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Sales forecasting is a major challenge in retail industry particularly in the context of

continuous promotional activity. In this work dynamic regression models based on

price and promotional information of the focal product and its competitors, and Fourier
terms to accommodate multiple seasonality, are used for sales forecasting. The
forecasting models overall performance is analyzed for the full test period and for the
periods with and without promotions. The results show that the dynamic regression
models generate substantially more accurate forecasts than pure time series models for

Abstract. Forecasting future sales is one of the most important issues that is
beyond all strategic and planning decisions in effective operations of retail supply
chains. For profitable retail businesses, accurate sales forecasting is crucial in
organizing and planning purchasing, production, transportation and labor force.
Retail sales series belong to a special type of time series that typically contain
strong trend and seasonal patterns, presenting challenges in developing effective

all periods studied.
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forecasting models. This paper compares the forecasting performance of state
space models and ARIMA models. The forecasting performance is demonstrated
through a case study of retail sales of five different categories of women footwear:
Boots, Booties, Flats, Sandals and Shoes. An approach based on cross-validation is
used to identify automatically appropriate state space and ARIMA models. The
forecasting performance of these models is also compared by examining the out-
of-sample forecasts. The results indicate that the overall out-of-sample forecasting
performance of ARIMA models evaluated via RMSE, MAE and MAPE is better
than state space models. The performance of both forecasting methodologies in
producing forecast intervals was also evaluated and the results indicate that
ARIMA produces slightly better coverage probabilities than state space models for
the nominal 95% forecast intervals. For the nominal 80% forecast intervals the
performance of state space models is slightly better.

Keywords. Pure time series models; forecasting accuracy; retailing; cross-
validation

1. Introduction

Time series often exhibit strong trend and seasonal variations presenting challenges in
developing effective forecasting models. How to effectively model time series in order
to improve the quality of forecasts is still an outstanding question. State space and
Autoregressive Integrated Moving Average (ARIMA) models are the two most widely-
used approaches to time series forecasting, and provide complementary methodologies
to the problem. While exponential smoothing methods are based on a description of
trend and seasonality in the data [1], ARIMA models aim to describe the
autocorrelations in the data [2]. The ARIMA forecasting framework originally
developed by Box et al. [3] involves an iterative three-stage process of model selection,
parameter estimation and model checking. A statistical framework for exponential
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smoothing methods was recently developed based on state space models called ETS
models [4]. Identifying the proper autocorrelation structure of a time series is not an
easy task in ARIMA modelling. Identifying an appropriate state space model for a time
series can also be difficult. However, the usual forecast accuracy measures can be used
for identifying a model provided the errors are computed from data in a test set and not
from the same data that were used for model estimation. In this work, a cross-
validation procedure is used to automatically identify an appropriate state space model
and an appropriate ARIMA model for a time series. That is, the in-sample data are split
into a training set and a testing set. The training set is used to estimate the models'
parameters and the testing set is used to choose the final model. This approach is
presented in the paper through a case study of retail sales time series of different
categories of women's footwear from a Portuguese retailer that by exhibiting complex
patterns present challenges in developing effective forecasting models. After
identifying appropriate state space and ARIMA models, it is reasonable to compare the
forecasting accuracy of bath methodologies by examining the out-of-sample forecasts,
which is also done in the paper. The remainder of the paper is organized as follows.

2. Data

The brand Foreva was born in September 1984. Since the beginning, the company is
known for offering a wide range of footwear for all seasons. The geographical coverage
of Foreva shops in Portugal is presently vast as it has around 70 stores opened to the
public with most of them in Shopping Centers. In this study, monthly sales of the five
categories of women's footwear of the brand Foreva: Boots, Booties, Flats, Sandals and
Shoes, from January 2007 to April 2012 (64 observations), are analyzed. These time
series are plotted in Figure 1. The Boots and Booties categories are sold primarily
during the winter season while the Flats and Sandals categories are sold primarily
during the summer season. The Shoes category is sold throughout the year. The winter
season starts on September 30" of one year and ends on February 27" of the next year.
The summer season starts on February 28" and ends on September 29" of each year.
With the exception of Flats, the series of all the other footwear present a strong
seasonal pattern and are obviously non-stationary. The Boots series remains almost
constant in the first two seasons, decreases slightly in 2009-2010, then recovers in
2010-2011 and finally decreases again in 2011-2012. The Booties series also remains
fairly constant in the first two seasons and then maintains an upward trend movement
in the next three seasons. The Flats series seems more volatile than the other series and
the seasonal fluctuations are not so visible. In 2007 the sales are clearly higher than the
rest of the years. An exceptional increase of sales is observed in March and April of
2012. The Sandals series increases in 2008 remaining almost constant in the next
season, then increases again in 2010 remaining almost constant in the last season. The
Shoes series presents an upward trend in the first two years and then reverses to a
downward movement in the last three years. The seasonal behavior of this series shows
more variation than the seasonal behavior of the other series. In general there is a small
variation in the variance with the level, and so it may be necessary to make a
logarithmic transformation to stabilize the variance. In each case, the in-sample period
for model fitting and selection was specified from January 2007 to October 2011 (first
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58 observations), while the out-of-sample period for forecast evaluation was specified
from November 2011 to April 2012 (last 6 observations). The last 6 observations of in-
sample data (May-October 2011) were used as the validation and testing sample and
the rest of observations were used for model estimation (January 2007 to April 2011).
The model with the best performance in the testing sample was selected as the final
model for further evaluation in the out-of-sample.

]

(© (4

Pairs of Boots sold

Pairs of Booties sold

Paurs of Flats sold
Paws of Sandals sold
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(e)

Pairs of Shoes sold
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2007 2008 2009 2010 201 2012
Year

Figure 1. Monthly sales of the five footwear categories between January 2007 and April 2012.

3. Empirical study

To find appropriate ETS and ARIMA models for a time series is not an easy task. Both
forecast methodologies are subjective and usually difficult to apply [5]. The challenge
was to specify a procedure to automatically identify an appropriate ETS and an
appropriate ARIMA model for a time series. We started by calculating the sample ACF
and the sample PACF for the five time series (not shown). In general the sample ACFs
decayed very slowly at regular lags and at multiples of seasonal period 12 and the
sample PACFs had a large spike at lag 1 and cut off to zero after lag 2 or 3. This
suggested a monthly seasonal difference and, if necessary, regular differences to
achieve stationarity. To be fair and to be able to compare more accurately the
forecasting performance of both modeling approaches, for each time series all possible
ETS models and all ARIMA (p,d,q)x(P,D,Q), models where p and g could take




492 P. Ramos et al. / Evaluating the Forecasting Accuracy of Pure Time Series Models

values from 0 to 5 and P and Q could take values from O to 2 were fitted using the

training set from January 2007 to April 2011. Twelve types of data were considered on
both cases: raw data (d =D =0), first differenced data (d=1,D =0) , second

differenced data (d = 2,D = 0), seasonally differenced data (d =0,D =1), first and
seasonally differenced data (d = D =1) , second and seasonally differenced data
(d=2,D=1); the same orders of differencing were also applied to logarithm

transformed data. Higher orders of differencing are unlikely to make much
interpretable sense and should be avoided [4]. The model which had the lowest Root
Mean Squared Error (RMSE) value on the forecasts of the testing sample (from May
2011 to October 2011) and passed the Ljung-Box test with a significance level of 5%
was selected from all fitted ETS and ARIMA models. RMSE was used for the model
selection since it is more sensitive than the other measures to large error. It should be
mentioned that when models are compared using Akaike's Information Criterion (AIC)
or Bayesian Information Criterion (BIC) values, it is essential that all models have the
same orders of differencing and the same transformation. However, when comparing
models using a testing set, it does not matter how the forecasts were produced, the
comparisons are always valid even if the models have different orders of differencing
and/or different transformations. This is one of the advantages of the cross-validation
procedure used here — to be able to compare the forecasting performance of models that
have different orders of differencing and/or different transformations. Table 1 gives for
each time series the selected model on each approach. For the Shoes series none of the
fitted ETS models passed the Ljung-Box test [4] and so the model with the lowest
RMSE value on the forecasts of the testing sample was selected. It can be observed that
both transformation and differencing are important for improving ARIMA's ability to
model and forecast time series that contain strong trend and seasonal components. The
log transformation was applied to three of the five time series. With the exception of
Flats, all other time series were differenced: second-order differences were made in
Boots and Sandals series and first differences were made in Booties and Shoes series.
Only the Sandals time series was seasonally differenced. Transformation and
differencing are not so significant for ETS models. Log transformation is made only on
Boots series and none of the series is differenced. After identifying appropriate ETS
and ARIMA models, it is reasonable to compare the forecasting accuracy of both
approaches. Then, for each time series, both selected models were re-estimated using
the in-sample data (January 2007 to October 2011) and then used to forecast on the out-
of-sample period (from November 2011 to April 2012). The results of the forecast error
measures (Root Mean Squared Error - RMSE, Mean Absolute Error - MAE, Mean
Absolute Percentage Error - MAPE define in [6]) for this period are presented in Table
1. The results show that the overall out-of-sample forecasting performance of ARIMA
models evaluated via RMSE, MAE and MAPE is better than ETS models. For Boots
time series, the RMSE, MAE and MAPE are respectively 73%, 80% and 44% smaller.
For Booties time series, the RMSE, MAE and MAPE are respectively 55%, 43% and
56% smaller. For Flats time series, the MAE and MAPE are respectively 2% and 7%
smaller. The RMSE value of the ETS model is smaller than the RMSE value of the
ARIMA model but only by 4%. For Sandals time series, the RMSE, MAE and MAPE
are respectively 39%, 33% and 90% smaller. For Shoes time series, the RMSE and
MAE are respectively 38% and 19% smaller. The MAPE value of ETS model is
smaller than the MAPE value of ARIMA model but only by 11%. Another observation
from Table 1 is that judging from MAPE, which does not vary with the magnitude of
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the actual values of the time series, both the ARIMA and ETS models forecast Shoes
series more accurately than the other time series (23.87% vs. 26.35%, 33.75%, 51.25%,
101.01% and 21.15% vs. 46.98%, 77.20%, 55.22%, 1013.69%) despite the variation
present in its seasonal behavior. It is also interesting to observe that although the ETS
model selected for the Shoes series have failed the Ljung-Box test, it gave better results
than the ARIMA model in terms of MAPE (21.15% vs. 23.87%), which reinforces the
robustness of our rule for model selection. The performance of both forecasting
methodologies in producing forecast intervals was also evaluated. Table 1 shows the
percentage of times that the nominal 80% and 95% forecast intervals contain the true
observations. The results indicate that ARIMA produces slightly better coverage
probabilities than ETS for the nominal 95% forecast intervals. For the nominal 80%
forecast intervals, the performance of ETS is slightly better. ETS produces better
coverage probabilities in Booties and Flats time series and ARIMA produces better
coverage probabilities in Shoes series. It can also be observed that these forecasting
methods slightly underestimate the coverage probabilities for the nominal 80% forecast
intervals. To see the individual point forecasting behavior, the actual data versus the
forecasts from both ETS and ARIMA models were plotted (Figure 2). In general, it can
be seen that both state space and ARIMA models have the capability to forecast the
trend movement and seasonal fluctuations fairly well. As expected, the exceptional
increase in the sales of Flats observed in March and April 2012 was not predicted by
both models which under-forecasted the situation. This fact explains the larger value of
MAPE especially in the case of the ARIMA model (51.24% vs.
26.35%/33.75%/23.87%). One of the limitations of MAPE is having huge values when
data may contain very small numbers. The large value of MAPE of both models for the
Sandals time series is explained by this fact since during the out-of-sample period there
are almost no sales (close to zero).

Table 1. Out-of-sample comparison between state space models and ARIMA models.

Time Nominal
series Model RMSE MAE MAPE coverage
80% 95%
Boots Log ETS(A,A,A) 3077.71 2267.08  46.98 100 100
Log ARIMA (2,2,5)x(0,0,2),, 828.13 44901 26.35 100 100
- ETS(M,M,M) 954.10 654.59 77.20 83 100
ARIMA (4,1,2) % (0,0,1),, 429.19 371.44 33.75 67 100
Flats ETS(A,A,A) 119447  881.57 55.22 67 67
Log ARIMA (4,0,2)x(0,0,1),, 1244.01 861.65 51.25 33 100
Sandals ETS(M,N,M) 2832.59 1415.86 1013.69 83 100
ARIMA (3,2,3)x(0,1,0),, 1728.71 945.07 101.01 83 100
Shocs ETS(M,A,M) 1279.73  878.08 21.15 50 67
Log ARIMA (5,1,3) % (0,0,0),, 791.62 712.53 23.87 67 100

4. Conclusions

In this work, a cross-validation procedure is used to automatically identify an
appropriatt ARIMA model and an appropriate ETS model for a time series. The
modeling results indicate that both transformation and differencing are important for
improving ARIMA’s ability to model and forecast time series that contain strong trend
and seasonal components. The out-of-sample forecasting results show that the overall
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performance of ARIMA models evaluated via RMSE, MAE and MAPE is slightly
better than state space models. The improvements in RMSE found were between 38%
and 73%; in MAE were between 2% and 80%; and in MAPE were between 7% and

90%.
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Figure 2. Out-of-sample forecasting comparison for the five footwear categories.
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