
1

A Precise and Hardware-Efficient Time

Synchronization Method for Wearable Wired

Networks
Fardin Derogarian∗, João Canas Ferreira, Vítor M. Grade Tavares

INESC TEC, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200 - 465, Porto, Portugal

Abstract—This paper presents and evaluates a high-precision,
one-way, master-to-slave time synchronization protocol to mini-
mize the clock time skew in low-power wearable sensor networks.
The protocol is implemented in the MAC layer, and is based
on directly eliminating deterministic delays during transmission
from source to destination node, at hardware level. The proposed
protocol keeps the one-hop average synchronization error close to
the signal propagation delay and the one-hop peak-to-peak jitter
equal to the period of each node’s system clock period. Both
values grow linearly as the hop count increases. The protocol
can achieve synchronization in the range of a few nanoseconds,
enough to satisfy the requirements of many applications for
wearable networks, with one-way messages. Both theoretical
analysis and experimental results, in wired wearable networks,
show that the proposed protocol has a better performance than
PTP, a standard timing protocol for both single and multi-
hop situations. The proposed approach is simpler, requires no
calculations, and exchanges fewer messages. Experimental results
obtained with an implementation of the protocol in 0.35 µm
CMOS technology show that this approach keeps the one-hop
average clock skew around 4.6 ns and peak-to-peak skew around
50 ns for a system clock frequency of 20 MHz.

Index Terms—Time synchronization protocol, wearable wired
sensor network, hardware implementation.

I. INTRODUCTION

Synchronization, in general, and time synchronization, in

particular, are important features of many networks and dis-

tributed systems. In sensor networks, like in many other data

acquisition systems, it is often necessary to record timing

information with the data. For these systems, maintaining

∗Correspondence to: Fardin Derogarian, INESC TEC, Faculdade de En-
genharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200 -
465, Porto, Portugal. Email: mpt09020@fe.up.pt, Tel: +351 968 726 403, Fax:
+351 222 094 050

performance and precise synchronization between the nodes,

using only limited resources, can be a significant challenge.

Monitoring of the environment, localization, security, TDMA-

based protocols, coordinated sleep wake-up scheduling mech-

anisms and data fusion are some of the applications based

on time synchronization [20]. For instance, in gait analysis

for evaluation and diagnosis of mobility impairments it is

important to know the relative timing of several different

surface electromyography signals and their time relation to the

inertial information about the movements of the lower limbs.

In a sensor network, each individual Sensor Node (SN) is

usually equipped with an independent clock generator. The

use of a crystal quartz oscillator ensures good local clock

accuracy. Although this kind of oscillators have good stability

(with variation around a few parts per million (ppm)) that is

not enough to keep synchronization during the whole time of

activity; since the clock generators are working independently,

small drifts in clock generation lead to synchronization loss.

One way to maintain precise synchronization is to use a GPS

receiver, so that SNs can achieve clock synchronization in

the nanosecond range. However, sensors usually do not need

such a high accuracy. In addition, the use of GPS receivers

in resource limited systems is not always practical or possible

(for indoor use, for instance). An alternative approach is to use

a synchronization mechanism that overcomes and compensates

the clock drift in each node [12], [21], [23], [27].

The time synchronization problem, which has been studied

extensively [6], [20], [23], [25], is impacted by many factors

and may require the consideration of issues at several protocol

layers. A significant issue is the variable amount of time

required to send a single message. This time is usually

composed of four components [17]: 1) the time required

2

for assembling a message and handing it over to the MAC

layer; 2) the time required for accessing the channel; 3) the

propagation delay between the communicating nodes; 4) the

time required for acquiring and processing the message at the

receiver. Most of these factors are non-deterministic in general.

The exception is the propagation time, which depends on the

communication environment and may be considered to be

constant for stationary nodes. In order to reduce the effects of

delay on synchronization, some protocols, such as Reference-

Broadcast Synchronization (RBS), sample and inject the time

information into the message while transmitting [7], thereby

reducing the variability associated with the first two factors

mentioned above.

Many synchronization protocols use two-way message ex-

changes between pairs of nodes to estimate the clock time

skew and offset [8], [14], [19]; the nodes exchange messages

with timing information in order to estimate the round trip

delay, which is then used to adjust the local timing information

of the client node. Depending on the protocol, the exchange

may be started by the clock source node or by the client

node (i.e., the node whose clock is to be adjusted). A second

approach uses only one-way communication [7], [15], [17],

[26]. In this case, the clock source sends timing information

to client nodes, which process the information to estimate the

local time adjustment. This approach requires fewer messages,

but usually their accuracy is lower than the two-way methods.

This paper presents a one-way method for synchronization

at the MAC layer of nodes in a wearable, wired sensor network

intended for clinical applications. The proposed approach

minimizes the average clock time skew up-to the propagation

delay. In particular, this paper addresses the need for good

time synchronization in simultaneous acquisition of surface

electromyographic signals coming from different muscles. In

our main application case, the electrodes are embedded in the

clothes of the patient and connected to SNs equipped with

A/D converters. The SNs are connected together in a network

using conducting yarns embedded in the clothes.

In the context of such wearable sensor network, the main

contributions of this work are: (1) analytic characterization

of the proposed protocol, including the determination of the

average local and global clock skew, as well as an analyzis of

the probability of synchronization in the presence of message

failures; (2) extensive experimental evaluation of the protocol

using a hardware implementation (CMOS integrated circuit –

IC) reported in [5]. The proposed protocol is shown to keep

the one-hop average synchronization error close to the signal

propagation delay and the one-hop peak-to-peak jitter equal to

the period of each node’s system clock period.

The rest of the paper is organized as follows. Section II pro-

vides the background and describes related work. Section III

presents the motivation for the proposed protocol. Section IV

gives an overview of the protocol and its implementation. The

presentation and discussion of the experimental results is done

in Section VI and the main conclusions are summed up in

Section VII.

II. RELATED WORK

Synchronization protocols can be classified according to

the relationship between the clock reference and client nodes

[25]. A peer-to-peer protocol allows each node to get timing

information directly from any other suitable node. The advan-

tages of this kind of protocols are flexibility and resilience

against node failures, but their control is complex. In many

cases, it is not possible for two nodes to communicate directly

because communication occurs over multi-hop connections,

particularly when the number of nodes is large. The alternative

is to use a master-slave approach, where the master node is

the time reference and synchronization performed by either

sender-to-receiver or receiver-to-receiver policies. In the first

case, the receiver synchronizes its clock with the sender and

then sends the updated timing data to the next node. In the

second case, the sender broadcasts timing information and then

the receivers exchange messages among themselves instead of

interacting with the sender.

The well-known Network Time Protocol (NTP) is based on

a two-way message exchange [19]. This effective and robust

protocol finds wide use on the Internet. NTP clients syn-

chronize their local clocks to NTP time servers by statistical

analysis of the round trip time. The fact that NTP imposes

significant implementation complexity restricts its adoption in

sensor networks.

The RBS protocol [7] is a one-way protocol for Wireless

Sensor Networks (WSNs), in which a clock reference node

broadcasts its time, thereby allowing all adjacent nodes to

receive the same timing message with very little variability.

The nodes use a sequence of broadcast synchronization mes-

sages to estimate both offset and skew of the local clocks. The

implementation of the RBS protocol on IEEE 802.11 wireless

3

networks described in [7] can achieve a one-hop accuracy of

1.85 µs± 1.28 µs.

The Timing-sync Protocol for Sensor Networks (TPSN) is

a sender-receiver, two-way synchronization protocol for multi-

hop networks [8]. TPSN performs synchronization in two

phases: level discovery phase and synchronization phase. In

the first phase, a root node chosen as clock reference elects

and builds a spanning tree of the network. In the second phase,

nodes synchronize to their parent in the tree by exchanging

messages at the initiative of the child node. When the root node

or the network topology change, TPSN has to start again with

the discovery phase, resulting in an increased message traffic

and network energy consumption.

The Flooding Time Synchronization Protocol (FTSP) is

another one-way protocol for multi-hop ad-hoc networks [18].

A root node periodically broadcasts a message with global

time stamping information. Each receiver node estimates its

clock offset and skew by combining both global and local

time information. The root node is elected dynamically and

periodically based on the smallest node identifier and is

responsible for keeping the global time of the network. FTSP is

an effective synchronization mechanism for multi-hop ad-hoc

networks, but in [15] it is shown that the clock skew increases

exponentially with increasing network size.

An hardware-based synchronized clock circuit for use in

sensor networks is presented in [22]. Synchronization is based

on using the ambient magnetic field emitted by 60 Hz power

lines. Another clock synchronization circuit, but this time

based on the ambient electric field, is described in [1]. The

first approach is able to achieve an average synchronization

of less than 1 ms between all nodes in a multi-hop network,

while the second approach is able to keep the clock drift

within 0.864 µs after running for 24 hours. The main limitation

of these approaches is the necessity for having an additional

module on each node; in addition, power-line fields are not

stable and available everywhere.

IEEE standard 1588 [10] defines the Precision Time Pro-

tocol (PTP), a hierarchical, master-slave protocol for clock

distribution with very precise synchronization [14]. Under this

protocol, the clock server periodically sends synchronization

messages. A client replies with a message including the recep-

tion time of the first message from the server and the reply

time according to his own clock. Then the server estimates

the client’s delay and time offset and sends this information

to the client, which adjusts his local time. The clients must

periodically update their time to mitigate the effects of local

clock drift. PTP can ensure that the one-hop clock skew stays

in the sub-microsecond range [2]. The issues affecting the

use of PTP for timing recovery in packet-based networks,

particularly those aimed at telecommunication networks, are

discussed in [24].

The protocols mentioned in this section are widely used,

but their generality implies that they are not hardware-aware

protocols. Therefore, their performance depends on the im-

plementation characteristics of each particular system. Since

one of the challenges in synchronization is the estimation

of the non-deterministic delay factors due to the properties

of the hardware, reducing them may lead to a simpler and

more resource-efficient synchronization method for specific

applications.

III. MOTIVATION

The synchronization protocol proposed in this work was

motivated by the requirements of a wearable system for data

capture of human locomotion, including kinematic parameters

of the lower limbs and myoelectric signals of the surface

muscles [28]. The acquired data is intended for use in the

detection and identification of mobility impairments, selection

of orthotics or prosthetics devices, and evaluation of the ef-

fectiveness of rehabilitation treatments. However, the proposed

approach should be easily extended to other similar biomedical

applications.

One of the main requirements of the project is that data

needs to be acquired in a practical and non-invasive way.

Previous research work has shown that the most comfortable

and easiest way to monitor physiologic signals is to use

garments [9], [16]. The final system includes sensor nodes

embedded in textile fabrics, connected to each other with

conductive yarns in a mesh topology. The use of fabrics with

embedded conductors makes the product more user-friendly

and comfortable. Each sensor node is capable of acquiring

sEMG (surface electromyography) signals from electrode pairs

and kinematic data from 3D inertial sensors, but must meet

severe restrictions on physical size, so as not to impair comfort

and wearability.

Since the relative timing of the acquired data is relevant

for subsequent processing, a synchronization mechanism for

data time-stamping is required. Data rates in BAN applications

are significantly higher than in other sensor networks (e.g.,

4

32 kbps to 64 kbps for a 16-bit EMG sensor) [13]. Therefore,

the synchronization protocol has to ensure timing accuracy in

the range of a few microseconds. The main aspects that have

been considered in the design of the protocol are:

Energy efficiency: Due to the portability requirements of the

aforementioned system, its sensor nodes use a small battery

for power supply. To ensure an adequate operation time with

such a limited energy source, the efficient usage of energy in

all parts of the system has to be enforced. The communica-

tion infrastructure, including transmitter and receiver circuits,

consumes a significant amount of energy when they are in

active mode. Therefore, the number of control messages and

transmitted data packets has to be reduced as much as possible.

In the proposed protocol, synchronization is based on one-way

message exchange, which consumes less energy than two-way

methods. The use of a one-way method might increase the

processing cost or the time to achieve synchronization, but, as

evidenced by the experimental results discussed in Section VI,

the performance of the proposed protocol is not affected by

these drawbacks.

Accuracy: Unknown delay and latency of messages gen-

erally have an effect on time synchronization. Messages

experience different delays while passing between network

layers. Increasing the number of involved layers produces a

cumulative increase of end-to-end delay. This applies specially

to the network layer, because the buffering of messages and

the variable service time due to changing network traffic make

it hard to estimate message delay and reduce the accuracy.

Therefore, many synchronization protocols have been imple-

mented in the MAC layer, so as to achieve high accuracy

and fast synchronization. The current protocol has also been

designed for use in the MAC layer.

Simplicity: The limited computational resources available

in sensor nodes always constitute a key factor that has to

be considered in the design of both hardware and software.

Keeping the communication and data processing delays within

a fixed range reduces message processing and the size of the

hardware needed to implement the protocol in the MAC layer.

In comparison to two-way protocols, the proposed method

requires less calculations, because it minimizes the variability

factors associated with message sending.

A one-way, master-slave, sender-to-receiver mechanism that

satisfies these criteria and enables a resource-efficient hard-

ware implementation is described in the next section.

IV. DESCRIPTION OF THE SYNCHRONIZATION PROTOCOL

This section describes the proposed time synchronization

protocol and its intended deployment. Figure 1 shows an

example of a mesh network of SNs connected to each other

by wires (conductive yarns in the intended application). All

SNs are equipped with a multi-port network module. Such a

network module includes synchronization and packet routing

sub-modules working independently of each other. Each de-

vice can perform time synchronization with the sender node

over one port, while participating in packet routing with the

other free ports. Node 1 is the Base Station (BS) responsible

for network management, master clock time reference and data

collection. A routing protocol is needed to route packets from

SNs to BS. Here the energy-efficient routing protocol – Source

Routing for Minimum Cost Forwarding (SRMCF) – from [3]

is used, which is based on the combination of source routing

and minimum cost forwarding.

Before starting normal activity, the system must go through

a setup phase. In this step, the routing protocol finds all

minimum-cost paths between BS and SNs, as shown by bold

lines in Figure 1. The dashed lines are redundancy links

that increase the robustness of the system against line breaks

caused by wear. The SRMCF protocol requires each node

to determine its neighboring node that lies on the path with

minimum cost to the BS (called the near-node). The path

information is then sent to the BS, who keeps a database

of available SNs and the corresponding paths. Synchroniza-

tion information is transmitted as control messages over the

minimum-cost spanning-tree built at this phase.

After the networking setup, the BS, acting as a clock

reference, synchronizes the network by sending timing infor-

mation whenever a neighbour SN sends a request. Each SN

synchronizes with its near-node and rejects timing messages

from the other nodes. For instance, node 3 will synchronize

with node 2 and reject messages from nodes 7 and 8. Because

messages received over different paths experience different

delay variations (due to different number of hops, network

traffic and packet loss), accepting timing information from

various sources would cause message jitter.

End-to-end communication time is usually not deterministic

and suffers specially from buffering in the network layer. This

protocol is designed for implementation in the MAC layer

in order to reduce the effects of delay and the clock time

skew. A dedicated hardware transmitter module on each node

5

..

Clock Reference1
2

3
4

7

8

9

5

6

Fig. 1. A network of sensors with the BS node acting as clock time reference.
The bold lines indicate the tree used for synchronization messages.

Preamble MAC header Time info Error controlSend

Receive

Propagation

delay

Sampling time

Receiving time

MAC header Time info Error control

Fig. 2. Format of the timing information message (MAC layer) and received
message at the receiver.

is responsible for the generation of the timing messages. To

reduce energy consumption, the communication modules are

in sleep mode when there is no data to be transfered.

Figure 2 shows a data frame with a timing message, both

as constructed by the sender and as processed by the receiver.

The preamble of a timing message is a string of 1s, which is

used to wake up the receiver before starting the actual data

transfer. The MAC header enables the receiver to recognize

an incoming timing message. Then the receiver activates a

hardware module designed to process the timing information

directly without the involvement of other parts of the receiver.

Immediately after sending the MAC header, the master sam-

ples the current time, formats the timing information, and

sends it. Sampling the time at the sender in this way reduces

the delay error due to the message sending process. Error

control information is put at the end of the message, so that

its integrity can be checked by the receiver.

Delay due to the propagation of signals over the link

between the nodes is typically very small and negligible (for

instance, a delay of about 3.3 ns per meter was measured in

our wearable network). The main delay is due to the difference

between the instant of time sampled at the sender and that

taken when the message is received. For the data frame shown

in Figure 2, the transfer takes a fixed number of system clock

cycles, because the number of bits inserted in the message

after time sampling is fixed. Therefore, the receiver always

gets messages after a fixed delay (ignoring clock drift and

propagation time). If the transmitter adds this fixed number

of clocks to the sampled time, then the receiver has all the

necessary information to determine exactly the instant when

the incoming packet arrived (as measured by the clock of the

sender). If the receiver validates the new timing information,

then it can set its own time to the received time without further

processing.

After synchronizing its time with the sender node, each SN

sends a timing message to its successors on the clock time

tree. For example in Fig. 1, node 2 sends timing messages to

the nodes 3 and 5. After adjusting their time, nodes 5 will send

timing messages to nodes 6, and node 3 will send a message

to node 4.

We assume that each SN uses the time information to

manage a globally synchronized clock signal Clk-sync, whose

frequency is smaller than the system frequency. A simple way

to generate such a clock signal is to use an auto-reload down-

counter: when the value of the counter reaches zero, an active

transition of Clk-sync is generated and the counter is reloaded

with a predefined value (equal for all nodes). In this case,

synchronizing Clk-sync signals is equivalent to keeping the

values of all counters synchronized. The counter in each node

is driven by the local system clock, which exhibits some clock

skew relatively to the system clock of other nodes. To limit the

skew between nodes, each SN periodically updates its counter

with the value specified in the timing message coming from

its reference node.

A SN may also manage a time stamp to annotate any

acquired data. It is assumed that the current time stamp

at each SN is determined by an up-counter driven by the

globally synchronized Clk-Sync signal. The time resolution

depends on the frequency of Clk-Sync, which is application

dependent and must be selected according to characteristics

of the sensed phenomenon. For example, the sampling rate

of electromyography signals is 1 kHz to 2 kHz, which is

much smaller than the system clock frequency (usually above

1 MHz).

The use of Clk-sync ensures that the time stamp counter

operates at the same frequency in all nodes. However, it is

still necessary to ensure that its contents are the same by

using a dedicated message. After starting up, each SN first

synchronizes the Clk-sync down counter; then, the time stamp

counter contents is synchronized once. Afterwards, the Clock-

sync counter must be synchronized periodically to compensate

6

for the drift of the local system clock.

Under the proposed protocol, the processing of timing mes-

sages at the transmitter side is simply limited to the addition

of a fixed number to the sampled time, and the receiver side

does not perform any kind of processing to estimate clock

time skew. Such minimal processing is important, because the

protocol is intended for hardware implementation in an energy-

constrained environment. Eliminating the effects of sending

and receiving delays on timing messages, as described above,

minimizes the clock time skew between SNs and leads to a

high precision synchronization mechanism for wired wearable

networks with a simple hardware implementation.

V. ANALYTIC CHARACTERIZATION OF THE PROTOCOL

This section provides an analytic characterization of the pro-

posed protocol’s behavior in wired wearable sensor networks.

A comparison with Precision Time Protocol (PTP) is done

when appropriate. The aspects addressed are: delay and offset

bounds, average local and global time skew, and probability

of synchronization as a function of packet loss.

A. Instantaneous Delay and Skew

We assume that all nodes have the same nominal system

clock period τ . However, the actual clock period of node i

will exhibit a small difference due to random local clock drift

pi, so that in general the clock period τi at node i is given by:

τi =
1

fi
=

τ

1 + pi
(1)

The value of pi depends on the oscillator, but should remain

in the range of few ppm for a stabilized oscillator with crystal

quartz.

Consider the multi-hop network of Figure 1 with minimum

cost paths forming a spanning tree, and assume that node 1,

the BS, is the time reference, which periodically broadcasts

its time to other nodes. Figure 3 a) shows the synchronization

timing diagram for PTP. The time reference node (node 1)

starts by sending a message to the client node (node 2) at

time TM (t1) (master clock time). Node 2 receives it at TS(t2)

(slave clock time) and replies at TS(t3) with a message that

is received by node 1 at TM (t4). Node 1 calculates the delay

and offset according to Equations (2) and (3) [11], [14]:

delay =
(TS(t2)− TM (t1)) + (TM (t4)− TS(t3))

2
(2)

offset =
(TS(t2)− TM (t1))− (TM (t4)− TS(t3))

2
(3)

M S M S

Sync

Delay Response

Sync

Delay Request

𝑇𝑀(𝑡1)

(a) (b)

𝑇𝑆(𝑡2)

𝑇𝑆(𝑡3)

𝑇𝑀(𝑡4)

𝑇𝑀(𝑡1)

𝑇𝑆(𝑡2)

Request

Fig. 3. Timing diagram: a) PTP protocol, b) proposed protocol

If the time value included in the Sync request is TM (t1),

then TS(t2) is given by

TS(t2) = TM (t1) + s τ1 + c τd + d` + r τ2 + Sr(t), (4)

where s is the number of clock cycles used in internal

processing after TM (t1), c is the number of bits transmitted at

data-rate period τd, d` is the propagation delay between nodes

1 and 2 (the sum of delays of line and I/O ports), r is the

number of clock cycles for message reception at the receiver

(with clock period τ2), and Sr(t) determines the sampling

range and is the time difference between signal appearance at

the input of the sampling module of receiver and the actual

sampling instant. The data rate is not necessarily equal to the

system clock frequency of the transmitter, so that in general

we have

τd = mτ1, m ∈ N+. (5)

The propagation delay d`1,2 is usually very small in com-

parison with the clock speed. We will also assume that d`1,2 =

d`2,1 = d`. Parameters c and r are usually fixed, depending on

the packet size. Because we assume that the implementation

is in the MAC layer, the receiver node processes the message

almost immediately after receiving it, i.e., without putting it in

a queue, which decreases the uncertainty delay at the receiver.

Under these conditions the delay becomes:

delay =
((s+mc)τ1 + d` + rτ2 + Sr(t))

2
+

((s+mc)τ2 + d` + rτ1 + Sr(t))

2

= d` + Sr(t)+

(s+mc+ r)τ

2

(
2 + p1 + p2

(1 + p1)(1 + p2)

)
.

(6)

7

Under the same assumptions, the offset is given by:

offset = (s+mc+ r)τ

(
p2 − p1

(1 + p1)(1 + p2)

)
. (7)

Since p1 and p2 are very small values, Equation (6) simplifies

to:

delay ≈ d` + Sr(t) + (s+mc+ r)τ. (8)

Since PTP measures time only in multiple units of τ and, for

this application, d` < τ and Sr(t) < τ , calculation of the delay

with a round trip message exchange would always produce a

constant value — (s + mc + r)τ . If the transmission delay

is kept fixed, then there is no need for multiple calculations

to find its value as time progresses. On the other hand, the

offset found from Equation (7) is very small (the drift is in

the ppm range as stated above), and will be undetectable by

a processor or microcontroller because the system clock does

not define sufficient time-resolution. In other words, there is

no need to have a round trip message when the delay is fixed.

In this case, a single message (as in Figure 3(b)) is enough to

send timing information, while achieving the same precision.

Therefore, a simpler protocol with fewer message exchanges

can be used. For this reason, the remainder of this subsection

will be concentrated on the one-way method as a proposed

approach to achieve minimum clock time skew. Here the clock

time skew refers to the total time deviation of each node from

the time reference.

Although SNs communicate in asynchronous mode, they

are implemented as synchronous logical circuits, where nodes

process data at the edge of the clock signal. Since the hardware

clock generators at each node are independent, two nodes

never present exactly the same clock signal. The situation is

illustrated by the timing diagram of Figure 4, which shows

the events at two communicating nodes. The transmitter sends

data at the positive edge of the clock and the receiver detects

incoming data at the negative edge. In this example, bit bn−1

is sent at time t1, and the receiver will acquire it after d`+Sr.

The ideal value of Sr(t) is half of the data rate period, so that

sampling occurs exactly in the middle of the incoming signal.

In practice, due to the receiver clock variation and jitter, the

sampling point changes around the middle of the incoming

signal, as Figure 4 shows highlighted in gray.

Equation (4) still applies for a single message (Figure 3 b).

The proposed approach determines that the transmitter needs

Sender Clock

Transmit

Receiver Clock

Receive

𝑆𝑟

𝑏𝑛−1

𝑏𝑛−1 𝑏𝑛

𝑏𝑛

𝑏𝑛+1

𝑏𝑛+1

𝑡1

𝑏𝑛−1 𝑏𝑛 𝑏𝑛−2

Receiver

𝑑𝑙1,2

Fig. 4. Clocks and signals in sender and receiver nodes

to add n clock cycles to TM in order to minimize the time

skew or error. Assuming τ1 ≈ τ2, we have

TS(t2) ≈ TM (t1) + nτ1, n ∈ N (9)

The integer value n calculated from Equations (4) and (9) is

n =

[
(s+mc)τ1 + d` + rτ2 + Sr(t)

τ1

]
≈ (s+mc+ r) +

[
d` + Sr(t)

τ1

]
.

(10)

By adding n to the time included in the packet, the receiver

sets its own time to be approximately equal to the time of the

reference node:

TS(t2) ≈ TM (t2). (11)

Since t1 and t2 are arbitrary times, this approach ensures that

Equation (11) is always valid.

Using Equations (4) and (9), the instantaneous time skew

between transmitter and receiver is found to be:

CS(t) = TM (t)− TS(t)

= (s+mc)τ1 + d` + rτ2 + Sr(t)− nτ1

= r(τ2 − τ1) + d` + Sr(t)− τ1
[
d` + Sr(t)

τ1

]
.

(12)

In comparison with other terms, the value of (τ2− τ1) is very

small (e.g. 30 ps at 20 MHz with a crystal quartz oscillator)

and may be ignored. Therefore, time skew mainly depends on

propagation time and sampling range Sr(t).

This previous analysis applies to all nodes that are one hop

away from the reference node but it should be noted that

regardless of the master clock variation or position, the slave

node always follow the master clock. So, the above calculation

can be applied for all the nodes with one hop distance from

each other. In this way, the time skew accumulates as the

8

hop count increases. In other words, for a node which is h

hops away from the time reference node, time skew under the

proposed approach is given by:

ChS(t) = h

(
d` + Sr(t)− τ

[
d` + Sr(t)

τ

])
. (13)

where the upper index of ChS refers to the number of the hops.

The variation of the time skew can be estimated from

Equation (13) as:

dChS
dt

= h

(
dd`
dt

+
dSr
dt

)
. (14)

Signal propagation is almost constant in a wired wearable

network, so the previous expression simplifies to:

dChS
dt
≈ hdSr

dt
. (15)

Consequently, the time deviation of time skew is a linear

function of Sr(t). So, it is expected that the any variation

on the recovered clock at the receiver materializes linearly on

the synchronized time. Here no restriction is made on Sr(t)

(besides being limited in range as discussed below), meaning

that in general any arbitrary synchronization method can be

used under considered assumptions.

B. Average Time Skew

The value of n given by Equation (10) depends mostly on

constant parameters, but varies with the instantaneous value of

Sr(t). The use of a fixed value of n implies that Sr(t) has to be

constrained to a certain range. For baseband communications

the optimal average value of Sr(t) is the middle of the

incoming data bit. This condition can be used to calculate

a fixed value of n for use in the proposed approach. From

Equation (5) we have

〈Sr(t)〉 =
τd
2

=
m

2
τ, (16)

where 〈Sr〉 is the average of Sr(t). Using 〈Sr〉 in Equa-

tion (10) results in

n = (s+mc+ r) +

[
d` + m

2 τ

τ

]
. (17)

Since d` � τ in wired wearable sensor networks Equa-

tion (17) simplifies to

n = (s+mc+ r) +
⌈m

2

⌉
(18)

and the average skew is

〈ChS〉 = h
(
d` +

m

2
τ −

⌈m
2

⌉
τ
)
. (19)

This equation gives different results for even and odd values

of m:

〈ChS〉 =


h
(
d` + 1

2τ
)
, m odd

hd`, m even
(20)

For even m, 〈ChS〉 grows as the number of hops and only

depends on the signal propagation delay between the nodes;

when m is odd, 〈ChS〉 also depends on the system clock period.

The behavior of 〈ChS〉 for odd values of m can be controlled

by a modification of the adding strategy. For such a system, the

average time skew at nodes one hop away from the reference

node is:

〈C1
S〉 = d` +

1

2
τ. (21)

Now for a second hop, add the value n − 1 instead of n to

the reference time in the message. The average time skew for

nodes that are two hops away becomes

〈C2
S〉 = d` +

1

2
τ + d` −

1

2
τ = 2d`. (22)

As a consequence, the average time skew decreases and the

value is the same as that for even m. By continuing this

procedure of adding n for nodes with odd hop counts and

n− 1 for nodes with even hop counts, 〈ChS〉 for nodes h hops

away from the the reference results in:

〈ChS〉 = d`

h∑
i=1

i+

h∑
i=1

1

2
τ(−1)1+i, m odd. (23)

In general, for any m ∈ N+, Equations (20) and (23) give:

〈ChS〉 = d`

h∑
i=1

i+ (m mod 2)

h∑
i=1

1

2
τ (−1)

1+i
. (24)

It can be conclude that by alternating the additive value,

the average time skew for networks with odd m decreases

significantly. It should be noted that in any case and in-

dependently of m, the instant time skew of Equation (15)

is valid. Figure 5 depicts the 〈ChS〉 values calculated from

Equations (20) and (23) assuming that d` = 0.1 τ . Using

the adjustment included in Equation (23), the value of 〈ChS〉
for odd m is near to the values for even m and is much smaller

than the unadjusted value obtained from Equation (20).

C. Impact of Clock Drift and Update Interval

The validity of the calculated bounds for the clock time

skew between nodes requires a process of periodically updat-

ing and synchronizing of the nodes, since the accumulation

of skew produces a clock offset that needs to be accounted

for. For that, the appropriate updating moment has to be

9

0 2 4 6 8 10
0

1

2

3

4

5

6

hops

A
ve

ra
ge

 ti
m

e
sk

ew
(τ)

even m, Eq.(20)
odd m, Eq.(23)
odd m, Eq.(20)

Fig. 5. Average skew 〈Ch
S〉 as a function of hop count h.

determined, as the time between updates depends on the

expected clock drift.

Immediately after a successful synchronization, Equa-

tions (15) and (24) are valid. To estimate the effects of clock

drift, suppose that the local system clocks have a normally

distributed frequency with mean value fc = 1
τ , and that nodes

1 and 2 initially have the same clock offset T (0). The time

difference due to clock drift after k clock cycles is

∆t2,1 = k (τ2 − τ1) , (25)

where τ1 = 1/f1 and τ2 = 1/f2 are the system clock periods

of nodes 1 and 2, respectively. Adjusting Equation (24) to

account for ∆t2,1 results in

〈ChS〉 = d`
h∑
i=1

i+ (m mod 2)
h∑
i=1

1
2τ (−1)

1+i

+〈
h∑
i=1

∆ti+1,i〉
(26)

Minimizing the effect of ∆t requires reducing the value of

k. The best case occurs when the Sync message arrives at the

receiver just before an active edge of Clk-sync is generated.

The necessary synchronization accuracy depends on the

application. For a signal sampling rate of 1 kHz, a synchro-

nization accuracy around 100 µs (10 % of the sampling rate)

may be chosen. In many cases, it will not be necessary to

update the time in each period of Clk− sync. In general, the

update interval can be determined by considering the required

accuracy, Equation (26) and the clock drift of the oscillators.

D. Probability of Synchronization

The entire process of synchronization is based on the

successful reception of the timing messages. Consider the

network of Figure 1, where SN2 receives its synchronization

messages from SN1. The probability of having both nodes

synchronized is

p2,1 = P (t2 = t1) = prequest × psync , (27)

where p2,1 is the probability of successful message exchange,

which is the product of the probabilities for successful delivery

of Request and Sync messages. The probability of message

delivery depends on network traffic, topology and node or link

failures.

For successful synchronization of a given node, all previous

nodes in the path to the reference node must be synchronized.

Equation (27) can then be extended to a node located h

hops away from the reference node:

ph,1 =

h∏
i=2

pi,i−1 (28)

If the probabilities prequest = psync = p are equal for all

links, Equation (28) simplifies to:

ph,1 = p2(h−1). (29)

Now consider the situation when PTP is used. This protocol

uses 3 packets to complete the synchronization. So, Equa-

tion (30) for SN2 will be:

p2,1 = psync × prequest × presponse , (30)

where presponse denotes the probability of a successful

Response packet message transmission. Assuming that all

messages have the same probability p of being successfully

transmitted, Equation (29) can be rewritten for PTP as

ph,1 = p3(h−1). (31)

A comparison of Equations (29) and (31) shows that, for the

application in wearable networks, PTP is more prone to failure

in the synchronization process than the protocol proposed

in this work, because PTP requires more messages to be

transmitted.

VI. EXPERIMENTAL RESULTS

This protocol has been implemented as part of a commu-

nication prototype made as an integrated circuit (IC) shown

in Figure 6. The area labeled TS in the figure is the syn-

chronization circuit. The circuit has been fabricated in a

0.35 µm CMOS process; more details about its architecture

and performance can be found in [5]. The ASIC was designed

10

2.4 mm

2.4 mm

TS

Fig. 6. Microphotograph of the CMOS communication ASIC showing the
synchronization circuit (TS).

for a wearable sensor network that is dedicated to acquiring

data from inertial sensors and electromyography electrodes [4].

All experimental results have been obtained with the pro-

totype IC operating at 20 MHz, with a data rate of 10 MHz

(m = 2). The measurements were performed on a linear

arrangement of SNs with eight nodes (BS, SN2, SN3,... SN8)

as shown in Figure 7. This arrangement represents the worst-

case situation for time synchronization. The value used for

compensating the constant delay was experimentally deter-

mined to be n = 002F16. Clock signals have been observed

and measured with a digital oscilloscope.

N2BS 2 3 87

Fig. 7. The linear arrangement of 8 SNs used for experimental evaluation.

A. One-hop clock skew

Figure 8 shows the one-hop clock skew between SN2 and

BS as clock reference. The oscilloscope images of the rising

edge of clock Clk-sync were generated using the infinite time

persist display mode.

According to Equation (15), clock skew is proportional

to the variation of the recovered clock signal. For the IC

implementation used here, the maximum value of dSr/dt is

one system clock cycle (± 25 ns), a fact confirmed by the

measured total clock skew variation range (clock jitter) of

50 ns. The measured average one-hop clock skew is 4.6 ns,

which is the signal propagation delay between BS and SN2.

B. Multi-hop clock skew

According to Equation (24), clock skew increases linearly

with the number of hops. Figure 9 compares the measured

50 ns

4.6 ns

BS

SN2

Fig. 8. Measured one-hop clock skew (n = 002F16) between BS and SN2.

skew at each node in the sensor network with the calculated

values. As expected, the average clock skew increases by

almost 4.6 ns per hop. The measured clock skew variation

range also increases in agreement with Equation (24): 50 ns at

node SN2, 100 ns at node SN3, and reaches 350 ns at SN8.

0 2 4 6
−200

−100

0

100

200

Hop count

S
ke

w
 (

ns
)

Calculation
Experimental

Fig. 9. Measured and calculated multi-hop clock skew.

Figure 10 shows the measured node-to-node and global

node-to-BS average clock skew. Since m = 2, the average

clock skew depends on the propagation delay between the

nodes (4.6 ns) and accumulates as the number of hop increases,

reaching 30 ns at SN8. As expected, the average clock skew is

much lower than the total clock skew, which lies in the range

of (−176 ns, 184 ns), as shown in Figure 9. As assumed in

Section V, the delay due to signal propagation is much smaller

than the clock signal variation.

In wearable systems, the sampling frequency is usually in

the range of a few kHz. Therefore, it can be safely said that,

11

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Hop count

S
ke

w
 (

ns
)

node−to−node
node−to−BS

Fig. 10. Average clock skew.

according to the measured values of clock skew, the proposed

method is applicable to most wired wearable sensor networks.

C. Effects of Timing Message Interval and Failure on Syn-

chronization

In many applications, message failure is inevitable and it

may happen for several reasons such as collisions and high

traffic load. To evaluate the effect of message failure on

synchronization, the clock skew between BS and SN2 has

been measured as a function of the number of consecutive

missing messages. The results are shown in Figure 11 for

two different Clk-sync frequencies. In both cases, the timing

update messages are sent just before the rising edge of Clk-

sync. Therefore, the interval between updates used for the

2 kHz clock signal is half the interval used for the 1 kHz case.

Therefore, the clock skew for the latter case is larger than the

skew for the 2 kHz case.

0 1 2 3 4 5 6

0

50

100

150

Number of consecutive failed messages

Sk
ew

 (
ns

)

1KHz
2KHz

Fig. 11. One-hop skew after consecutive timing message failures.

According to Equation (25), the linear growth of clock

skew depends on the clock frequency difference between the

nodes. In the absence of failures, the synchronization accuracy

is in the range [−21 ns; 29 ns], as expected. The observed

increase of the clock skew in the presence failures means

that, in this case, ∆t > 0 ⇒ τS > τM . This means that the

upper (positive) bound of the skew grows with the number of

missing messages, while the lower (negative) bound stays the

same. For situations where ∆t < 0, it is the lower bound that

becomes increasingly more negative. Regardless of the clock

skew, a successful synchronization message puts the skew of

the receiver back in the range [−21 ns; 29 ns].

If a connection line is broken between two nodes, we

expect the skew of the disconnected segment to grow without

limit, but the synchronization between nodes in each segment

to be maintained. To confirm this behavior, nodes SN2 and

SN3 were disconnected at t = 37 s in order to obtain the

results for average clock skew shown in Figure 12. Until

the disconnection occurred all nodes stayed synchronized. At

t = 37 s SN3 starts running free and its skew starts to increase

as expected. The nodes on the disconnected segment get their

time reference (directly or indirectly) from SN3 and stay

synchronized with it. The clock skew after the disconnection

depends on the clock difference between BS and SN3. In the

present case, the positive slope of the skew curve is due to

the fact that the clock of SN3 has a somewhat higher clock

frequency that the clock of BS. If the clock of the disconnected

node shows a smaller frequency, the slope of the skew curve

will become negative.

0 10 20 30 40 50
0

20

40

60

80

100

120

Time (s)

Sk
ew

 (
ns

)

SN2
SN3
SN4
SN5

Fig. 12. Average clock skew after disconnection of the line between SN2
and SN3.

The periodic exchange of timing messages generates addi-

12

tional traffic. Measurements show that with a 1 ms interval

between synchronization messages, 0.52 % of the channel

bandwidth is used for synchronization, which is almost neg-

ligible. This allows the system to achieve high precision with

an average clock skew below 5 ns. Some Body Area Networks

(BAN) applications may not need such a high precision. If

precisions in the range of a few microseconds is enough, the

time interval between messages can be made larger (in the

range of a second), consuming even less energy and channel

bandwidth.

Figure 13 shows the measured skew between BS and SN

as a function of time for two update intervals: 1.5 s and

5 s. The skew depends on the clock frequency difference

between the nodes, which has been measured to be 3.7 ppm.

Since the clock frequency of each node stays constant, the

accumulation of the small difference grows linearly, reaching

18.5 µs (for a 5 s interval) and 5.58 µs (for a 1.5 s interval).

In both cases, the absence of synchronization message for a

long time results in significantly higher skew. Nevertheless, a

message synchronizes Clk-sync immediately.

0 2 4 6 8 10 12
0

0.5

1

1.5

2
x 10

4

Update interval (s)

Sk
ew

 (
ns

)

1.5 s
5 s

Fig. 13. Clock skew for update interval of 1.5 s and 5 s, Clk-sync = 1 kHz.

Overall, the experimental results confirm the synchroniza-

tion behavior of the protocol as explained and analyzed in the

previous sections.

VII. CONCLUSION

The time synchronization protocol described in this paper

is intended for hardware implemented at the MAC layer. It

is based on one-way master-to-slave message exchange. For

wearable sensors, in which sensors are connected to each other

with conductive yarns, the transmission delay is kept in a fixed

range by using dedicated transmitters and receivers together

with the proposed protocol. This leads to high precision time

synchronization by minimizing the clock skew. Theoretical

analysis and experimental results indicate that in the proposed

protocol, the average of one-hop time skew is equal to the

signal propagation from sender to receiver, which is in the

range of a few nano seconds for the case of wearable systems,

and is the minimum value possible when synchronization is

performed at the hardware level. In a multi-hop network,

global average-time skew grows linearly with hop count. As

the experimental results indicate, the average global skew

after 8 hops is less than 30 ns. The value of 8 hops in the

clock tree is bigger than the number of almost all existing

wearable systems. This means that the aforementioned method

is scalable for wearable networks.

In the context of wearable systems, the proposed protocol

achieves better performance than PTP, better energy efficiency

and less complexity, while keeping a level of precision in

synchronization that is sufficient to satisfy many body-area

networks applications. The main characteristics responsible for

such improvements are reduced message communication and

fewer calculations required for synchronization.

REFERENCES

[1] M. Buevich, N. Rajagopal, and A. Rowe. Hardware assisted clock
synchronization for real-time sensor networks. In Real-Time Systems
Symposium (RTSS), 2013 IEEE 34th, pages 268–277, Dec 2013. 3

[2] T. Cooklev, J. Eidson, and A. Pakdaman. An implementation of IEEE
1588 over IEEE 802.11b for synchronization of wireless local area net-
work nodes. IEEE Transactions on Instrumentation and Measurement,
56(5):1632–1639, Oct 2007. 3

[3] F. Derogarian, J. C. Ferreira, and V. M. G. Tavares. A routing protocol
for WSN based on the implemention of source routing for minumum
cost forwarding method. In Proc. 5th Intl. Conf. on Sensor Tech. Appl.
(SENSORCOMM 2011), pages 85–90, Aug. 2010. 4

[4] F. Derogarian, J. C. Ferreira, and V. M. G. Tavars. Design and
implementation of hybrid circuit/packet switching for wearable systems.
In 23rd Intl. Symposium on Industrial Electronics, ISIE2014, June 2014.
10

[5] F. Derogarian, J. C. Ferreira, and V. M. G. Tavars. A time syn-
chronization circuit with an average 4.6 ns one-hop skew for wired
wearable networks. In 17th Euromicro Conf. on Digital Systems Design,
DSD2014, Aug. 2014. 2, 9

[6] C. D. Dominicis, P. Pivato, P. Ferrari, D. Macii, E. Sisinni, and A. Flam-
mini. Timestamping of IEEE 802.15.4a CSS signals for wireless ranging
and time synchronization. IEEE Transactions on Instrumentation and
Measurement, 62(8):2286–2296, Aug 2013. 1

[7] J. Elson, L. Girod, and D. Estrin. Fine-grained network time syn-
chronization using reference broadcasts. In Proc. 5th symposium on
Operating systems design and implementation, SIGOPS, pages 147–163,
2002. 2, 3

13

[8] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol
for sensor networks. In Proc. 1st Intl. Conf. on Embedded Networked
Sensor Systems, SenSys ’03, pages 138–149, 2003. 2, 3

[9] L. Gatzoulis and I. Iakovidis. Wearable and portable ehealth systems.
IEEE Engineering in Medicine and Biology Magazine, 26(5):51–56,
2007. 3

[10] IEEE 1588-2008 standard for a precision clock synchronization protocol
for networked measurement and control systems, 2008. 3

[11] IEEE. IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. IEEE, July 2008. 6

[12] S. Lasassmeh and J. Conrad. Time synchronization in wireless sensor
networks: A survey. In Proc. IEEE SoutheastCon 2010 (SoutheastCon),
pages 242–245, 2010. 1

[13] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester. A survey
on wireless body area networks. J. Wireless Networks, 17(1):1–18, 2011.
4

[14] K. Lee and J. Eidson. IEEE-1588 standard for a precision clock syn-
chronization protocol for networked measurement and control systems.
In 34th Annual Precise Time and Time Interval(PTTI) Meeting, pages
98–105, 2002. 2, 3, 6

[15] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal clock synchro-
nization in networks. In Proc. 7th ACM Conf. on Embedded Networked
Sensor Systems, SenSys ’09, pages 225–238, 2009. 2, 3

[16] A. Lymberis and A. Dittmar. Advanced wearable health systems and
applications - research and development efforts in the european union.
IEEE Magazine, Engineering in Medicine and Biology, 26(3):29–33,
2007. 3

[17] M. Maggs, S. O’Keefe, and D. Thiel. Consensus clock synchronization
for wireless sensor networks. IEEE Journal of Sensors, 12(6):2269–
2277, June 2012. 1, 2

[18] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time
synchronization protocol. In Proc. 2nd Intl. Conf. on Embedded
Networked Sensor Systems, pages 39–49, 2004. 3

[19] D. Mills. Internet time synchronization: the network time protocol. IEEE
J. Communications, 39(10):1482–1493, 1991. 2

[20] P. Ranganathan and K. Nygard. Time synchronization in wireless sensor
networks: A survey. Intl. J. UbiComp, 1(2):92–102, 2010. 1

[21] I.-K. Rhee, J. Lee, J. Kim, E. Serpedin, and Y.-C. Wu. Clock
synchronization in wireless sensor networks: An overview. J. Sensors,
9(1):56–85, 2009. 1

[22] A. Rowe, V. Gupta, and R. R. Rajkumar. Low-power clock synchro-
nization using electromagnetic energy radiating from ac power lines.
In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, pages 211–224, New York, NY, USA, 2009.
ACM. 3

[23] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a
survey. IEEE J. Network, 18(4):45–50, 2004. 1

[24] R. Subrahmanyan. Timing recovery for IEEE 1588 applications in
telecommunications. IEEE Transactions on Instrumentation and Mea-
surement, 58(6):1858–1868, June 2009. 3

[25] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchro-
nization for wireless sensor networks: A survey. Elsevier J. Ad Hoc
Networks, 3:281–323, 2005. 1, 2

[26] J. Wu, L. Zhang, Y. Bai, and Y. Sun. Cluster-based consensus time
synchronization for wireless sensor networks. IEEE Journal of Sensors,
15(3):1404–1413, March 2015. 2

[27] Y.-C. Wu, Q. Chaudhari, and E. Serpedin. Clock synchronization of
wireless sensor networks. IEEE Signal Processing Magazine, 28(1):124–
138, 2011. 1

[28] A. Zambrano, F. Derogarian, R. Dias, M. Abreu, A. Catarino, A. Rocha,
J. da Silva, J. Ferreira, V. Tavares, and M. Correia. A wearable
sensor network for human locomotion data capture. In 9th Intl. Conf.
on Wearable micro and nano technologies for personalized health;
pHealth2012, pages 216–223, 2012. 3

	I Introduction
	II Related Work
	III Motivation
	IV Description of the Synchronization Protocol
	V Analytic Characterization of the Protocol
	V-A Instantaneous Delay and Skew
	V-B Average Time Skew
	V-C Impact of Clock Drift and Update Interval
	V-D Probability of Synchronization

	VI Experimental Results
	VI-A One-hop clock skew
	VI-B Multi-hop clock skew
	VI-C Effects of Timing Message Interval and Failure on Synchronization

	VII Conclusion
	References

