors for each grid of the image and compared
them with reference images. A voting algorithm provides a ranking classification based
on votes over grid patches of several sizes. This approach reduced the noise of compared
cross-domain images. The localization of products in shelves is performed with deformable
dense pixel matching, and the final classification is through a genetic algorithm optimiza-
tion that uses the top N ranking. In [76], SIFT features were incorporated in a hybrid
context-aware model to detect and classify fine-grained products displayed on the shelves.
The approach combined a context-free visual classifier with a graphical model. An SVM
was used as a classifier and Hidden Markov Model and Conditional Random Fields as
a graphical model. The underlying idea is that the arrangement of products follows a
plan, i.e., similar products are usually together. A different approach was proposed by
Yörük et al. [77] that intended to identify the product and estimate the pose. The method
compares SURF features from a query to a database of model features. Then, with fewer
computational steps, a refined Hough transform simultaneously detects, recognises and
estimates the pose of grocery products.

Santra et al. [78] proposed an annotation-free machine vision system that locates
products on the shelves. Based on features extracted by the BRISK descriptor, their proposal
generated region proposals with a two-stage exemplar-driven region proposal algorithm,
relying on a single example or image templates. Subsequently, a CNN classified each region
proposal. Finally, the overlapping and ambiguous region proposals were removed by a
greedy non-maximal suppression strategy. The context information of retail stores used to
estimate the scales sometimes produced inferior results than the physical dimension of the
product template. This proposal had a high computational weight and the authors assumed
that the images were taken with the camera almost parallel to the rack’s face. Franco et al. [2]
compared the bag of visual words [79] representation with Convolution Neural Network
features (in particular AlexNet [80]) using the GroZi-120 dataset. The results showed that
deep-neural-network-based features are usually more effective in more complex scenarios.
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The results, through the application of deep learning techniques in several areas, along
with the increasing accessibility of large datasets and efficient computational resources,
are leading to greater research based on these methods. Some researchers contributed to
detecting products on shelves, others tried to improve the recognition results of grocery
images, but end-to-end pipelines have also been studied. Given the state-of-the-art results
obtained through the use of deep learning techniques, the following sub-section focuses on
an overview of deep-learning-based product detection and recognition methods.

5.1. Product Detection Based on Deep Learning

Grocery product detection is intended to locate items in a grocery store without
categorisation. Detecting a few large objects in an image is easier than detecting grocery
products in dense racks since there are many small objects. ScaleNet [81] used the ResNet
feature extractor and reduced the searching space of scales by estimating the object scale
and using it to guide object proposal generation in supermarket images. The object proposal
detection is based on the SharpMask method, which requires annotation at pixel level.
Goldman et al. [3] presented an alternative strategy aiming to overcome the challenge posed
by common multiple overlapping bounding boxes in densely packed scenes. The CNN
detector estimates the bounding box, the objectness and the Soft-IoU score as a measure of
detection quality. The Expectation-Maximization (EM) unit uses the previous score and
detections to select the correct location. The model was evaluated in the SKU-110K dataset
and showed that even the best results were still significantly saturated. Santra et al. [82]
introduced an R-CNN detector, replacing the greedy non-maximal suppression with a
novel graph-based non-maximal suppression that obtained the best proposal region by
combining classification scores and the product classes of the overlapping region proposals.
In [50], the authors proposed a retail product detection based on DenseBox-style [83] with
a Feature Pyramid Network (FPN). The authors re-defined the centre of quadrilateral
bounding boxes computing Quad-Centerness (QC) and introduced the Soft-Scale (SS)
algorithm to detect objects of arbitrary shape. The corner refinement module was added
to improve heatmap prediction and the location coordinates. The Quad-Centerness (QC),
Soft-Scale (SS) and corner refinement module (CRM) gradually improved the mean average
precision (mAP). To reduce the need to collect a large amount of data, a one-stage one-shot
detector—OS2D—was proposed in [84]. It joined the localization and recognition phases,
applying a fully convolutional TransformNet to extract an image’s features. A dense
correlation and a feed-forward geometric transformation model were used to match and
align features. The bilinear resample served to finalise the training. The assessment was
performed using the GroZi-3.2k dataset [45] and the authors concluded that the OS2D
model outperformed some reliable baselines.

A fair comparison between these detection models is hard, since the methods were
assessed using different test datasets and distinct metrics. Table 4 demonstrates the specific
approach implemented in each method.

Table 4. Comparison of grocery product detection methods. In the RetailDet, the evaluation was
made in two test sets, the origin-domain, which is represented as OD, and cross-domain as CD.

Methods Annotations Dataset Scores Metrics

ScaleNet [81] Mask based/segmentation MS COCO 0.578 AR@1k

Goldman et al. [3] Bounding box SKU-110K 0.492 AP

Santra et al. [82] Bounding box
GroZi-3.2 0.802

F1WebMarket 0.755
GroZi-120 0.448

RetailDet [50] Bounding box SKU110k 0.590 mAPUnitailDet OD:0.587, CD:0.509

OS2D [84] Bounding box GroZi-3.2k 0.850 mAP
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5.2. Product Recognition Based on Deep Learning

Object recognition enables classifying products already detected or images with a
single product. In [85], an updated version of [86] was presented with the contextual and
visual features computed by CNN models, such as ResNet50, Alexnet or VGG. The deep
class embedding, strengthened by the product’s visual appearance and its relative position
on the shelf, is reparametrised by a CRF-based method. The proposed model was designed
for the fine-grained classification of numerous classes. A framework to recognise fine-
grained product images of different source and target domains was proposed by [87]
with the CNN model containing two modules: an adversarial module to handle the cross-
domain scenario and a self-attention module that captures the most discriminative image
regions to increase accuracy. The results were compared with domain adaption methods,
excluding known grocery recognition models. Santra et al. [88] suggested a fine-grained
classifier that combined object-level and part-level information of the product images.
The novel reconstruction-classification network (RC-Net) extracted a more general product
feature, being robust to a range of store lighting levels. The discriminative features were
searched in an unsupervised manner and encoded using convolutional Long Short-Term
Memory (LSTM). The R-CNN classified the object based on both feature-level.

In [46], the authors presented preliminary benchmark results for the Grocery Store
dataset (GSD). The experiments showed that using the joint DenseNet-169 features of both
iconic and natural images as inputs to the variational autoencoder canonical correlation
analysis (VAE-CCA) [89] was better than only using the extracted features of natural images.
For the classification, the SVM was trained on the latent representations. Ciocca et al. [90]
used the previous model as the baseline method. They suggest supervised and unsuper-
vised frameworks based on the three hierarchy class labels of GSD. In both, a multi-task
learning DenseNet-169 network was used to extract features for the corresponding class
level. The supervised model was trained over ImageNet and fine-tuned on the GSD dataset
with data augmentation. The best result (83%) was obtained using a cubic SVM on the
features extracted from the last average pooling layer before the network split. For the
unsupervised method, they linked the same features of the supervised model to the Affinity
Propagation algorithm [91]. Both frameworks have difficulty adapting to other datasets.
To overcome the scarcity of image data, Domingo et al. [92] studied the implementation of
Siamese neural networks in grocery classification, assessing four one-shot learning archi-
tectures. The datasets contain few images per category or even one iconic image per class.
The integration of ResNeXt-101 with LOMO descriptor into the Siamese network achieved
good results, obtaining an F1-score of 89.1%. Low computational cost can be achieved with
lightweight descriptors.

In [93], Wang et al. proposed a self-attention mechanism to eliminate the noise when
performing the destruction and construction of image knowledge to grocery classification
in the Retail Product Checkout dataset [5]. Other fine-grained classification methods fall
short compared to self-attention-based destruction and construction learning (SADCL).
This application achieved an accuracy above 80% with low computational costs. As shown
in Table 5, each approach uses a different dataset and metric to analyse the results, thus
making a proper comparison difficult.

5.3. End-to-End Product Classification Based on Deep Learning

Object detection and object recognition can be combined to create effective end-to-
end product identification. To overcome the obstacles placed by the scarcity of relevant
data, Leonid et al. [94] proposed a classification model with just one training example per
class. The initial detection and classification were performed based on a non-parametric
probabilistic model trained on the limited data. In the second phase, a CNN-based model
used the previous information to produce fine-grained classification refinements. Synthetic
data were created from a few training examples to train the CNN model and the final
output combines the scores of the first model with the corresponding CNN confidences.
A coarse-to-fine approach was proposed in [44] with product regions detected by recurring
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features and classified into coarse classes. For a fine-grained classification, they employed
attention maps built by SIFT features to guide the CNN classifier to focus on fine discrimi-
native details. By using one-shot learning, the identification is based on feature matching.
The system could adjust to new product classes without having to retrain the classifier.

Table 5. Comparison of grocery product recognition methods

Methods System Classification Dataset Scores Metrics

Goldman and
Goldberger [85]

Sequence of products
on the rack

Fine-grained/
ultrafine-grained Private dataset 0.129 Mean Error

Wang, Y. et al. [87] Matching Fine-grained Private dataset 0.422 Avg Accuracy

Santra et al. [88] Matching Fine-grained

Grocery
Products 0.797

F1WebMarket 0.740
GroZi-120 0.440

Klasson et al. [46] Matching Hierarchical Grocery Store 0.804 Accuracy

Ciocca et al. [90] Supervised Matching Hierarchical Grocery
Products 0.904 Accuracy

Ciocca et al. [90] Unsupervised Matching Hierarchical Grocery
Products 0.929 Accuracy

Wang, W et al. [93]—VGG-16 Matching Fine-grained RPC 0.787 Accuracy

Wang, W et al. [93]—ResNet-50 Matching Fine-grained RPC 0.814 Accuracy

Domingo et al. [92] Matching (Siamese) Fine-grained Grocery Store 0.891 F1

In [95], the global feature description of the detected region was compared to a
database of descriptions of iconic product images. YOLOv5 was used to extract the pro-
posal regions and naive Bayes (NB) similarity search provided the product classification.
The recognition results were improved with a combination of shape, size and colour fea-
tures encoded by Fisher vectors and the Dirichlet function. The mAP of the proposed
model achieved 58% on GroZi-120 dataset. Using a one-shot learning approach, [4] located
objects on the shelves with a CNN-based detector, such as YOLOv2 [96]. The global product
descriptors of reference and query images are obtained by computing MAC (maximum
activations of convolutions) features from the CNN embedder pre-trained on ImageNet to
produce embedding vectors. The recognition was obtained by pairwise means K-NN simi-
larity search. As the training and query image domain are different, later in [97], the same
authors incorporated GAN with adversarial behaviour in the embedder to deal with domain
shift, to augment the training set size and for the CNN to learn a stronger embedding
function. Ankit Sinha et al. [98] refined the framework suggested in [4]. The YOLO-based
detector was replaced by a Faster RCNN integrated with a Feature Pyramid Network (FPN)
to enhance multi-scale object detection. Intending to deploy the model on an edge device
with little memory space, they used a lightweight ResNet-18-based product recognition
model instead of the more complex VGG-16 model. This framework was trained over a
large set of images created by augmentation techniques. They were able to introduce a
time-efficient framework. Table 6 summarizes the quantitative performance of grocery
detection and recognition methods on the GroZi-3.2K dataset. Since the model proposed
in [95] was just evaluated on the SKU-110K dataset, their results are shown to provide
a guideline.
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Table 6. Evaluation and comparison of grocery detection and recognition methods on GroZi-
3.2K.mAP.

Methods System GroZi-3.2K SKU-110K
AP AR AP AR

Leonid et al. [94] Region matching 0.447 - - -
Geng et al. [44] Matching 0.739 - - -
Tonioni et al. [4] Matching 0.735 0.827 - -
Tonioni et al. [97] Matching 0.842 - -
Sinha et al. [98] Multi-scale CNN-based 0.478 0.581 - -
Gothai et al. [95] Matching - - 0.580 0.710

6. Product Label Analysis

Various techniques can be used to identify grocery products. There are systems based
on barcode readers, visual appearance and/or text labels. The label provides information
that can be paramount to classify the product or to afford detailed product characteristics.
Consequently, some researchers have already started to use textual information in their
product classification models. In [99], employing optical character recognition (OCR)
techniques, a histogram of words for each class is built from training images, which
provides the frequency of words in a given class. This word histogram measures the
confidence of the product’s name introduced by the user in a corresponding class and is
used to rank the possible classes. However, the extracted text information is only used
to identify the coarse class of each product of a shopping list. The fine-grained product
classification is based on clusters of mid-level discriminative patches. Different model
versions were tested in edge devices, although the accuracy was always less than 62%.

Previous methods applied visual and text features independently. Nevertheless,
product identification, especially those with similar appearance, can benefit from textual
information. The experiments conducted by Marcus Klasson et al. [9] support the idea that
combining visual features and text descriptions improves the classification model’s perfor-
mance, especially in distinguishing between visually similar items. If for any constraint
only one type of feature can be employed, models using visual features achieved better
results. They also concluded that introducing features of the referenced images is essential
to achieve higher classification performance since visual information is clearer. For image
grocery product classification, they used a multi-view generative model, Variational Canon-
ical Correlation Analysis (VCCA) learns a shared latent space for four views of natural and
referenced images and product descriptions. Referenced images help to separate the items
based on their colour and shape, whereas text information joins the groceries based on their
ingredients and flavour. Despite the good results achieved, its implementation on a mobile
device has not been tested. A different approach was presented in [8], proposing the fusion
of visual and textual descriptors. Google Cloud Vision’s OCR mechanism extracted textual
information of reference and query images. The former information was concatenated with
the product description provided in the dataset. According to a distance metric between
the two sets of words, all index images are ranked in descending order, and then the list
is re-ranking by the similarity between visual information. The use of inverse order of
descriptors is also suggested. The limitations of the model were related to the differences
between referenced and query images. Usually, the referenced images only contain the
front of the package. If the shopper takes a photo of another side, the system has difficulty
identifying the item correctly. There is also the possibility of having a database of side views
of the product and the system assigns a class that belongs to the same brand or category,
but not the correct SKU because the minor details are frequently on the frontal view. Even
when the natural photo captures the frontal view, the layout may differ from the referenced
image because of marketing strategies. The system proposed in [9] can handle these ob-
stacles better because the latent representations are extracted from multi-view encoders.
Nevertheless, when the model is implemented with only frontal view packages, the model
presented by Georgiadis et al. [8] has better performance. In [50], the authors resort to a
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similar strategy. The Unitail framework was initially used to calculate the cosine similarity
between the query and gallery images based on visual features. Then, text similarity scores
were computed to determine the best class between the highest and second-highest rank
list. Consequently, the model compared the encoded features of both images and used
the Hungarian algorithm [100] to compute the similarity between variable text sequences.
The product matching system was not trained end-to-end, so errors were accumulated and
propagated by the text detector and recogniser. To mitigate propagated errors, the model
exploits intermediate feature vectors from the text recogniser.

The following frameworks only use text information to identify grocery products.
The system becomes very independent of the text that is provided, how visible it is in the
frame and how it is formatted when only text information is employed for grocery classifi-
cation. Rachid et al. [7] suggest the use of label texts to avoid training models on a large
amount of image data. The proposed system verifies the information of the barcode reader
with the product classifier in a self-checkout system through natural language processing
(NLP) techniques. Textual information is extracted by the pre-trained Google Vision API.
After several experiments, they concluded that combining word and character embeddings
improves the model’s accuracy. The classification based on these text embeddings was
higher using a CNN-based model instead of LSTM or random multimodel deep learning
(RMDL). The images in the source domain were in RGB format while in the target domain
they are monochromatic. Given the domain shift, the authors evaluated transfer learning
in NLP [101]. Comparing the performance of the CNN with Global Vectors (GloVe) em-
beddings trained on a large corpus with a pre-trained BERT [102] model available on [103],
the results showed that the BERT was more robust for the domain change. The quality
of the image and text description will determine how well the model performs. Products
without text information or scarce information are frequently misclassified. The algo-
rithm also performs poorly when there is partial or total text occlusion. Specifically for
package label detection and transcription, the authors of [104] proposed the pre-trained
SegLink [105] to detect text instances. Assuming that the texts are regular and horizontal,
read from left to right, its transcription results from the combination of CNN and RNN
networks, trained with Connectionist Temporal Classification (CTC) loss function. They
compared two versions, the Bidirectional LSTM and the Bidirectional Gated Recurrent Unit
(GRU). The models achieved similar recognition rates, although BGRU has the advantage
of being a lightweight method. In addition to the limitation of recognising regular texts,
dense background environments also pose challenges with the main difficulties for text
transcription identified as the character size and the font. The results could be influenced
by the CTC-based approach, since they are not as effective as attention-based methods. The
model of Prabu et al. [106] applied the YOLOv5 [107] to detect a grocery product and the
detected item passes through the text detector to obtain product information. The method
could detect regular and irregular texts with a complex background, non-uniform spacing
and different texts in a single image. The more important contributions to the robustness
of the model are the use of ResNet50 + FPN, the use of an algorithm to select the centring
point in the text centre line instead of picking a random point, and finally, the introduction
of a post-processing technique named Width-Height-based Bounding Box Reconstruction
(WHBBR) to enclose the starting and the ending characters. The detected text is cropped
and then sent to Selective Context Attentional Text Recognizer (SCATTER) [108], a text
recognition model. The framework is computationally expensive during training, but can
detect and recognise objects in real-time and efficiently during testing. Given the lack of
adequate databases for this problem, the performance of each module was tested separately
in different benchmark datasets for each task. Text detection and recognition tasks were
evaluated in scene text datasets.

The application of label detection and recognition techniques in the grocery context is
relatively recent. In this sense, the evaluated methods are often based on approaches used
in the detection and recognition of text in natural images. Therefore, with the intention
of contributing to the development of package label analysis, we briefly review deep
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learning methods applied to scene text images. Traditional methods are excluded from this
survey due to their limitations in more complex scenes and low-quality images. Similar to
the previous section, the methods are organised into text detection, text recognition and
end-to-end STR.

6.1. Text Detection

Following common taxonomies, text detection algorithms were divided into regression-
based and segmentation-based methods. Table 7 summarises the comparisons of the text
detection methods.

6.1.1. Regression-Based Methods

Considering text instances as objects, regression-based methods predict candidate
coordinates to define the text regions. Given the physical limitations of bounding boxes,
the frameworks introduce post-processing steps to handle multi-oriented or arbitrary-shape
text. The papers [109,110] suggested the rotation of Region Proposal Network (RRPN),
predicting the angle of inclination. Rotational anchor improves the performance of the
model when compared with horizontal box prediction. Naturally, the additional boxes gen-
erate greater computing costs, but they remain near to the Faster R-CNN. RRD [111] learns
the rotation-sensitive features to improve the results, while TextBoxes++ [112] combined
with CRNN boosts the accuracy of arbitrary-oriented text detection. EAST [113] is a fast
and accurate detector which predicts multi-oriented words or lines, without intermediate
steps. Vertical and curved text are not detected by this method. SegLink [105] detects
text segments and then links these segments to obtain the final text region. The method
proposed in [114], SegLink++, was adjusted to detect dense and arbitrary-shaped scene
texts with an attractive and repulsive link system. CounterNet [115] incorporated further
steps to improve the arbitrary-shape text detection, emphasizing the adaptive-RPN and
local orthogonal texture-aware module. Zhang et al. [116] joined the CNN with Graph
Convolution Network (GCN) to predict small rectangular components and link to their
neighbours to also handle arbitrary-shape text. A different approach was proposed in [117],
where the text instances are established in the Fourier domain. MOST [118] uses a module
to adjust the receptive field and the instance-wise IoU loss to deal with texts of different
scales and aspect ratios.

6.1.2. Segmentation-Based Methods

Even with post-processing techniques, regression-based methods have important
difficulties in dealing with arbitrary shape text. For this reason, arbitrary shape text
detectors have adopted segmentation-based methods to represent text regions that rely
on instance-level and pixel-level features. For more complex text scenes, these methods
usually outperform regression-based methods. Nevertheless, they require complex and
time-consuming post-processing steps to produce the final detection result, especially to
separate adjacent text instances very close to each other.
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Table 7. Quantitive results of text detection methods on ICDAR15 and SCUT-CTW1500 datasets. “MS” is the abbreviation of multi-scale inputs. FPS are indicative
values since the methods run in different environments. Bold numbers represent the best results.

ICDAR2015 SCUT-CTW1500 Text Style

Methods Recall Precision F-Measure FPS Recall Precision F-measure FPS Multi
Orientation Curved

R
eg

re
ss

io
n-

ba
se

d

R2CNN [109] 79.68% 85.62% 82.54% 0.44 - - - -
√

×
RRPN [110] 73.23% 82.17% 77.44% - - - - -

√
×

RRD [111] 79.00% 85.60% 82.20% 6.5 - - - -
√

×
RRD+MS [111] 80.00% 88.00% 83.80% - - - - -

√
×

EAST+PVANET2x [113] 73.47% 83.57% 78.20% 13.2 - - - -
√

×
TextBoxes++ [112] 76.70% 87.20% 82.90% 11.6 - - - -

√
×

TextBoxes++_MS [112] 78.50% 87.80% 82.90% 2.3 - - - -
√

×
MOST [118] 87.30% 89.1% 88.2% 10 - - - -

√
×

SegLink [105] 76.80% 73.10% 75.00% - - - - -
√

×
SegLink++ [114] 80.30% 83.70% 82.00% 7.1 79.80% 82.80% 81.30% -

√ √

CounterNet [115] 86.10% 87.60% 86.90% 3.5 84.10% 83.70% 83.90% 4.5
√ √

Zhang et al. [116] 84.69% 88.53% 86.56% - 83.02% 85.93% 84.45% -
√ √

FCENet [117] 84.20% 85.10% 84.60% - 80.70% 85.70% 83.10% -
√ √

FCENet+DCN [117] 82.60% 90.10% 86.20% - 83.40% 87.60% 85.50% -
√ √

Se
gm

en
ta

ti
on

-b
as

ed

TextSnake [119] 80.40% 84.90% 82.60% 1.1 63.40% 65.40% 64.40% -
√ √

LOMO [120] 83.50% 91.30% 87.20% - 69.60% 89.20% 78.40% -
√ √

LOMO+MS [120] 87.60% 87.80% 87.70% - 76.50% 85.70% 80.80% -
√ √

PSENet-1s [121] 84.50% 86.90% 85.70% 1.6 79.70% 84.80% 82.20% 8.4
√ √

CRAFT [122] a 84.30% 89.80% 86.90% - 81.10% 86.00% 83.50% -
√ √

PAN [123] 81.90% 84.00% 82.90% 26.1 81.50% 85.50% 83.50% 58.1
√ √

DBNet [124] 83.20% 91.80% 87.30% 12 80.20% 86.90% 83.40% 22
√ √

DBNet++ [125] 83.90% 90.90% 87.30% 10 82.80% 87.90% 85.30% 21
√ √

MOSTL [126] 84.56% 92.50% 88.35% 5 - - - -
√ √

RSCA [127] 82.70% 87.20% 84.90% 23.3 83.30% 86.60% 85.00% 30.4
√ √

Wang et al. [128] - - - - 80.52% 86.91% 83.59% 25.1
√ √

SAST [129] 87.09% 86.72% 86.91% - 77.05% 85.31% 80.97% 27.63
√ √

SAST+MS [129] 87.34% 87.55% 87.44% - 81.71% 81.19% 81.45% -
√ √

Long et al. [130] - - - - 87.44% 84.56% 85.97% -
√ √

a The paper indicates that the best result of FPS is 8.6, independently of the dataset.
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TextSnake [119] predicts text of any shape considering text instances as a series of
sequence disks. The geometry attributes of text instances are estimated via a Fully Con-
volutional Network (FCN). LOMO [120] also considered geometric properties to locate
the characters and obtain quadrangular text regions. PSENet [121] implemented the pro-
gressive scale expansion network to solve the problem of closely adjacent text instances.
CRAFT [122] was based on character awareness, predicting individual characters and their
affinity to construct word bounding boxes. PAN [123] is a light computational detector that
used a Pixel Aggregation network to aggregate text pixels precisely. Another real-time text
detector is DBNet [124] which contains a Differentiable Binarization module to simplify the
post-processing and achieve better results, being improved with DBNet++ [125]. The Adap-
tive Scale Fusion module was additionally introduced, enabling greater robustness of the
model and maintaining its efficiency. Naiemi et al. [126] proposed a lightweight model,
called MOSTL, to detect irregular text, including curved and vertical texts. The framework
contains an improved ReLU layer (i.ReLU) and an improved inception layer which extract
more valuable text information. The RSCA [127] network also had the ability to detect
curved texts in real time. The strategy was to apply local-context-aware upsampling to
be effective with less computational cost and dynamic text-spine labeling for simplifying
label generation and assignment. Wang et al. [128] proposed an innovative and robust
framework combining position and semantic information to avoid degrading segmentation-
based methods due to inaccurate annotations of text pixels. The SAST model suggested
in [129] integrates high-level object knowledge and low-level pixel information in a single
shot to overcome the difficulty of separating adjacent text instances. The model detects
scene text of arbitrary shapes with high accuracy and efficiency. A state-of-the-art unified
detector was proposed in [130]. Without complex post-processing, the model detects text
as masks and posteriorly groups them into clusters.

Automatic text detection is challenging, namely when dealing with blur images,
crowded backgrounds, multi-orientations, arbitrary shapes and font size variations. Some
methods proposed axis-aligned bounding boxes or polygons to better enclose the text.
Considering the background information that is still present in more irregular texts, other
researchers proposed segmentation methods that adapt to arbitrary shape texts. The seg-
mentation approach has the disadvantage of being vulnerable to false detection when
two text instances are near one another. Despite the use of several strategies to address
these issues, some text instances are not detected, some regions are wrongly classed as
containing text, text regions are incorrectly separated into words, or individual portions
are erroneously linked. Further studies are required in the text detection area.

6.2. Text Recognition

In this subsection, we briefly describe methods that recognise both regular and ir-
regular texts. ASTER [131], an updated version of RARE [132], employed a rectification
module based on Spatial Transform Networks to rectify irregular texts and recognise ar-
bitrary shape texts. ScRN [133] achieved better results with the symmetry-constrained
rectification module. Nevertheless, the curved text with terminal letters that are almost
horizontally oriented and close to the edges of the image causes trouble for the rectification
module. CA-FCN [134] indicated the characters at the pixel level. The character attention
mechanism, joined with the word formation module, predicts the position and recognises
the script. However, the performance tends to suffer without a sequence learning approach.
The aforementioned issue is addressed in [135]. The model extracts high-level 2D spatial
features and transforms them into a 1D feature sequence. Using word-level annotation,
Li et al. [136] applied the two-dimensional attention module to handle the complex spatial
layout of irregular text. To tackle the attention drift and inappropriate threshold selection
on segmentation maps, Wan et al. suggested the TextScanner [137]. The algorithm has
the advantage of being fast and adequate for long text. Character-level annotations can
aid TextScanner to be more efficient when pre-training on artificial data. Considering that
text recognition depends on visual perception information and high-level text semantic
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context understanding, the SRN network [138] incorporated the global semantic reasoning
module (GSRM), parallel visual attention module (PVAM) and visual-semantic fusion de-
coder (VSFD). DPAN [139] differs from the previous parallel-decoupled encoder–decoder
framework, designing a dual parallel attention network to alleviate visual misalignment
in hard samples. CDistNet [140] is a transformer-based encoder–decoder framework that
integrates character feature interactions among visual, semantic and position spaces for
recognising more difficult texts. Linguistic knowledge proved to contribute to the refine-
ment of character sequences; therefore, the MATRN model [141] combined language-aware
visual and semantic features, exploring the multiple combinations of multi-modal pro-
cesses with bi-directional fusion to enhance each feature. Visual and linguistic features were
combined in [142] to be robust to different language texts. The suggested model (S-GTR)
is a Graph Convolutional Network for textual reasoning that joins the pixels based on
their spatial context similarity. In order to use bidirectional language context, the methods
implemented a two-stage ensemble approach. To overcome the time constraints of these
methods, Bautista and Atienza designed a simple model that uses permutation language
modelling, called PARSeq [143]. The context-free and context-aware autoregressive infer-
ence is unified and refined using bidirectional context. In contrast to sequence-to-sequence
and segmentation-based approaches, Cai et al. [144] proposed a classification-based model
with similar results, the CSTR. The model’s merits include simplicity and a lack of costly
character-level annotations.

Multi-orientation, perspective distortion, diversity of the internal properties of texy
regions (font, size, shape, space), variable length and multilingual content are only a few
of the difficulties that text recognition must overcome. The introduction of a list of words
for each image was initially suggested to improve the accuracy of results. Given the
limited applicability, some researchers incorporate language models to expand the number
of possibilities and rectify the predictions according to prior knowledge. The strategy
increases the computational costs and limits the application for that specific language.
Besides multi-lingual text, the long arbitrarily shaped text is another unsolved challenge
that requires more data to investigate this subject. A balance between speed and accuracy
is always required. The segmentation-based method is an effective and simple approach,
but pixel-level annotation is necessary. Sequence-based recognition is another popular
method that produces good outcomes but has the drawback of being complex. Table 8
provides a more detailed comparison of the state-of-the-art text recognisers’ performance
on benchmark datasets with irregular text. None of the displayed results were generated
from a lexicon.

Table 8. Accuracy results of text recognition methods on ICDAR15, SVT Perspective and CUTE80.
“Anno.” is short for required annotations.

Methods Anno. ICDAR15 SVTP CUTE80

ASTER [131] word 0.761 0.785 0.795
ScRN [133] word, char 0.784 0.811 0.906
CA-FCN+data [134] word, char - - 0.799
CAPNet [135] word, char 0.766 0.788 0.868
SAR [136] word 0.788 0.864 0.896
TextScanner [137] word, char 0.835 0.848 0.916
SRN [138] word 0.827 0.851 0.878
DPAN [139] word 0.855 0.890 0.919
CDistNet [140] word, char 0.860 0.887 0.934
MATRN model [141] word, char 0.828 0.906 0.935
S-GTR [142] word 0.873 0.906 0.947
PARSeq [143] word 0.896 0.957 0.983
STN-CSTR [144] word 0.820 0.862 -
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6.3. Text Spotting

Text spotting systems perform text detection and recognition in an end-to-end way.
The base idea is to share the same CNN feature extractor with the detector and classifier.
For fast-oriented text spotting, FOTS [145] applied the RoIRotate operator from convolu-
tion feature maps. Like the MOSTL text detector, Naiemi et al. [146] proposed a unified
framework that also used improved ReLU and inception blocks. The new LWDP algo-
rithm enhanced the character recognition results. The suggested approach could handle
many font sizes and text orientations, including vertical texts. TextDragon [147], inspired
by TextSnake, used the differentiable operator named RoISlide for connecting arbitrary-
shaped text detection and recognition. In ABCNet [148] model, the Bezier curve was
introduced to describe arbitrary text instances and BezierAlign to extract accurate features.
The model was refined, generating an accurate real-time text spotter. The ABCNet V2 [149]
considered the bidirectional multi-scale features, inserted the character attention module
without requiring character-level annotation and integrated an adaptive end-to-end train-
ing strategy. The ARTS [150] framework enhanced these end-to-end methods, propagating
the recognition loss back into the detection branch with auto-rectification module. Mask
TextSpotter [151] was a segmentation model influenced by Mask R-CNN. The detection and
recognition are at the character level. Since character-level annotations are typically unavail-
able in public databases, Mask TextSpotter V3 [152] addressed this limitation, introducing
the Segmentation Proposal Network (SPN). Both methods incorporated the RoIAlign to
conserve more precise information. Another model inspired by Mask R-CNN is suggested
in [153]. Considering the authors that demonstrate that feature rectification degrades the
performance of irregular shape texts, the feature rectification step was ignored, with it being
enough to separate text from the background. MANGO [154] introduced the position-aware
mask attention module to perceive the position of text instances, allowing it to retain the
global spatial features. Character-level annotations are unnecessary, and the RoI operation
to link text detection and recognition was removed. Another framework free from RoI
operations is the TExt Spotting TRansformers (TESTR) [155]; furthermore, heuristics-driven
post-processing techniques are excluded in the single-encoder dual-decoder framework.
The model is suitable for both the polygonal and Bezier curve annotations. To overcome
the challenge of determining the space between words, Wang et al. proposed the AE
TextSpotter [156] framework, which learns both linguistic and visual representations. Swin-
TextSpotter [157], a transformer-based model, unified the two tasks with the recognition
conversion mechanism, leveraging the synergy of both. This contrasts with approaches
that typically share the backbone to integrate detection and recognition.

The recent text-spotting methods combined text detection and text recognition prob-
lems in order to optimise these two related tasks in a unified pipeline. When the system
works independently, the text detection errors interfere with text recognition, but in a
cooperative system, the text recogniser may reduce the false detections or even enhance
the limits of text region. The most efficient technique of information sharing across the
modules has been researched, and the first developments are currently being made. Table 9
depicts the performance of several text spotting algorithms on the ICDAR2015 dataset,
using three types of lexicons, and Table 10 deepens the comparison of models on the Total
Text dataset.
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Table 9. Comparison of end-to-end text recognition in ICDAR2015. The acronyms “S”, “W” and “G”
represent the “Strong”, “Weak” and “Generic” lexicon, respectively.

Methods
ICDAR15 - End-to-End

S W G

FOTS [145] 0.811 0.759 0.608
TextDragon [147] 0.825 0.783 0.651
ABCNet+MS [148] - - -
ABCNet V2 [149] 0.827 0.785 0.730
ARTS [150] 0.815 0.773 0.687
Mask TextSpotter [151] 0.830 0.777 0.735
Mask TextSpotter V3 [152] 0.833 0.781 0.742
Unconstrained [153] 0.855 0.819 0.699
MANGO [154] 0.818 0.789 0.673
TESTR [155] 0.852 0.794 0.736
AE TextSpotter [156] - - -
SwinTextSpotter [157] 0.839 0.773 0.705

Table 10. Comparison of end-to-end text recognition in Total-Tex dataset. For more details of the
networks, please consult the respective papers.

Methods
Detection End-to-End FPS
F-Measure None Full

FOTS [145] 0.440 0.322 0.359 -
TextDragon [147] 0.803 0.488 0.748 -
ABCNet+MS [148] - 0.695 0.784 6.9
ABCNet V2 [149] 0.870 0.704 0.781 10
ARTS-RT [150] 0.803 0.659 0.781 28.0
ARTS-S [150] 0.865 0.771 0.851 10.5
Mask TextSpotter [151] 0.613 0.529 0.718 4.8
Mask TextSpotter V3 [152] - 0.712 0.784 -
Unconstrained [153] 0.864 0.707 - -
MANGO [154] - 0.729 0.836 4.3
TESTR-Bezier [155] 0.880 0.716 0.833 5.5
TESTR-Polygon [155] 0.869 0.733 0.839 5.3
AE TextSpotter [156] - - - -
SwinTextSpotter [157] 0.880 0.743 0.841 -

7. Challenges and Opportunities

The automatic detection and recognition of grocery items has many applications with
high economic impact. Moreover, the ability to analyse product labels is becoming increas-
ingly relevant mostly as a way to improve the customer experience, which is expected
to translate to higher sales and fidelity, but also as a means to assist people with impair-
ments. Nevertheless, the process is highly challenging due to the inherent characteristics
of the scenario such as visual clutter or high density in shelves. Moreover, when focusing
on the label, processing the information introduces additional challenges due to small
text size or blurry appearance. The difficulties associated with these scenarios typically
increase when we descend the hierarchy of classification. Fine-grained classification is
more challenging due to intra-class variance and inter-class similarity. Grocery items of
the same macro-category share similar visual characteristics in size, shape, colour and
inscriptions. On the other hand, products of the same brand are frequently only recognised
through slight packaging variations. This is the case of products that differ by flavour
or quantity. When these distinctions only occur in small areas, there is no guarantee that
images taken from a particular angle can capture the mentioned differences. Moreover,
several environmental conditions, including lighting, background and occlusions, may
significantly impact product recognition, particularly with micro-categories. Consequently,
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the recognition model should be able to identify the nuances of packages and be agnostic
to environmental factors. The items typically follow an established layout in a grocery
store. Those who belong to a general category are placed together on the racks. As a result,
along with local features, context may serve as a guideline for identifying similar products
on shelves.

The grocery market is constantly evolving with products launched frequently and
their appearance may change over time to appeal to consumers. Hence, in addition to
being robust, the recognition model must also be flexible enough to adapt or retrain itself
with less effort when a new product or packaging appears. Training a CNN with just new
classes is not feasible because it cannot preserve the past learned classes; on the other hand,
the frequent retraining of the complete network with all classes is impractical, given the
existence of thousands of products. To handle this issue, incremental learning or one-shot
learning are two possible approaches. Within incremental learning methods, there is the
fine-tuning approach, which consists of using the pre-trained network and adjusting the old
parameters to adapt to the new data. However, this technique risks learning new classes
while forgetting the old ones. In the retraining process, freezing some layers and setting up
adequate parameters, such as a small learning rate, are important strategies to keep the
old knowledge. Model configuration is a tricky task and becomes even more challenging
with the constantly growing number of classes. Recently, knowledge distillation has been
explored to handle the class incremental problem [158–160]. The foundation of one-shot
learning for computer vision tasks is Siamese neural networks (SNN); these special types
of CNNs are trained to evaluate the distance between features in two input images. SNNs
have the enormous benefit of not requiring intensive retraining to identify new classes
after having been trained on large datasets. Regarding speed and accuracy, the SNNs may
outperform other types of methods. Nevertheless, in terms of memory and computational
resources, they are expensive since they need to train two models. Osokin et al. [84]
proposed a one-shot object detector, and Domingo et al. [92] classified grocery products
with Siamese neural networks. This topic might attract increasing interest when additional
datasets are released.

The huge diversity of grocery items poses a challenge to developing a suitable dataset.
Although deep networks perform better than conventional detection and recognition meth-
ods, they are sometimes constrained by scarcity and under-represented data. Collecting
grocery images captured in the real environment and subsequently annotating the dataset
are laborious tasks. Therefore, most available datasets represent a small number of classes
and/or contain restricted images per class. This limitation damages the efficiency of the
model and creates obstacles to being expanded to real-world applications. In that sense,
to increase the size of the training set, some frameworks apply data augmentation [78,90,98],
and other researchers suggest generating realistic samples by GAN to achieve reliable re-
sults [5,97]. Another strategy widely used to minimise the problem of the lack of adequate
datasets is the compilation of grocery product photos taken under a controlled environment,
occasionally from a range of perspectives, that act as a reference of the class. Almost all
datasets designed for image identification used this approach and, as a result, most retail
recognition methods rely on template-matching-based techniques. This technique involves
the interpretation of all positions of the template and measuring how well the template
and the query image match at each location. The process is repeated for each template,
which is very time-consuming. Instead of a feature extraction match, the comparison can
be made with feature vectors of two convolutional nets using SNNs. They also have high
computational costs. In that sense, further investigations are required in order to develop
an accurate and efficient model that only needs a single image to classify.

Whether the system uses template-matching-based techniques or Siamese networks, it
will likely be challenging to correctly identify the class due to minor differences in the same
product. Even when comparing identical products, the orientation, illumination, reflection,
resolution and other aspects of the shelf image may differ from those of the reference
image; the training data environment does not match the deployment data environment,
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and the model’s performance decreases naturally. The domain shift issue can also be
minimised with a GAN algorithm since it is trained to learn how to convert iconic samples
into apparent in-store images. Then, the model, trained over more data, is able to extract
rich invariant features. For cross-domain detection and recognition, transfer learning is
commonly employed, with a vast majority of frameworks using a model pre-trained on
ImageNet, such as [4,44,90,98]. In [90], after training the network on ImageNet, the model
was fine-tuned on the Grocery Store dataset [46] for the domain adaption. Wang et al. [87]
design a CNN model that combines two technical modules. The adversarial module
handles the domain shift by gradually reducing the disparity between different domains
and the self-attention module captures discriminative image features that are essential for
fine-grained recognition. Other domain generalization techniques should be researched,
including the possibility of adapting strategies defined for other application scenarios [161].

In the presence of noise and perturbations, Deep Convolutional Neural Networks and
transformer-based architectures are two effective solutions, with the latter requiring even
more sufficient data [162]. A robust model is constructed at the cost of heavy frameworks
that are computationally expensive. These characteristics may be unfeasible in the imple-
mentation of real-time models on edge devices, but techniques for image pre-processing
can be used to enhance model performance. Finding a fair balance between accuracy and
efficiency is crucial, though. For example, Sinha et al. [98] avoid template-matching-based
object detection because it is time-consuming; it selected a light backbone, the ResNet-18,
and extracted multi-scale features to improve the product location.

Product label analysis is a particular case of scene text recognition. Recent studies
focused on providing an efficient solution to STR in tough environments, such as texts with
arbitrary shape and orientation, various scales and text fonts, blur, distortion, occlusion,
multilingual texts or even with a complex background. In fact, in a grocery environment, all
these challenging tasks may occur. Independently of the deep learning model’s architecture,
a considerable amount of adequate data is crucial to train and assess the model. Given
the scarcity of high-quality samples and annotations, creating a synthetic dataset based
on the limited data available is a possible strategy. For example, in [163], the authors
suggested an efficient framework to generate realistic images via a 3D graphics engine.
Subsequently, the realistic and real-world sample distribution between training and testing
should be evaluated. Another path could be the implementation of the GAN algorithm.
Luo et al. [164] separated the text instance from the wild background benefiting from a
generative adversarial architecture. Moreover, the design of effective data augmentation
approaches could be a sustainable solution to overcome the accessible data problem. On the
other hand, developing unsupervised algorithms, such as [165,166], can be further studied
to take advantage of unlabelled real-world data. The scarcity of appropriate datasets is
not solely a result of the lack of images taken in-store, but also due to packages written in
different languages. Text recognition algorithms are frequently trained to identify English
texts, and performance in other languages is critical. The first steps are being taken in the
creation of multi-lingual datasets and, once again, synthetic multi-lingual datasets are an
interesting solution to overcome this limitation.

The performance of a text recogniser can be affected by complex text images. As image
preprocessing techniques can potentially improve the results, even of a robust model, anal-
ysis of the integration of these two components can be relevant. Another interesting factor
is the performance of end-to-end systems. Researchers are focused on text spotting devel-
opment that benefits from a joint optimisation of detector and recogniser. Nevertheless,
some limitations need to be addressed, such as the effective way to link and communicate
text detection and recognition and to enhance joint optimization. This is a recent area that
requires more investigation. Another area that has drawn attention is the introduction of
a language model. The verse of NLP methods in STR to acquire linguistic information
has yielded promising results [101,143], with the disadvantage of increased computational
costs. The effective way to fuse visual and linguistic information while maintaining high
efficiency still raises doubts.
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The most significant difficulties in identifying grocery products are noted along with
potential research directions:

• Poor image quality, as blurring and perspective distortion can be enhanced with
image preprocessing techniques.

• Lack of datasets can be overcome by creating synthetic datasets, applying data aug-
mentation or selecting one-shot or unsupervised learning.

• Shift environment between training data and test data requires strategies such as
GAN network, data augmentation and transfer learning.

• New classes are regularly added and the use of incremental learning or one-shot
learning prevents the model from being completely retrained.

Ultimately, we conclude that grocery product recognition is still a challenging task
because of intra-class variance and inter-class similarity; new data arriving frequently;
lack of huge quality data; cross-domain between training samples and test samples; com-
plex background; noise and perturbation of query images; irregular texts; multi-lingual
texts, and the need for a light model to perform in real-time. More research is clearly
required in this field in order to make progress, hence some guidelines for each problem
were suggested.
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