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Abstract—Decision trees are often preferred when implement-
ing Machine Learning in embedded systems for their simplicity
and scalability. Hoeffding Trees are a type of Decision Trees
that take advantage of the Hoeffding Bound to allow them to
learn patterns in data without having to continuously store the
data samples for future reprocessing. This makes them especially
suitable for deployment on embedded devices. In this work we
highlight the features of a HLS implementation of the Hoeffding
Tree. The implementation parameters include the feature size
of the samples (D), the number of output classes (K), and the
maximum number of nodes to which the tree is allowed to grow
(Nd). We target a Xilinx MPSoC ZCU102, and evaluate: the
design’s resource requirements and clock frequency for different
numbers of classes and feature size, the execution time on several
synthetic datasets of varying sizes (N) and the execution time and
accuracy for two datasets from UCI. For a problem size of D=3,
K=5, and N=40000, a single decision tree operating at 103MHz
is capable of 8.3× faster inference than the 1.2 GHz ARM
Cortex-A53 core. Compared to a reference implementation of the
Hoeffding tree, we achieve comparable classification accuracy for
the UCI datasets.

Index Terms—Decision Tree, Hoeffding Tree, Machine Learn-
ing, Incremental Learning, FPGA, Hardware, High-Level Syn-
thesis

I. INTRODUCTION

With the rise of edge computing, FPGA vendors have been
releasing and marketing CPU+FPGA SOCs as the ideal solu-
tion for this domain. As edge devices are often specialised for a
single task in a constrained environment, it is advantageous to
build dedicated hardware to improve performance and energy
efficiency. FPGAs offer the advantage of targeted hardware
without losing the ability to adapt the platform to changes
(e.g., security updates), while being more efficient than a pure
software solution.

As High Level Synthesis (HLS) matures [1], it becomes a
more attractive approach to creating efficient high-preformance
accelerators for FPGA devices.

Machine Learning (ML) algorithms are a prime candidate
for acceleration at the edge, but their computational require-
ments exceed the capabilities of many embedded devices.
Inference at the edge is a problem being addressed by many
works, but training at the edge still faces hurdles to adoption
despite its clear benefits. In the field of Decision Treess (DTs),
many algorithms are incompatible with devices of this class

due to memory constraints. ID3 [2], and derivatives such as
C4.5 and C5.0 require the entire training dataset be present in
memory for training. Incremental learning algorithms such as
ID5 [3], ID5R [4] and ITI [5] do allow for ongoing learning
from streaming data but store the dataset samples within the
tree.

Hoeffding Trees [6] are incremental learning trees, which
are more suitable for embedded scenarios because they have
the following advantages: they asymptotically guarantee the
same classification as traditional batch learners, and they
store information about the distribution of samples statistically
rather than the samples themselves, which drastically reduces
memory requirements, especially for large datasets.

In this work, we present a flexible C/C++ HLS implemen-
tation of a Hoeffding Tree, designed for compatibility with
HLS flows for FPGAs. The Hoeffding tree variant we build
upon was proposed by Lin et al. [7] which is in turn based on
an earlier variant where the storage of the statistical data of
the sampling distribution of the original Hoeffding Tree was
replaced by a Gaussian approximation [8]. Lin et al. replaced
this approximation with quantile estimation using asymmetric
signum functions [9]. The result is a larger memory footprint
but a reduction in computational requirements, while achieving
similar results. Since it is designed in Verilog, the applicability
of the implementation is limited to circuit synthesis, e.g., for
FPGA. By using HLS, an implementation can be created that
is equally suitable for both CPU and FPGA.

The contributions of this work are as follows:

• a generic, template-based C/C++ implementation of the
Hoeffding Tree classifier as per Lin et al; [7], but that is
suited for HLS.

• functional validation of the implementation through soft-
ware execution, and post-synthesis on a Xilinx ZCU102
development board;

• evaluation of memory requirements of the tree object for
different template parameters;

• evaluation of FPGA resource requirements for different
template parameters;

• evaluation of the design’s training and inference time, for
4 synthetic data sets, and 2 datasets from UBI, versus an
ARM Cortex-A53 core;
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• accuracy comparison with the reference implementation

for the 2 UBI datasets.

II. HLS HOEFFDING TREE IMPLEMENTATION

A decision tree is a type of machine learning algorithm
used either for classification or regression. A decision tree
performs sequential binary decisions over an incoming vector
of features, and a classification is computed when a leaf node
is reached. During training, leaf nodes are added to the tree,
based on a splitting criteria, that separate the data into two
regions at every tree junction. A Hoeffding tree is a type of
decision tree where the criteria is the Hoeffding bound, shown
in Equation 1. The tree performs learning and inference by
relying on a property of the Hoeffding bound that guarantees
that best splitting point is chosen. If a gain function G, is to
be maximised, then given G(X) and G(Y ) (X and Y being
the attributes that generate the highest and second highest
values of G) if G(X)−G(Y ) > ε then the Hoeffding bound
guarantees with probability 1 − δ that X is the best attribute
to split on. R represents the range of the attributes and N the
number of samples on a node.

ε =

√
R2ln(1/δ)

2N
(1)

Over other criteria, the Hoeffding bound has two character-
istics: it allows for online incremental learning and growth of
the tree which asymptotically tends towards the results pro-
vided by batch learners, and is independent of the probability
distribution of the data sampling. The Hoeffding tree allows
for continuous learning and node splitting for a potentially
infinite number of samples (e.g. streaming applications) [6].

FPGAs have been intensively studied for decision tree
implementations, as a tree structure maps efficiently to spe-
cialised hardware. In conjunction with other optimisations,
decision trees in FPGAs have been shown to outperform CPU
and GPU solutions [10]. Lin et al. [7] demonstrate speedups
of up to 1500x for an RTL implementation of the Hoeffding
tree versus a 2.6GHz processor. Our aim is to explore a higher
abstraction level via HLS, providing greater applicability fea-
tures, while evaluating the attainable performance.

We implemented the tree as a collection of C++ templated
classes. The template parameters include the maximum num-
ber of nodes in the tree, the feature size, and the floating-point
precision. These classes implement the training and inference
methods that are then synthesised to hardware. At runtime, the
C++ tree object can be manipulated in software, and passed
as an argument to the training and inference methods, as
summarised in Figure 1.

This allows for the instantiation of several tree objects
in memory (with different template parameters, if desired).
Trees with the same template parameters can be processed by
the same synthesised circuit. Since the functions can also be
invoked in software, this means that training or inference can
be dynamically partitioned based on which device performs
better for either task, as a function of the tree parameters.

Hoeffding Tree Template

Tree Nodes

Training
Method

Inference
Method

Train/
Infer

ARM
CPUClang++/G++

void Wrapper

Tree #2
Tree #1

Load
data

Fig. 1. Software and hardware architecture of the Hoeffding Tree implemen-
tation; the training and inference kernels are shared by multiple tree objects

This also means that if the FPGA is occupied processing a
tree object, other trees can be evaluated via software without
the need for a blocking wait.

Finally, evaluation of multiple trees is possible by either
a combination of software and hardware invocations, by de-
ploying multiple instances of the hardware kernel, or by time-
multiplexing a single hardware kernel (as explained below).
Either case allows for the possibility of arbitrary runtime tree
ensembles. This evaluation is currently future work.

The Xilinx Vitis HLS flow enforces an OpenCL model for
kernel invocation. The implemented kernel, krnl_Tree, re-
ceives 4 arguments: a HoeffdingTree object as mentioned,
an array of samples, an array of output classifications, and the
size of these arrays.

In this model, a large overhead penalty would occur for
invocations with a single sample, due to the data transfer time.
A practical application of the kernel design could be, e.g., in
the sensor domain, where the tree could continuously sample
fused data from multiple sensors (i.e., multiple attributes)
without processor intervention, avoiding transfer overheads.
Alternatively, streaming samples can be accumulated until a
sufficiently large number is held such that it mitigates the data
transfer overhead. We emphasise that this does not mean that
the tree behaves as a batch learner, as one sample is processed
per each infer-then-train step.

Inference on an incremental learning decision tree cannot
be easily parallelised as the model changes and evolves with
every training sample that arrives. This restricts the pipeline
to dealing with one sample at a time, sequentially. The sample
structure contains information about whether it should be used
for training purposes or only for inference. Thus, as the kernel
loops through the sample array, it executes either the train
or infer method of the tree object accordingly. The results
are placed in the output data structure.

The OpenCL API allows for fine-grained control of how
these arguments are passed to the kernels, each argument being
a separate buffer with persistent storage. Thus, trees can be
transferred to FPGA memory once, and not retrieved between
executions of the kernels. With this mechanism, a tree object
can reside in memory while only new samples are transferred
in, and the updated model can be retrieved in a final stage.

Conversely, the samples themselves may remain in memory,
and trees freely exchanged. This is one strategy for the
construction of tree ensembles mentioned previously. Trees
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TABLE I

N, D, K AND ND EFFECTS ON FPGA RESOURCE UTILISATION

Nodes 100 100 100 1000 100 100 100 1000
K 5 5 10 5 5 5 10 5
D 3 100 3 3 3 100 3 3
N 40k 40k 40k 40k 500k 500k 500k 500k

LUT 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%) 23304 (8.6%) 20567 (7.6%) 23776 (8.8%) 24351 (9.0%)

LUTRAM 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%) 1395 (1.0%) 1179 (0.8%) 1399 (1.0%) 1397 (1.0%)

FF 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%) 35682 (6.6%) 29775 (5.5%) 36374 (6.7%) 36336 (6.7%)

BRAM 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%) 12 (1.3%) 9.5 (1.0%) 12 (1.3%) 12 (1.3%)

DSP 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%) 23 (0.9%) 25 (1.0%) 25 (1.0%) 25 (1.0%)

BUFG 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%) 13 (3.2%)

MMCM 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%) 1 (25.0%)

Freq. (MHz) 103.6 103.6 103.6 103.6 103.6 103.6 103.6 103.6

can reuse the same kernel instance via time-multiplexing, or by
concurrent instantiation of several copies of krnl_Tree. In
either case, the same read-only sample buffer can be assigned
to all trees, thus significantly reducing overhead and preventing
data duplication. For brevity, the evaluation of ensembles is out
of the scope of this paper.

III. HOEFFDING TREE SOFTWARE STRUCTURE

In this section we describe the code structure of our modular
approach to the tree construction. It allows us to adapt the
current code of the Hoeffding Tree to other ways of statistical
sample storage or to create different Decision Tree types
altogether. The following C++ templated classes are used:

A. NodeData

This class is responsible for storing all the data and methods
regarding training in a node. In this case, it harbours all
methods for quantile estimation, how to calculate the Gini
impurity of the node and find the optimal split candidates.
Template parameters of this class allow for compile-time
customisation of the type used for storing the quantile values
and make non-integer calculations. Defaults to float type.
Changing this type affects the precision of all the tree’s
calculations. Other customisations include the number of tree
attributes (D), output classes (K) and the types used to handle
and store indexes for these properties.

B. Node

The Node class stores all information regarding a node in
the tree: whether it is split, what are its children, the split value,
split attribute and the corresponding Data object. The template
parameters for this class allow for changes to the type used
to store node indexes and to the Data object class (defaults to
NodeData). If one decides that the Gaussian approximation
method is preferable in their case, a re-implementation of
NodeData is all that is necessary.

C. BinaryTree and HoeffdingTree

BinaryTree is a base class for binary tree operations.
It stores an array of node objects (whose size and class
is defined in the class template) and contains methods for
managing those nodes (splitting a node and defining children)
and sort a sample through the tree. The HoeffdingTree
class extends BinaryTree to include methods on how to
calculate the Hoeffding bound and the higher-level training
algorithm agnostic to how the data is stored.

D. TypeChooserMath

This namespace encapsulates a set of macros to resolve data
types. Based on the required precision, the class resolves the
datatype to either standard native types or to Xilinx Arbitrary
Precision (AP) types (up to 64 bits). Supporting AP types
introduces compatibility issues with math functions in the std
namespace, as Xilinx provides its own hls namespace for
math functions for its AP types. The tcm (TypeChooserMath)
namespace provides wrappers to resolve these conflicts based
on chosen datatype.

IV. EXPERIMENTAL EVALUATION

We performed the following experiments: evaluated the
resource utilisation of a single synthesised tree for a range
of values for the feature size and number of classes; evaluated
the training and inference time of a single tree in hardware,
versus the ARM CPU, for several synthetic clustering datasets
(varying number of samples, clusters, and feature size); evalu-
ated the classification accuracy and execution time of a single
tree for UCI’s Bank and Covertype datasets.

A. Resource Utilisation

Table I presents various configurations of the kernel, tailored
for datasets of different dimensions (D), with different number
of classes (K), number of samples (N) and maximum number
of nodes (Nd). The purpose is to determine the effect of
these parameters on FPGA resource utilisation. The resource
usage of the tree does not scale significantly as a function
of problem size. Specifically, N has no particular effect since
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the tree processes each sample sequentially. A design capable
of processing samples in parallel could be devised where
the resource scaling with N would be more noticeable as a
function of the degree of parallelism. However, this would
imply the creation of two different circuit implementations
(i.e., kernel functions), since learning must be sequential,
while later inference could benefit from parallel processing
of incoming data. We leave this as future work, and out of the
scope of this paper. The other problem size parameters result
in a small increase of resource usage. The maximum number
of nodes (Nd) only influences the maximum depth of the tree
traversal while the feature size (D) and the number of classes
(K) affect, mainly, some of the innermost loops of the tree
circuit.

The highly sequential nature of the generated kernel, also
explains why the performance on training tasks is poor when
compared to the CPU. This overall advantage is less surprising
when considered in the context of an 11-fold CPU advantage in
terms of clock speed. Current HLS tools cannot automatically
parallelize sequential code. Without hardware design expertise
to optimise the design, the implementation will be far from
optimal. In our implementation, we still believe that further
parallelization can be achieved even within a single tree,
through inner loop unrolling or memory partitioning. One
interesting result is that of the kernel’s operating frequency. It
remains unchanged for all configurations. Looking deeper into
the cause of this phenomenon, we found that the bottleneck
is the sorting of a sample down from the root node to the
appropriate leaf node. This sequential operation also prevents
the kernel from being properly pipelined.

Figure 2 illustrates the C++ object size growth given dif-
ferent Nd, D and K parameter values. The number of samples
processed to date by the tree does not influence the size of
the model due to the Hoeffding Tree’s statistical storage of
sample data.

B. Performance

These results were obtained by feeding the tree with datasets
of K clusters in a D dimensional spaces, constituted of N
points. For these experimental runs, we will have the entire
dataset transferred in a single operation to the FPGA’s memory.

Looking at the first four rows of Table II (D=3) it can be
observed that for a 3-dimensional dataset, regardless of the
bundle size, the ARM CPU in the ZCU102 SoC significantly
outperforms the FPGA implementation in both the training
and inference tasks. Also, the performance gap between both
implementations grows with the number of samples processed.
This indicates that the kernel is slower, per iteration, than
the pure software solution. Regarding the last four rows of
Table II (D=100), the ARM CPU still outperforms the FPGA
kernel in training. However, it does it with a lower margin
and one that does not appear to grow with the added number
of samples. On the inference task with this larger dataset, the
FPGA outperforms the ARM processor by 8.3×.

Table III presents benchmarks of two of the UCI datasets
used by Lin et al. [7]. The same tree parameters were used

TABLE II
TRAINING AND INFERENCE TIMES FOR FOUR SYNTHETIC CLUSTERING
DATASETS, FOR THE ARM CPU (1.2GHZ) AND THE FPGA (103MHZ)

K D N Task ARM CPU FPGA Speedup

5

3

40k
Training 207 ms 1,990 ms 0.10×

Inference 151 ms 462 ms 0.33×

500k
Training 2,983 ms 30,933 ms 0.10×

Inference 2,260 ms 11,442 ms 0.20×

100

40k
Training 6,028 ms 51,648 ms 0.12×

Inference 3,924 ms 469 ms 8.37×

500k
Training 75,763 ms 651,775 ms 0.12×

Inference 49,495 ms 11,494 ms 4.31×

TABLE III
EXECUTION TIME (INFER-THEN-TRAIN) AND ACCURACY (ACC.) FOR

COVERTYPE AND BANK DATASETS, FOR THE ARM CPU (1.2GHZ) AND
THE FPGA (103MHZ)

ARM CPU FPGA

Acc. Time Acc. Time Speedup

Bank 88.3% 202 ms 88.3% 8,525 ms 0.02×

Covertype 72.2% 9,712 ms 63.7% 374,600 ms 0.03×

(δ = 0.001, λ = 0.01, τ = 0.05, nmin = 200, npt = 10,
nquantiles = 16, Nd = 2047), with one being of special
relevance: Nd (maximum number of nodes). A significant
slowdown occurred. With the increased number of nodes,
the sequential tree traversal algorithm increases in length.
While the previous evaluation separated the train and inference
components, so that we could evaluate the impact of each on
the performance, this evaluation processes the training data as
intended by the runtime learning algorithm, i.e., a sequence of
infer-and-train steps per each consumed data point.

Our HLS implementation achieves comparable accuracy for
Bank, although the performance for Covertype is inferior. Lin
et al. [7] reports 89.30% and 72.51%, respectively. We believe
a difference in calculation precision between the CPU and
FPGA caused the degradation, despite the use of 32-bit floating
point data types for both devices.

Figure 3 illustrates a tree model obtained from training with
the Covertype dataset that was only allowed to grow to a
maximum of 5 nodes (Nd=5).

V. RELATED WORK

Kulaga et al. [11] present an HLS decision tree ensemble
solution for inference tasks. The results achieved are com-
petitive regarding performance when compared to the ARM
core present in the tested SoC. However, the design is highly
dependent on the number of trees and corresponding depths, as
a change in ensemble parameters requires re-tuning multiple
pragmas.As we have also seen, an unavoidable sequential
portion of the algorithm is the sample sorting through the
tree structure. Unlike our approach, the number of trees in an
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D=1 D=2 D=4 D=8 D=16 D=32 D=64 D=128
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Size of Tree object in bytes

K=1 K=2 K=4 K=8 K=16 K=32 K=64 K=128

Fig. 2. Size of Tree objects in bytes for Nd, D and K. Each bar in every grouping, depicts a tree with a maximum number of nodes (Nd) from 20 to 27.

A0 ≤ 0.739
gini = 0.623

samples = 581011
value = [211840, 283301, 35753, 2747, 9493, 17367, 20510]

class = C1

A13 ≤ 0.091
gini = 0.626

samples = 169657
value = [12121, 94767, 35699, 2747, 7006, 17317, 0]

class = C1

True

gini = 0.552
samples = 411354

value = [199719, 188534, 54, 0, 2487, 50, 20510]
class = C0

False

gini = 0.496
samples = 132689

value = [12121, 91741, 14245, 0, 7006, 7576, 0]
class = C1

gini = 0.582
samples = 36968

value = [0, 3026, 21454, 2747, 0, 9741, 0]
class = C2

Fig. 3. Illustrative visualisation of tree model derived from UCI Covertype dataset. The tree was only allowed to grow to 5 nodes (Nd=5) for the purposes
of this illustration.

ensemble is hardcoded into the synthesised kernel. In contrast,
by having one or more synthesised training/inference methods
(for different hyper-parameters), we can deploy N instances of
such circuits and process a runtime allocated number of trees.

As previously stated, the work on this paper builds on Lin et
al. [7] work. However, their implementation is closed-source
and done in Verilog, which excludes native execution on
CPUs. Also, as the work was developed for a datacenter-class
FPGA device, the implementation is very resource intensive
and thus not suitable for small devices such as the ones used
on embedded systems.

VI. CONCLUSIONS

We presented a flexible and scalable implementation of a
Hoeffding Tree compatible with HLS tools1 We performed
a functional validation of the tree design, against software
execution, by implementation on chip on a Xilinx ZCU102.
We provide a evaluation of the design’s resource usage for
multiple template parameter values (i.e., maximum tree size,
number of sample attributes, number of clusters, and number
of dataset samples), as well as execution time versus an ARM

1https://github.com/lm-sousa/Hoeffding-Tree

Cortex-A53 processor. The resource requirements of the tree
do not scale significantly with problem size, although further
HLS optimisations such as unrolling remain unexplored. Even
so, we outperform the ARM by 8.3x times for largest dataset
for the inference task, while being 8.6x slower during training.
As future work, we envision the use of tree ensembles, and the
partitioning of training and inference task between software
and hardware based on problem size.
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