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Abstract—Cancer genome projects are characterizing the
genome, epigenome and transcriptome of a large number of
samples using the latest high-throughput sequencing assays.
The generated data sets pose several challenges for traditional
statistical and machine learning methods. In this work we are
interested in the task of deriving the most informative genes from
a cancer gene expression data set.
For that goal we built denoising autoencoders (DAE) and stacked
denoising autoencoders and we studied the influence of the input
nodes on the final representation of the DAE. We have also
compared these deep learning approaches with other existing
approaches. Our study is divided into two main tasks. First, we
built and compared the performance of several feature extraction
methods as well as data sampling methods using classifiers that
were able to distinguish the samples of thyroid cancer patients
from samples of healthy persons. In the second task, we have in-
vestigated the possibility of building comprehensible descriptions
of gene expression data by using Denoising Autoencoders and
Stacked Denoising Autoencoders as feature extraction methods.
After extracting information related to the description built by
the network, namely the connection weights, we devised post-
processing techniques to extract comprehensible and biologically
meaningful descriptions out of the constructed models.

We have been able to build high accuracy models to discrim-
inate thyroid cancer from healthy patients but the extraction of
comprehensible models is still very limited.
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I. INTRODUCTION

Cancer is the name given to a collection of related diseases,

all of them being connected to the abnormal cell multiplication

and spreading into surrounding tissues [1]. Given that it affects

millions of people worldwide each year, cancer attracts a

substantial amount of medical research due to the number of

deaths and the impact on the quality of life of the patients.

Cancer research focus on prevention, detection and treatment

with the more prevalent and worst prognosis types of cancer

receiving more research attention.

Morphological and clinical based prediction of cancer has

some limitations, tumors with similar characteristics can fol-

low significantly different clinical paths and show different

responses to therapy. To overcome this problem and gain better

insights, gene expression analysis has been frequently used in

cancer research studies [2][3][4].

Gene expression is an intermediate phenotype that reflects

the cellular state. Characterization of the patterns of gene

expression provides a better understanding of the molecular

basis of the disease with possible implications in diagnosis

and treatment. Large scale cancer genomics projects such

as The Cancer Genome Atlas (TCGA) [5] and the Interna-

tional Cancer Genome Consortium [6] and have collected

and profiled through next generation sequencing thousands

of transcriptomic samples across dozens of different types of

cancers.

Molecular biomarkers provide important information in

terms of diagnosis, prognosis and treatment of disease [7]. The

task of discovering such predictive markers from either gene

or protein abundance large-scale and genome-wide assays,

has been of central relevance in cancer research. Statistics,

data mining and machine learning methods have been widely

used to tackle this task. Cancer genome projects are deriving

data sets of genome-wide gene expression assays such as mi-

croarrays or high-throughput RNA-sequencing, characterized

by having dozens of thousands (> 50K) features, as mea-

sured genes, and hundreds (∼500) samples from tumor and

normal tissue. These data sets pose different challenges at the

time of applying traditional data analysis methods. Moreover,

they typically suffer from highly imbalanced distribution of

cancer sub-types or between tumor and normal sample size

and underlying noise introduced be eventual technical and

biological covariates. Here, we are interested in understanding

the performance of Deep learning methods when applied to

the analysis of gene expression data. Of particular interest is

the performance on data sets that present an imbalance of

the underlying classes. Deep learning is a machine learning

approach that uses artificial neural networks with several

hidden layers. It is a rather recent term and has been used to
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solve a great variety of problems. It is getting more and more

interest, as it continues to outperform state-of-the-art classifiers

in several tasks.[8].

II. METHODOLOGY

The main goal of this work was to develop a machine learn-

ing approach to capture the most relevant relations between the

input genes towards a characterization of the gene expression

data. For that purpose we have built DAE and stacked de-

noise autoencoders (SDAE) and studied the influence of the

input nodes on the final representation of the DAE. Before

feeding the data to the models, we have first evaluated the

performance of various data sampling methods in order to

improve the performance of the models. Then, we compared

the performance of single and stacked denoising autoencoders

with other feature reduction methods such as PCA [9] and

KPCA.

In order to assess the quality of the generated features we

used a shallow artificial neural network as a classifier. Every

approach was tested using 5-fold cross-validation in order to

guarantee the robustness of the results. For the stacked autoen-

coder approach, the final architecture was found by choosing

the best performance model. The number of features for the

final representations was chosen to be 400 for comparison

with other methods as the number of final features should not

be higher than the number of samples. Finally, after having a

trained model, we studied ways to extract information about

the resulting representation generated by the autoencoders.

For that we started by studying the resulting weights from

the training process to measure the individual contribution of

each neuron to the final representation. We have also tried to

assess if there was any relation between the neurons of the

final representation and known human pathways in terms of

involved genes.

A. Data pre-processing

We have used papillary thyroid carcinoma RNA-Seq data

from TCGA[5] having 510 cancer samples and 58 healthy

samples with gene expression for 60483 genes. We have

used Gencode Annotation, which is a very comprehensive

annotation that includes different gene biotypes. While the

number of protein coding genes are ∼21K, we also considered

pseudogenes accounting for another ∼14K, long non coding

RNAs ∼13K, miRNA ∼3K and other less frequent biotypes,

summing up to the ∼60k genes. We first started by removing

genes with zero expression across all samples, resulting in

57490 genes. Then, we divided the data set in train and

test (80%-20% proportion) and ensured that no fold contains

samples from the major class only. Data was normalized after

log transformation (adding pseudo-count of one) after a Z-

score normalization (subtracting the mean and dividing by the

standard deviation).

B. Data sampling and feature reduction

After processing the data we compared the performance of

the combination between data sampling methods like Synthetic

Minority Over-sampling TEchnique (SMOTE) [10] and Adap-

tive Synthetic Sampling (ADASYN) [11] and feature reduction

methods like PCA and KPCA.

In this technique the minority class is over sampled based

on the feature space similarities between its samples. This

approach, however, has some drawbacks as when it is gen-

erating synthetic samples it doesn’t consider neighboring ex-

amples, which can lead to over generalization and increases

the overlapping between classes [12][13]. In order to deal with

this drawback, adaptive sampling methods such as ADASYN

have been proposed. ADASYN uses a method to create data

according to their distributions, that is, more samples are

generated for minority class samples that are harder to learn

compared to samples that are easier to learn[14]. In addition

to ADASYN, there are also other ways to deal with the issues

of SMOTE. One such way is to use it with data cleaning

techniques like SMOTE+Tomek or SMOTE+ENN[15] that

clean the unwanted overlapping between classes after the

oversampling, each one using different methods for the task.

For feature reduction methods we used PCA and KPCA.

PCA stands for Principal Component Analysis, it is a linear

technique whose goal is to encode high-dimensional data into

a lower dimensional representation. It finds the most important

information within the data and generates a set of orthogonal

variables called principal components that best differentiate

the data points[16]. KPCA is an extension of PCA, however,

unlike PCA, KPCA tries to find a low-dimensional nonlinear

space[17]. It uses kernel methods to compute the principal

components in high-dimensional feature spaces.

These approaches were implemented using Python packages

imbalanced-learning[18] and scikit-learn[19], respectively.

C. Stacked Denoising Autoencoders

An autoencoder is a feed-forward neural network that aims

to reconstruct the given input by using a lower dimensional

hidden layer [20]. It consists of an encoder and decoder. In the

encoder part the input is mapped to a hidden representation

by applying an affine transformation followed by a non-linear

function. In this work Leaky ReLU (Rectifier Linear Unit)[21]

was used. That transformation can be expressed as fθ(x) =
σ(Wx + b) with parameters θ = W, b, where W is a d′ × d
weight matrix, and b the bias vector. To reconstruct the input,

the hidden representation is mapped back by applying z =
gθ′(y) where gθ′(y) = σ(W ′x + b′) with θ = W ′, b′. The

reconstruction error is then optimized using a loss function. We

used Kullback-Leibler divergence to measure the difference

between the two distributions. In DAE the input is intentionally

corrupted with noise in order to avoid overfitting and extract

more meaningful information[20].

Denoising autoencoders (DAE) can be stacked to form a

deep network by using the hidden representation of one as

input for the next autoencoder [20]. These architectures are

called stacked denoising autoencoders (SDAE) and the training

of these architectures is usually done by pre-training. We

followed this approach where each autoencoder layer is trained

independently, that is, the output of an autoencoder layer
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serves as input for the next one. This approach is proved to

lead to a better generalization[20]. After the pre-training of all

the layers, a supervised fine-tuning step was performed. The

network parameters were updated to better model the training

data. Autoencoders can be useful because they can extract

both linear and nonlinear information from data. To avoid

overfitting and to improve the model generalization, in addition

to adding noise to the input we also used a regularization

factor called dropout. This technique, applied during training,

randomly drops-out nodes with a given probability at each

weigh update cycle [8].

D. Knowledge extraction

After having trained the models we have extracted the

weights of all autoencoder layers. In order to estimate the

effect of each autoencoder in the model we calculated the

sum of products of all layers as:

W =

n∏

i=1

Wi

The resulting matrix W has size 57490 × 400, which is

the size of the feature space and the size of the final feature

representation respectively.

Then, two different methods of calculating input node

importance were used: Connection Weights method [22], and

a method proposed by us that we called Top Percentage

Contributions. In a comparison reported in [23], the connection

weights method was shown to be one of the best performing

methods. In this methods, the relative importance of each input

neuron can be defined as the sum as the outgoing connections

for each input neuron. In the method here proposed, the

matrices product is also used, however, this time, for each

outer node we iterate through its incoming connections and

add the top X nodes to a set, with X being a carefully chosen

percentage.

With the list of the most relevant genes we have used

DAVID [24][25] to perform a functional annotation clustering

analysis to group similar gene terms in clusters to find how

they are connected and if the clusters made sense biologically.

Deep Learner’s layered structure may be interpreted as a

succession of abstractions. The input layer being the most

concrete one and the output layer the most abstract one. In

this work we have tried to “match” some internal nodes with

biologically relevant concepts. We have verified the similarities

between the most influential genes in each node of the hidden

representations and the genes of known human pathways. For

that, we downloaded all pathways and corresponding genes

from KEGG[26] online database and, for each node in the

final representation we compared the high weight genes with

the genes involved in each pathway.

III. RESULTS

A. Data oversampling experiment

In Table I we can see that the best overall approaches

were SMOTE+TOMEK with KPCA or SMOTE+ENN with

PCA, that yielded the same performance. We chose to work

TABLE I
SAMPLING METHODS PERFORMANCE RESULTS (%)

Sampling
method Features Accuracy Precision Recall F1 Score

Raw

None
PCA

KPCA
DAE

76.07
98.95
98.95
93.48

65.04
96.77
96.77
82.61

85.93
97.87
97.87
91.08

74.03
97.29
97.29
86.37

SMOTE
+

TOMEK

Raw
PCA

KPCA
DAE

97.54
99.12
99.30
98.07

91.12
98.04
98.20
94.60

97.90
97.23
98.06
95.09

94.34
97.63
98.12
94.83

SMOTE
+

ENN

Raw
PCA

KPCA
DAE

95.07
99.30
98.95
95.78

84.18
98.20
97.87
86.67

96.52
98.06
96.39
96.10

89.90
98.12
97.11
91.08

ADASYN

Raw
PCA

KPCA
DAE

98.41
98.95
98.77
97.18

96.64
97.87
97.77
93.46

94.63
96.39
95.48
91.94

95.57
97.11
96.61
92.14

TABLE II
FEATURE EXTRACTION METHODS PERFORMANCE RESULTS (%)

Features Accuracy Precision Recall F1 Score

Raw 97.77 91.62 97.99 94.66
PCA 99.12 98.04 97.23 97.63

KPCA 99.30 98.20 98.06 98.12
DAE 98.07 94.60 95.09 94.83

SDAE 97.36 94.70 92.05 93.30

with SMOTE+TOMEK since it yielded the best performance

using denoising autoencoders as a feature reduction method. In

this experiment we did not assess the performance of stacked

denoising autoencoders due to the extensive computation time

and hardware requirements of training such deep networks.

B. Feature reduction experiment

From Table II we concluded that the best overall perfor-

mance of generated features was from KPCA. KPCA is a

good choice to boost high dimensionality data classification

performance. However, it does not give us any specific infor-

mation about the individual relevant genes that can potentially

play the role of biomarkers.

Overall, the denoising autoencoder approach yielded similar

results. We believe that with better hardware we can eventually

tune the networks to yield similar or better results. Neverthe-

less, it could also be the case that be that a less complex model

is more adequate to fit the data.

C. Knowledge extraction experiments

In the first experiment, since we did not have the opportunity

to validate the results with a thyroid cancer specialist, we

performed a preliminary analysis on the resulting clusters

from the best scoring method which was the combination

of stacked denoising autoencoders using the Top Percent

Contributions method. From the analysis of the functional

annotation clustering filtered for p-values under 0.05 we got

three different clusters presented in Table III.
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TABLE III
FUNCTIONAL ANALYSIS CLUSTERING USING ALGORITHM TOP

CONTRIBUTIONS METHOD ON STACKED DENOISING AUTOENCODER

RESULTS WITH 378 DAVID IDS (0.0015% OF THE GENES WITH HIGH

WEIGHTS IN EACH NODE) WITH A P-VALUE THRESHOLD OF 0.05

Annotation Cluster 1 Enrichment Score: 3.88

Category Term Gene count P-Value Benjamini

UP SEQ FEATURE repeat:CSPG: 1 4 3.1−5 2.8−2

UP SEQ FEATURE repeat:CSPG: 2 4 3.1−5 2.8−2

...
UP SEQ FEATURE repeat:CSPG: 12 4 3.1−5 2.8−2

UP SEQ FEATURE domain:Calx-beta 3 3 1.3−3 3.2−1

UP SEQ FEATURE domain:Calx-beta 1 3 4.3−3 6.3−1

UP SEQ FEATURE domain:Calx-beta 2 3 4.3−3 6.3−1

SMART Calx beta 3 3 6.4−3 6.2−1

INTERPRO Na:Ca exchanger/integrin-beta4 3 7.7−3 7.9−1

Annotation Cluster 2 Enrichment Score: 1.75

Category Term Gene count P-Value Benjamini

UP SEQ FEATURE domain:EF-hand 4 5 1.3−2 8.7−1

UP SEQ FEATURE domain:EF-hand 3 6 1.4−2 8.4−1

GOTERM MF DIRECT calcium ion binding 20 1.4−2 9.5−1

INTERPRO EF-hand domain 9 2.3−2 1.00

INTERPRO EF-hand-like domain 10 2.7−2 1.00

Annotation Cluster 3 Enrichment Score: 1.42

Category Term Gene count P-Value Benjamini

UP KEYWORDS Cell division 12 2.9−2 7.3−1

UP KEYWORDS Mitosis 9 4.0−2 7.2−1

GOTERM BP DIRECT cell division 11 4.8−2 9.9−1

From this analysis we found that Chondroitin sulfate pro-

teoglycans (CSPGs), a group of genes known to be structural

components of a variety of human tissues and known to be

involved in certain cell processes such as cell growth, cell

migration, cell adhesion, receptor binding and interaction with

other extra cellular matrix constituents[27] are represented in

annotation cluster 1. It has been previously identified that

CSPGs play a role in tumor progression, growth and metastasis

[28]. Furthermore, in cluster 2, most of gene ontology terms

are related to calcium-binding regions or to EF-hand domain,

which is the most common calcium-binding motif found in

proteins. EF-hand proteins are known to be related to the

growth and metastasis of various types of cancer, including

papillary thyroid carcinoma [29][30]. Finally, the last cluster

is related to cell division and mitosis, which is directly related

to abnormal cell proliferation.

For the pathway similarity experiment we did not get yet

any relevant similarities between the computed representation

and the extracted pathways.

IV. CONCLUSIONS

In this paper we have described a set of experiments on

using Deep Learning to build a classifier to help diagnosing

thyroid cancer. We had two main objectives: i) build accurate

models; ii) extract biological/medical useful information to

help domain experts to better understand thyroid cancer. We

got very good performance from the Machine Learning point

of view. As far as knowledge extract is concerned we have

not achieved fully that goal. The analysis made has only been

able to identify some genes that are already reported in the

literature.

While there is still the need to validate the results with a

specialist in thyroid cancer, we believe that stacked denoising

autoencoders can extract good representations from this high

dimensional data and enable the extraction of biologically

meaningful information that can give cancer researchers a

direction for further studies.
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