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Abstract This paper discusses the possibility of using adaptive signal processing tech-
niques for maximum power point tracking controllers, in order to extract peak power
from individual photovoltaic modules. A new technique grounded on unsupervised
Hebbian learning theory (maximum eigenvector of the output power) is presented,
which works on-online and is capable of operating without a desired response. Impor-
tant modifications were made to the generic Hebbian adaptation to accommodate the
intrinsic feedback loop between the controller and the plant. Analytic derivation of the
new update rule is presented, as well as stability analysis by means of Lyapunov the-
ory. Simulation results showing its effectiveness are presented, as well as experimental
results.

Keywords Adaptive maximum power point tracking · MPPT · Hebbian learning ·
PV optimization

1 Introduction

The solar module current–voltage (IV) characteristic is nonlinear, and the maximum
power extracted relies on various factors such as insolation, temperature and load
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Fig. 1 Typical IV curve of a generic PV module. The corresponding power curve is shown in a strong
dashed curve (note that the vertical scaling is different than that used in IV curve)

impedance. Therefore, there is a unique IV point, called the maximum power point
(MPP), at which the PV system operates with maximum power, maximizing the
produced energy, as shown in Fig. 1. To locate this optimum point, several MPPT
techniques are used, following two approaches: indirect and direct methods. Indirect
methods require the measurement of several variables such as voltage, current and/or
environmental conditions, which are then fitted into an IV curve that has beenmodeled
off-line [4,10], or comparedwith IV values stored in the control system under concrete
climatological conditions [6]. However, to obtain a reasonable MPP approximation,
accurate knowledge of the PV physical parameters is required, large memory capacity
is necessary, and therefore, the computational demands are significantly high. Other
indirect methods assume that the IV characteristic is linear within a specific range, so
by measuring either the open-circuit voltage or the short-circuit current, the MPP is
given as a ratio of one of thesemeasurements [1,8]. Nevertheless, the system operation
needs to be interrupted to make such measurements, yielding significant power losses.
In general, indirect methods do not guarantee the optimum point and require previous
knowledge of the PV characteristics.

Direct methods seek the MPP by taking into account the operating point variations,
hill climbing the power curve, through time. Therefore, the search for the optimal point
is made without previous knowledge of the panel or its environmental conditions.
One of the most utilized techniques is the Perturb and Observe (P&O) method [5,
7,11,17], which periodically perturbs the terminal voltage and then moves it in the
direction of the rate of change of power by afixed and predetermined step. This iterative
process reaches MPP when the rate of change is zero. A disadvantage of this method
is that when a sudden increase of irradiance occurs, the algorithm assumes that the
cause results from a previous perturbation and not from the characteristic change. The
incremental conductance (IncCond) method [19] solves this problem by computing
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Fig. 2 Hebbian learning with
weight feedback controller
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the ratio between a change in current and voltage measurements. This ratio indicates
then the direction of change in conductance, which is incremented (or decremented)
with a predetermined step. Some more methods and variations of these exist, and the
most recent ones make use of fuzzy logic and neural networks [2,3,13]. However,
all of these methods measure at least two variables: the output current and voltage
to compute the actual power. Some authors have also proposed a model where the
current is the sole variable needed to reach the MPP, but this model can only be used
for battery charging applications, since the converter output voltage is approximately
fixed [14]. Comprehensive surveys can be found in [7,16].

In general, all methods seek the optimum impedance “seen” from the PV terminals.
These are connected to DC/DC power converters, which transfer power to a load. In
order to change the impedance, the duty cycle of DC/DC power converters is varied to
match, on average, the desired input impedance. This paper approaches this problem
in an adaptive and scalable control perspective, where the learning system receives
the plant state, x , and computes the new weight, w, which is connected to the external
environment (the PV module) in closed loop, with the goal of maximizing the output
power (Hebbian cost function). This way, the learning system is configured to optimize
a criterion function that relates x and w, which is continuously differentiable and
bounded. In the particular MPPT problem, it is evident that the cost function should
follow the same shape as the actual PVs power curve and that the globalmaximaof both
functions must coincide. Although the output signal y is computed, it is not directly
used to control the plant. Yet, it is used by the weight adaptation, as in conventional
Hebbian Learning. This feedback configuration, shown in Fig. 2, is unconventional
in adaptive filtering applications, specifically the direct use of the weight as a control
signal. Young and Poon [23] proposed a similar optimal control setup, using the an
Hebbian type of covariance feedback learning scheme. Nonetheless, their approach
effectively uses the learning system output y as a control signal.

This paper is organized as follows. Next section introduces some basic notions of
the classic Hebbian Learning rule, and the possibility of using it to perform MPPT is
discussed. Then, this rule is extended to optimize generic systems with weight feed-
back, presenting a generic modified Hebbian rule. Also, in this section, the particular
learning rule to maximize the delivered power of PV modules is derived, as well as
how to interface the adaptive system with the physical system—a PV panel controlled
with an individual DC/DC converter. The final part of this section presents a stability
analysis of the developed algorithm, proofing that it is globally stable using Lya-
punov Theory. In Sect. 3, it is shown through computer simulations that the proposed
controller is effectively able to optimize the power delivered by a PV module, in a
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Fig. 3 Linear unit model wixi y

robust fashion, even when abrupt changes (step) occur in its characteristic. Experi-
mental results, presented in Sect. 4, confirm our expected results for a real PVmodule.
Finally, Sect. 5 discusses the advantages of the method as well as comparison between
simulation and experimental results.

2 Controller Architecture

2.1 Hebbian Theory Applied to MPPT

The Hebbian rule maximizes the output variance of a linear processing unit—E
[
y2

]
,

assuming y is zero mean, by altering the weights (wi ) [17], as shown in Fig. 3. The
output is simply a linear combination of one or more inputs (xi ) and the weights
(wi ), where i is the weight and input indexes. After convergence, the weight vector
is aligned with the direction of the largest eigenvector of the input correlation matrix
[12].

The update rule can easily be obtained by taking the derivative of E
[
y2

]
, as shown

in (1), where the expectation E[. ] operator was dropped, because here we will be
seeking a stochastic gradient approach. The direction of change should follow this
gradient (increasing direction), which is the same as the formal rule represented in (2)
(the scalar 2 is embedded in the step size constant η, controlled by the user).

∂y2

∂w
= ∂

∂w

(
x2w2

)
= 2wx2 = 2xy (1)

�wi = ηxi y (2)

In practical applications, some form of normalization or nonlinearity must be used
to stabilize the weights, otherwise they grow without bounds [9]. If a single input is
considered, the output simply becomes y = wx . If one assigns to x , the square of the
PV’s measured voltage Vpv and the electrical conductance to w, this model is in fact
optimizing the PV’s delivered power, Vpv

2w. Hence, the objective function is defined
as:

J = (x · w)2 (3)

Therefore, two systemsmust be considered: (1) the adaptive system that receives the
present voltage measurement and, given the previously determined weight, estimates
the output power of the panel; (2) the physical system that receives some input from
the adaptive system and changes the panel operating point. One can easily conclude
that such input should be the equivalent electrical conductance (or load) at the PV
terminals. In this way, the controller is able to shift the actual PV state (IV point) to a
different andmore appropriate state. This effect is shown in Fig. 1, where two different
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Fig. 4 System’s configuration

conductances place the PV at different operation points, therefore generating more (or
less) power.

2.2 Recurrent Hebbian Learning Rule

Unfortunately, the simple generic Hebbian update rule shown in (2) cannot be used
in this scenario as it is focused on feed-forward networks, where no feedback exists,
i.e., normally the input signal x is independent of the adaptive system. In the proposed
method, x is also a function of w, since a different conductance implies a different IV
point, related with the particular PV characteristic. Therefore, this interaction must
be taken into account in the update rule. Moreover, the cost function (J ) must have
a global maximum with respect to w, and its global maximum must satisfy w∗ such
that p (w∗) is the maximum power point (being w∗ the optimum conductance, and
p (w∗) the maximum power). This system architecture is depicted in Fig. 4. It is
important to note that this configuration still follows the sameconcept of linear adaptive
models, where the weights work as “knobs” to optimize a certain criterion function.
Furthermore, the weights are naturally bounded (if convergence is assured) by the
plant nonlinearity, avoiding normalization procedures such as Oja’s rule [18].

Under these circumstances, the objective function to be maximized is as shown in
(4):

J = J (x(w),w) (4)

The rate of change of the objective function, with respect to w, yields the update
rule for the PV system. Thus, J is differentiated with respect to w:

dJ

dw
= ∂ J

∂x

dx

dw
+ ∂ J

∂w
(5)

Since for our problem, the objective function is still defined as the output power
J = y2, substituting in (5) yields

dJ

dw
= 2w2 dx(w)

dw
x(w) + 2w(x (w))2 (6)

The weight is therefore updated proportionally to this gradient, yielding

wn+1 ← wn + η [xn yn + wn yndn] (7)
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where yn = xnwn ,n is the iteration step, dxdw
was replacedbydn , a small proportionality

constant η was included for step-size control, and the 2 scalar was aggregated in it.
Note that the role of the adaptive system output (y) is now to provide an estimate of
the current delivered power. This rule effectively maximizes the power delivered by an
individual PVmodule, providing an on-line system identificationmethod, although not
complete identification is carried out, since it is not necessary. Through this gradient
approach, the power curve is climbed with a variable step size so, as the MPP is being
reached the step size is reduced. This way, η should be chosen so that a good trade-
off exists between the speed of adaptation and steady-state oscillations (rattling). Its
resulting expression resembles the conventional Hebbian rule shown in (2), with the
addition of the plant feedback (reflected by the dn derivative). The adaptation ends
when these two terms cancel each other, reaching the MPP. This derivative can be
approximated through temporal differences of x and w, as

dn = xn − xn−1

wn − wn−1
(8)

The derivative estimation is of major importance, especially because when the
algorithm reaches the optimum conductance w∗, its value is nonzero. In fact, by
making (wn − wn−1) = 0 in (7) yields:

d∗ = − x∗

w∗ (9)

where d∗, x∗ and w∗ refer to the optimum values for the respective variables. Here,
we apply smooth derivative operators, as follows:

d(t) = x(t) − ∫ t
t−T x(t) dt

w(t) − ∫ t
t−Tw(t) dt

(10)

where T is the period of this moving average filter.

2.3 Stability Analysis

The update rule just derived can be written in terms of the time derivative of w, as
follows:

ẇ = f (w) (11)

where ˙(.) refers to the time derivate of the respective variable and

f (w) � η

T

dJ

dw
(12)

where T is the sampling step of the controller (note that when T → 0, this approxima-
tion becomes exact). Also, note that the dynamics of an hypothetical DC/DC converter
attached to the PV module are neglected. We are now ready to prove asymptotic con-
vergence.
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Theorem 1 The autonomous system in (11) is globally stable around a nominal
motion—the optimum power point.

The proof will be conducted through the Lyapunov direct method, by transforming
it as a stability problem around the origin of the equivalent system.

Proof Let the error between the optimum conductance w∗ and the present one be
defined as e(t) = w(t)−w∗. Therefore, the goal is to study the following autonomous
system with respect to the origin:

ė = g(e)

= f
(
w∗ + e

) − f
(
w∗) (13)

Let V (e) be a Lyapunov candidate function for this system. It will now be shown
that the conditions for global stability are satisfied for that function, thus proving
global stability of the system. In other words, V (e) is a positive-definite function and
V̇ (e) is negative-definite function for the given system. Let such function be defined
as:

V (e) = T

4η
e2 (14)

This function is positive definite. Note that it was considered that T is to be small
enough to make both sides of Eq. (12) equal. Taking its derivative with respect to time,
one obtains:

V̇ (e) = T

2η
eė

= T

2η
e
(
f
(
w∗ + e

) − f
(
w∗))

= e

([
x(w)2w + w2x(w)

dx

dw
(w)

] ∣∣∣
∣
w=w∗+e

− 0

)
(15)

The terms of this equation can be aggregated into:

V̇ (e) =
(
ex(w)w

d [x(w)w]

dw

) ∣∣∣∣
w=w∗+e

(16)

For an easier reading, consider the three terms of the equation: the e factor, x(w)w

and d[x(w)w]
dw

all evaluated at w = w∗ + e. The second term is a translated version of
the power curve in the e domain by w∗, i.e., y(w∗ + e). It is always positive within
the domain of interest, i.e., ∀e > −w∗ (note that for e < −w∗, the w value becomes
negative, which will never occur because w always acts as a passive resistor load).
The third term is the derivative of the power (y)with respect tow evaluated atw∗ + e,
and hence, its value is zero when e = 0. One can study how such function behaves, by
looking at the y(w) function. Note that, when w = 0, the PV operates in open circuit,
and hence, the delivered power is zero. Conversely, if w = ∞, the PV operates in
short circuit, also delivering zero power. In the e domain, these two values correspond
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Fig. 5 Current–voltage curve and respective power voltage of the simulated PV module used to compare
the developed method with the P&O method. The dashed curves correspond to the same PV module but
when the irradiance has been reduced to half

to e = −w∗ and e = ∞, respectively. For e = 0, its value is maximum; therefore
when e ∈ [−w∗, 0

[
, the corresponding derivative is positive and when e ∈ ]0,∞[, the

derivative is negative. This observation provides a sufficient proof of stability, since
we have shown that: 1) when e ∈ [−w∗, 0

[
all terms in V̇ (e) are positive, but the e

factor implies that this equation takes a negative value; 2) when e ∈ ]0,∞[, all terms
are positive expect for the third one yielding a negative function; 3) V̇ (0) = 0. 	


The main conclusion of this proof is that, provided that the dx
dw

derivative (imple-
mented using Eq. (8)) is properly estimated, the controller is able to “force” the con-
nected PV module to operate at its MPP.

3 Simulations

In order to test the effectiveness of the proposed technique, the system was modeled
in the MATLAB/Simulink environment so that different scenarios could be tested.

In order to effectively impose the conductance computed by the adaptive controller,
some sort of interface system must be employed between the adaptive system and
the DC/DC converter, translating the conductance value into an equivalent duty-cycle
value.Assuming an ideal converter, this could be done by using the known input/output
resistance relations for this type of converter. However, the output load would have to
be known, which inmost practical situations is unknown. To address this problem, a PI
controller was introduced to adjust the duty cycle based on the error signal determined
between the input resistance returned by the controller and the actual input resistance.

Two sets of simulation tests were conducted. In the first scenario, the algorithmwas
compared with the P&O and IncCond methods, since they are perhaps the most fre-
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quently found algorithms in literature. The controlling variable in these two algorithms
is the voltage value, which is later fed into a PI controller, imposing it at the PV termi-
nals. Conceptually, the controllers’ procedure is similar to the developed algorithm,
i.e., a new value of an electric variable is computed and a PI controller adjusts the
duty cycle, so that the present and the desired values match. To achieve proper perfor-
mance comparison, the system to be optimized was kept exactly the same throughout
the various simulations. The simulated PVmodule was based on the one-diode model,
whose characteristic curve is as shown in Fig. 5 (represented by the solid curves) and
the system setup comprised the following characteristics: an MPPT update rate of
100ms, a digital PI controller updated every 50ms and a digital first-order low-pass
filter running at 125kHz, applied using:

y[n] = y[n − 1] + α(x[n] − y[n − 1]) (17)

where y[n] is the output of the filter, x[n] is the input and α is the smoothing factor, set
to 0.1. It was applied to voltage, current and power signals, and the impedance value
was further calculated throughout time. The relatively slow update rates of the different
blocks are related to the relativity long time constant of the boost DC/DC converter,
which had the following characteristic values: L = 600μH, C = 1.080mF, being
operated by a resistive load of value R = 140�. It should be noted that the update
rates were selected, so that they are large enough when compared to the relatively long
time constant of the converter, thus neglecting the converter dynamics.

Regarding the derivative estimation in Eq. (8), the discrete version of the expression
in Eq. (10) was used with a window of size 4 (T = 400ms in the continuous version),
followed by a saturation block. It avoids the high-frequency components present at
the panel voltage, consequent of the converter switching, and also the spikes and large
variations on the derivative estimate (dn). A good choice for the upper and lower limits
of this saturation function can be obtained using Eq. (9) as follows. It was assumed that
in a real application, the optimum values (x∗ and w∗) are not exactly known. Yet, one
can easily obtain an ε value that bounds it, such that ε > |d∗|. A proper estimate can be
accomplished by using the open-circuit voltage squared as x∗ in nominal conditions
(assumed known a-priori) and a moderately high value for the optimum conductance
(w∗). In the simulation results, ε was set to 5 × 104, which is considerably higher
than the optimum value for this PV (d∗ = −1.7× 104). The block diagram shown in
Fig. 6 represents a simplified schematic of this setup.

In order to effectively compare the performance of both controllers, the step sizes
were set so that the time constant of adaptation is approximately the same. Therefore,
all were initialized with an input impedance of 100�, and the �V value was set to
1.5V for the P&O and IncCond algorithms. Regarding the developed algorithm, the
step size (η) was set to 4.7 × 10−6, leading to a convergence time of approximately
0.4 s for all the three algorithms.

Figure 7 shows the simulation results when the P&O algorithmwas used; (a) shows
the power extracted over time, while (b) displays the resistance and duty cycle, in blue
and green, respectively. The optimum power and resistance values are shown in a
horizontal, dashed red line for both plots.

Figure 8 shows analogous results, but now when the IncCond method was applied.
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Fig. 6 Block diagram of the whole system

Finally, Fig. 9 shows the obtained results when the developed algorithm is applied
to the same system. One thing that becomes immediately clear after comparison is the
much smaller ripple present in steady state, for the same settling time of the algorithm.
This effect is clearer in the resistance plot (note that both plots are in the same scale).
This leads to a decrease on the average power extracted from the PV module.

The second test aimed at validating the designed algorithm against abrupt changes
in the environment. A step change has been simulated in the irradiance, leading to
a new IV characteristic for the attached module, which is shown in the dashed lines
of Fig. 5. Here, the irradiance has been reduced to half, implying that the maximum
extractable power is half of the nominal. Figure 10 shows the simulation results for this
scenario (note that the step change occurred at t = 1.5s). As expected, the algorithm
is perfectly capable of tracking such change.

The most significant result from this section is that the proposed algorithm is effec-
tively able to deliver, on average, more power than two of the most commonly found
algorithms in the literature, P&O and IncCond. The benchmarking scenario resulted
in the following average power extracted: 47.01W for P&O, 46.69W for IncCond and
47.67W for the presented algorithm, representing around 2% less power extraction
when compared to the proposed algorithm.

4 Experimental Results

In order to confirm the results obtained during simulations, a simple prototype of the
system was built. It comprises a dedicated DC/DC boost converter whose characteris-
tics are exactly the same as those used in simulations. It was specially designed for this
purpose, similar to the one represented in Fig. 6, controlled by the algorithm that is
run by a PC application interfacing via RS232 port. Figure 11 shows this experimental
implementation.
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Fig. 11 DC/DC boost prototype
built in your experiments

The data are collected by an ATMEL Atmega8 microcontroller, which simultane-
ously reads the electric signals through its internal 8 bit ADC at a sampling rate of
Fs = 125kHz. It also generates a 100kHz rectangular wave, with variable duty cycle,
to control the DC/DC switch (connected to a driver circuit that controls the MOSFET
gate), as in simulations. On the PC side, a dedicated application was developed on
the Lazarus Free-Pascal IDE environment that receives the electric measurements and
implements the adaptation algorithm. A simple digital first-order low-pass digital fil-
ter was also applied with exactly the same characteristics of that used in the previous
section.

A PI controller block is also implemented at this level, for the conductance loop.
Apart from the adaptation algorithm, this application also returns the panel curve,when
needed, sweeping the duty cycle of the PWM throughout all its operational range. The
software keeps a log of the system state (voltage, current, power, etc.), so that one can
later analyze the overall system. Figure 12 shows an image of the developed software
running on a PC after an IV curve has been extracted (allowing adequate knowledge
of the optimum values for the different variables prior to the algorithm execution). All
the update rates were set exactly as in the simulations.

The system was tested in a clear sky day in order to avoid short-time changes in
the PV’s IV characteristic. Thus, the experimental procedure started by first extracting
the PV curve, in order to obtain the optimum operating point. Next, the algorithm was
allowed to run normally, logging the data over time. Figure 13 shows the IV and power
curves of the real PV module used in the experimental setup. Based on this curve, the
optimum operating points of the system are as follows: V ∗ = 32.45V , P∗ = 53.62W ,
R∗
in = 16.64� and w∗ = 0.050. Note that the load connected at the DC/DC converter

output terminals was considered to be large enough (140�) when compared to the
optimum resistance, allowing the controller to obtain a sufficiently complete range of
the IV curve.

Figure 14 shows the experimental results of the algorithm running with η = 2 ×
10−7, starting again with an input impedance of 100�. The saturation limits for the
derivative estimate were obtained as explained in the previous section, set now to
ε = 8 × 104. Here, the step size was significantly increased with respect to that used
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Fig. 12 Overview of the developed software after an I–V curve has been extracted from the connected PV
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Fig. 13 Power and I–V curve of the PV module used in the experimental work

in the simulations, because of the larger noise magnitude present in the measured
variables, mainly related to the used current sensor. However, similar conclusions
can be drawn, confirming the results obtained during simulations. Despite having
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Fig. 14 Measured variables during the adaptation of a real PV module with the developed algorithm. a
Measured output power,bmeasured resistance, c adaptive systemweight (imposed conductance),d adaptive
system input (measured voltage squared)

some overshooting at 2 s, the algorithm quickly senses it, reaching steady state at
approximately 6 s.

5 Conclusions

This paper provides a methodology to performMPPT in individual PVmodules based
onHebbianLearning,mimicking the adaptive process carried out inHebbiannetworks,
i.e., tracking the largest eigenvectors of the input correlation matrix. Therefore, the
application of adaptive signal processing methodologies to a control problem is by
itself a contribution of this manuscript. Such paradigm leads to a weight feedback
constraint, which is not normally present in these methodologies. It is shown how to
modify the generic Hebbian rule to optimize these systems. A generic expression was
also derived to obtain a learning rule that optimizes an arbitrary criterion function,
which here has been applied to maximize the power output of PV modules. Along
with this, stability analysis was also carried out using Lyapunov theory applied to a
generic PV function, where a theoretical proof of global stability was presented. It



2990 Circuits Syst Signal Process (2015) 34:2973–2992

should be noted that, although focused on MPPT controllers, this methodology may
be applied to any black-box device, where one wants to extract full power (provided
that its function is differentiable and bounded).

Simulation and experimental results show that the method provides a robust alter-
native to performMPPT in PVmodules, especially when compared to two of the most
usually found algorithms in real-life applications, P&O and IncCond. In fact, when
optimizing individual panels, the proposed adaptation expressionmay resemble that of
IncCond. However, it should be highlighted that as opposed to IncCond, the controller
is in fact only utilizing a single variable (voltage) to perform adaptation, despite the fact
that the impedance still needs to be set at the converter level. Yet, it is capable of extract-
ing, on average, more power in steady state than that extracted by the two other algo-
rithms,when the same settling time is considered.Although variousmethods have been
proposed to increase the performance of these two algorithms, e.g., reducing�V as the
controller is reaching the optimum, itwas opted to test the controllers in theirmost basic
form, since such approaches could also have been adopted to the developed algorithm.
It should be also highlighted that although the developedmethodologyhas been applied
to a DC/DC converter in a boost typology, it can be used in any converter typology.

The developed method is based on strong theoretical foundations, grounded on an
adaptive signal processing framework. This way, the presented framework may also
open new perspectives on distributed MPPTs systems. It should be easily extended to
incorporate the information of other panels in an aggregation with the purpose to con-
trol the overall power. As in conventional adaptive systems, the output of the controller
will be the weighted sum of the inputs (other panels’ state), and the weights will still be
related to the duty cycle of each associated converter in a certain way. Thus, the output
is still the estimated power delivered, but now in global terms. The proposed method
has no prior information regarding the model itself. In this sense, it is similar to data-
driven frameworks,which operate only based on data gathered from sensors. Examples
of its application [20–22] have shown to produce exciting results. Regarding a practical
implementation of the learning rule itself, the only required free parameter to be set is
the step size (η). This has direct implication in the time of convergence of the system
and steady-state rattling. It also influences the estimation of the voltage-conductance
derivative (dn). A poor estimation of such value might worsen the global performance
considerably. As future researchwork, we aim at studying the performance and robust-
ness gains of using H∞ [15,18] methods in either a single or multi-PV framework.

Acknowledgments This work is supported by the ERDF through the Programme COMPETE and by
the Portuguese Government through FCT—Foundation for Science and Technology, project ref. CMU-
PT/SIA/0005/2009. The authors would also like to thank the “Autonomia Recursos Renováveis, SA” com-
pany for providing the PV module used in the experimental work.

References

1. J. Ahmad, A fractional open circuit voltage based maximum power point tracker for photovoltaic
arrays, in 2010 2nd International Conference on Software Technology and Engineering (ICSTE), vol.
1, pp. V1-247–V1-250 (2010). doi:10.1109/ICSTE.2010.5608868

http://dx.doi.org/10.1109/ICSTE.2010.5608868


Circuits Syst Signal Process (2015) 34:2973–2992 2991

2. F. Bouchafaa, D. Beriber, M. Boucherit, Modeling and simulation of a gird connected pv generation
system with mppt fuzzy logic control, in 2010 7th International Multi-Conference on Systems Signals
and Devices (SSD), pp. 1–7 (2010). doi:10.1109/SSD.2010.5585530

3. A. Chaouachi, R. Kamel, K. Nagasaka, Microgrid efficiency enhancement based on neuro-fuzzy mppt
control for photovoltaic generator, in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC),
pp. 002889–002894 (2010). doi:10.1109/PVSC.2010.5614462

4. G. Farivar, B. Asaei, M. Rezaei, A novel analytical solution for the pv-arrays maximum power point
tracking problem, in 2010 IEEE International Conference on Power and Energy (PECon), pp. 917–922
(2010). doi:10.1109/PECON.2010.5697710

5. N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, Optimization of perturb and observe maximum power
point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005). doi:10.1109/TPEL.2005.
850975

6. H.S. Ibrahim, F. Houssiny, H. El-Din, M. El-Shibini, Microcomputer controlled buck regulator for
maximum power point tracker for dc pumping system operates from photovoltaic system, in Fuzzy
Systems Conference Proceedings, 1999. FUZZ-IEEE ’99. 1999 IEEE International, vol. 1, pp. 406–411
vol. 1 (1999). doi:10.1109/FUZZY.1999.793274

7. R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, L. Martinez-Salamero, Mppt of photo-
voltaic systems using extremum—seeking control. IEEETrans. Aerosp. Electron. Syst. 42(1), 249–258
(2006). doi:10.1109/TAES.2006.1603420

8. T. Noguchi, S. Togashi, R. Nakamoto, Short-current pulse-based maximum-power-point tracking
method for multiple photovoltaic-and-converter module system. IEEE Trans. Ind. Electron. 49(1),
217–223 (2002). doi:10.1109/41.982265

9. E. Oja, Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–273
(1982). doi:10.1007/BF00275687

10. M. Park, I.K. Yu, A study on the optimal voltage for mppt obtained by surface temperature of solar
cell, in 30th Annual Conference of IEEE on Industrial Electronics Society, 2004. IECON 2004, vol. 3,
pp. 2040–2045 (2004). doi:10.1109/IECON.2004.1432110

11. L. Piegari, R. Rizzo, Adaptive perturb and observe algorithm for photovoltaic maximum power point
tracking. IET Renew. Power Generat. 4(4), 317–328 (2010). doi:10.1049/iet-rpg.2009.0006

12. J.C. Principe, N.R. Euliano, W.C. Lefebvre, Neural and Adaptive Systems: Fundamentals Through
Simulations (Wiley, New York, 2000)

13. R. Ramaprabha, B. Mathur, M. Sharanya, Solar array modeling and simulation of mppt using neural
network, in 2009 International Conference on Control, Automation, Communication and Energy Con-
servation, 2009, INCACEC 2009, pp. 1–5 (2009)

14. V.Salas, E.Olas,A.Lzaro,A.Barrado,Newalgorithmusingonly onevariablemeasurement applied to a
maximum power point tracker. Solar EnergyMater. Solar Cells 87(1–4), 675–684 (2005). doi:10.1016/
j.solmat.2004.09.019. URL http://www.sciencedirect.com/science/article/pii/S092702480400385X.
International Conference on Physics, Chemistry and Engineering

15. B.Shen,Z.Wang,X.Liu,A stochastic sampled-data approach todistributedfiltering in sensor networks.
IEEE Trans. Circuits Syst. I Regular Pap. 58(9), 2237–2246 (2011). doi:10.1109/TCSI.2011.2112594

16. Shmilovitz D., L.Y.: Distributed maximum power point tracking in photovoltaic systems—emerging
architectures and control methods. Automatika? J. Control Meas. Electron. Comput. Commun. 53(2),
142–155 (2012)

17. C.W. Tan, T. Green, C. Hernandez-Aramburo, Analysis of perturb and observe maximum power point
tracking algorithm for photovoltaic applications, in IEEE 2nd International Power and Energy Con-
ference, 2008, PECon 2008, pp. 237–242 (2008). doi:10.1109/PECON.2008.4762468

18. Z. Wang, B. Shen, H. Shu, G. Wei, Quantized control for nonlinear stochastic time-delay systems with
missing measurements. IEEE Trans. Autom. Control 57(6), 1431–1444 (2012). doi:10.1109/TAC.
2011.2176362

19. Z. Xuesong, S. Daichun, M. Youjie, C. Deshu, The simulation and design for mppt of pv system
based on incremental conductance method, in 2010 WASE International Conference on Information
Engineering (ICIE), vol. 2, pp. 314–317 (2010). doi:10.1109/ICIE.2010.170

20. S. Yin, S. Ding, A. Abandan Sari, H. Hao, Data-driven monitoring for stochastic systems and its
application on batch process. Int. J. Syst. Sci. 44(7), 1366–1376 (2013). doi:10.1080/00207721.2012.
659708

http://dx.doi.org/10.1109/SSD.2010.5585530
http://dx.doi.org/10.1109/PVSC.2010.5614462
http://dx.doi.org/10.1109/PECON.2010.5697710
http://dx.doi.org/10.1109/TPEL.2005.850975
http://dx.doi.org/10.1109/TPEL.2005.850975
http://dx.doi.org/10.1109/FUZZY.1999.793274
http://dx.doi.org/10.1109/TAES.2006.1603420
http://dx.doi.org/10.1109/41.982265
http://dx.doi.org/10.1007/BF00275687
http://dx.doi.org/10.1109/IECON.2004.1432110
http://dx.doi.org/10.1049/iet-rpg.2009.0006
http://dx.doi.org/10.1016/j.solmat.2004.09.019
http://dx.doi.org/10.1016/j.solmat.2004.09.019
http://www.sciencedirect.com/science/article/pii/S092702480400385X
http://dx.doi.org/10.1109/TCSI.2011.2112594
http://dx.doi.org/10.1109/PECON.2008.4762468
http://dx.doi.org/10.1109/TAC.2011.2176362
http://dx.doi.org/10.1109/TAC.2011.2176362
http://dx.doi.org/10.1109/ICIE.2010.170
http://dx.doi.org/10.1080/00207721.2012.659708
http://dx.doi.org/10.1080/00207721.2012.659708


2992 Circuits Syst Signal Process (2015) 34:2973–2992

21. S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic data-driven fault
diagnosis and process monitoring methods on the benchmark tennessee eastman process. J. Process
Control 22(9), 1567–1581 (2012). doi:10.1016/j.jprocont.2012.06.009

22. S. Yin, H. Luo, S. Ding, Real-time implementation of fault-tolerant control systems with performance
optimization. IEEE Trans. Ind. Electron. 61(5), 2402–2411 (2014). doi:10.1109/TIE.2013.2273477

23. D.L. Young, C.S. Poon, A hebbian feedback covariance learning paradigm for self-tuning optimal
control. Trans. Syst. Man Cyber. Part B 31(2), 173–186 (2001). doi:10.1109/3477.915341

http://dx.doi.org/10.1016/j.jprocont.2012.06.009
http://dx.doi.org/10.1109/TIE.2013.2273477
http://dx.doi.org/10.1109/3477.915341

	An Adaptive Signal Processing Framework for PV Power Maximization
	Abstract
	1 Introduction
	2 Controller Architecture
	2.1 Hebbian Theory Applied to MPPT
	2.2 Recurrent Hebbian Learning Rule
	2.3 Stability Analysis

	3 Simulations
	4 Experimental Results
	5 Conclusions
	Acknowledgments
	References




