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a b s t r a c t

The emergence of ubiquitous sources of streaming data has given rise to the popularity of algorithms for
online machine learning. In that context, Hoeffding trees represent the state-of-the-art algorithms for
online classification. Their popularity stems in large part from their ability to process large quantities of
data with a speed that goes beyond the processing power of any other streaming or batch learning
algorithm. As a consequence, Hoeffding trees have often been used as base models of many ensemble
learning algorithms for online classification. However, despite the existence of many algorithms for
online classification, ensemble learning algorithms for online regression do not exist. In particular, the
field of online any-time regression analysis seems to have experienced a serious lack of attention. In this
paper, we address this issue through a study and an empirical evaluation of a set of online algorithms for
regression, which includes the baseline Hoeffding-based regression trees, online option trees, and an
online least mean squares filter. We also design, implement and evaluate two novel ensemble learning
methods for online regression: online bagging with Hoeffding-based model trees, and an online
RandomForest method in which we have used a randomized version of the online model tree learning
algorithm as a basic building block. Within the study presented in this paper, we evaluate the proposed
algorithms along several dimensions: predictive accuracy and quality of models, time and memory
requirements, bias–variance and bias–variance–covariance decomposition of the error, and responsive-
ness to concept drift.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Any-time online regression analysis is a research topic which
tackles problems such as predicting traffic jams, power consump-
tion, entertainment trends, and even flu outbreaks. These types of
problems require online any-time predictive modeling and
responsiveness to changes in near real-time. Ensemble learning
methods are considered to be one of the most accurate and robust
machine learning approaches for solving classification and regres-
sion tasks. They have been successfully used in many real-world
problems, including the well known Netflix Prize1 competition,
where it was shown that best results can be achieved by combin-
ing multiple models and ensembles of models, each of them
specializing in different aspects of the problem.

Common knowledge on ensemble learning methods suggests
that the base models should be as accurate as possible and should
have as diverse as possible distributions of errors. Although this
seems as a simple requirement, it is not easily achieved [1]. From the

various types of models, decision trees are particularly well suited for
this task because they enable a simple and effective way to create an
ensemble of diverse yet accurate hypotheses. At the same time,
decision and regression trees are easy to interpret and can handle
both numeric and nominal attributes. The most typical approach in
learning ensembles of trees is to apply basic sampling techniques
such as bagging and boosting, or to randomize the learning process.

Hoeffding-based algorithms for learning decision or regression
trees [2–6] are one of the most popular methods for learning
trees from data streams. Due to their ability to make theoretically
supported split selection and stopping decisions in a single pass
over the training data, without having to store any of the
data instances, they are able to process large quantities of data
at a speed that goes beyond the processing abilities of batch
learning algorithms. As such, they are an invaluable tool for real-
time prediction and analysis of streaming data. A recent new
addition to the literature of mining data streams is the paper by
Rutkowski et al. [7] in which the McDiarmid's bound is proposed
as a substitution and a more suitable choice than the Hoeffding
bound. Their proposal is supported by a nice theoretical analysis,
however the experimental results presented in the paper are not
conclusive.
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While online ensembles of decision trees have been extensively
studied, algorithms for learning online ensembles of regression trees
have not been proposed or empirically evaluated yet. Consequently,
in this work, we focus on online tree-based ensembles for any-time
regression. Our base models are online Hoeffding-based regression
trees, produced by streaming any-time algorithms such as the FIMT-
DD algorithm [6] and a randomized version of FIMT-DD, termed
R-FIMT-DD, presented in this paper for the first time. We consider
two different ensemble learning methods, online bagging of
Hoeffding-based trees for regression (OBag) and online random
forest for any-time regression (ORF). We analyze and evaluate them
in terms of their ability to achieve diversity among the constituent
models, improve accuracy, as well as, in terms of their computational
complexity and demand for resources. We also provide an extensive
empirical comparison of our ensemble methods OBag and ORF to
online option trees for regression (ORTO) [8] and show that option
trees are an appealing alternative to ensembles of trees in terms of
both accuracy and resource allocation.

In sum, we make the following contributions to the area of
online learning for any-time regression:

1. We give a systematic overview of existing methods for learning
tree-based ensembles for online classification.

2. We implement and empirically evaluate two new methods for
learning tree-based ensembles for online regression: online
bagging of FIMT-DD trees (OBag) and an online RandomForest
method for regression, based on the randomized algorithm
R-FIMT-DD (ORF). To the best of our knowledge, there is no
other work that studies methods for learning tree-based
ensembles for online regression on data streams.

3. We further extend the empirical evaluation by performing a
comparison with online option trees for regression and show
that option trees achieve better accuracy using fewer resources
and less computational power.

4. By using a theoretical analysis of the sources of error we study
the ways these different techniques improve the accuracy over
the base models and try to correlate the diversity of the
ensemble to its generalization power.

The remainder of the paper is organized as follows. In Section 2
we begin with an overview of ensemble methods for online
classification. To the best of our knowledge ensembles methods
for online regression have not been published yet. Section 3
introduces two novel ensemble methods for online regression on
data streams. Section 4 presents an extended version of the work
on online option trees for regression [8]. These algorithms are
empirically evaluated using the evaluation methodology described
in Section 5. In Section 6, we give the results from the empirical
evaluation of OBag, ORF, ORTO and Hoeffding-based regression
trees in different learning scenarios. Finally, Section 6.4 presents
the differences between the two ensemble learning methods OBag
and ORF in terms of the source of error and the amount of
diversity they were able to introduce in their base models.

2. Online ensembles of decision trees

Although tree-based ensemble methods for online regression
have not been studied nor analyzed yet, there is a plethora of tree-
based ensemble learning methods for online classification [9–17].
In this section, we present a survey of the existing ensemble
learning methods for online classification. In the following sub-
sections, we will discuss online bagging and online boosting as main
representatives of the category of methods which introduce
diversity by diversification of the training data. These methods
represent the basis for implementing online versions of bagging

and boosting for learning various types of ensembles. Separate
subsections discuss online RandomForest and stacked general-
ization with restricted Hoeffding trees.

2.1. Online bagging

The simplest method to introduce diversity among the base
models that constitute an ensemble is to generate different
samples from the training dataset, i.e., modify the training dataset
each time a base model is learned. The batch bagging method
generates a number of bootstrapped training sets from the original
dataset. A bootstrap sample can be obtained by random sampling
with replacement according to a Binomial probability distribution.
In the next step, a separate model is induced on each training
dataset. In the testing phase, the predictions from the base models
are aggregated using majority voting. Online versions of sampling-
based methods for learning ensembles have been studied and
proposed for the first time in the work of [18].

2.1.1. Bootstrap sampling and online bagging
Before looking into the details of online bagging, let us first

discuss the details of bootstrap sampling. The main effect of the
bootstrap sampling procedure is to simulate repeated observations
from an unknown population using the available sample as a basis.
A training sample generated with batch bootstrap sampling
contains K copies of each of the original training examples, where
K is a random variable distributed according to the Binomial
distribution. In order to transform the batch procedure into an
online one, the number of occurrences of each training example
for each training dataset has to be estimated at its first occurrence,
without the possibility to examine the rest of the training dataset.
Oza and Russel in [18] have observed that when the size of the
training dataset tends to infinity; i.e., N-1, the Binomial dis-
tribution tends to be more and more similar to the Poisson
distribution Poisson(1) which is defined as

PoissonðλÞ � e�1

k!
for λ¼ 1;

where k is the number of occurrences of the discrete stochastic
variable K. The formula gives us the means to compute the value of
K for a given randomly chosen probability for each training
example. At the same time, it applies perfectly to the online
learning setup in which the size of the training set is unbounded
and tends to infinity. [18] have proven that if the batch and the
online bagging algorithms use the same training set that grows to
infinity, the distributions over the bootstrapped training sets will
converge to the same distribution.

The algorithm receives as input a set of initialized base models
HM ¼ fh1;…;hMg, i.e., one-leaf decision trees. For every training
example e, received from the data stream, and for each base model
hi, the number of occurrences K of the example e in the online
training set used to update hi is set to k¼ Poissonð1Þ. In the next step,
the example is given K times to the procedure which refines the
corresponding model hi. This procedure is repeated as long as there
are training examples available to update the set of models.

2.2. Online bagging for concept drift management

The online bagging meta-algorithm has been used by several
authors and mainly for the task of online classification. [19] have
proposed two interesting algorithms for learning ensembles of
Hoeffding trees for online classification: ADWIN Bagging and
Adaptive-Size Hoeffding Tree (ASHT) Bagging. Both ADWIN Bag-
ging and Adaptive-Size Hoeffding Tree (ASHT) Bagging have been
developed to address the problem of learning under non-
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stationary distributions and perform some form of blind concept
drift management.

ADWIN Bagging employs the online bagging procedure in order
to learn an ensemble of incrementally built Hoeffding trees. The
ensemble is equipped with an explicit drift management mechan-
ism that detects the worst performing classifier in the collection. A
member whose performance was observed to drop significantly is
immediately replaced with a new classifier that would be incre-
mentally built using the new training instances. The name of the
algorithm ADWIN proposed by [20] comes from the change
detection method used to monitor the evolution of the average
loss of each base classifier.

ASHT Bagging, on the other hand builds a set of Hoeffding trees
constrained in size by using the same online bagging procedure.
Each tree is periodically reset (or regrown) using the most recent
sample of training examples. The reset rate depends on the size of
the tree. Trees limited to size s will be reset twice as often as the
trees with a size limited to 2s. The authors have studied different
types of reset operations, varying between replacing over-sized
trees with new ones or pruning from the root.

2.3. Online boosting

Like online bagging, the online boosting algorithm of [18] aims
to transform the batch boosting technique into an online one. It
has been designed to approximate the batch learning algorithm
AdaBoost by [21]. The online boosting procedure is essentially the
same as online bagging. The main difference is in the dynamic
computation of the Poisson parameter λ, whose value in the case
of online bagging is kept constant (λ¼ 1). In particular, the authors
propose to adjust the value of λ according to the performance of
the classifier that was updated last. When a base model incorrectly
classifies a training example the value of the Poisson parameter λ
associated with that example is increased for the next base model.
In the case of a correct classification the value of λ will be
decreased. Misclassified examples are given half the total weight
in the next stage; the correctly classified examples are given the
remaining half of the weight.

However, batch boosting is a sequential process that runs
multiple times over the same training set, boosting the accuracy
of the classifiers in each iteration based on the estimates from the
previous run. The problem with online boosting is that the
estimate used to determine the probability of presenting an
example to the next model is based on the performance given
the examples seen so far. This is completely different compared to
the batch version, where the estimate is obtained on a fully trained
base model. The online boosting algorithm was found to signifi-
cantly underperform as compared to batch boosting for small
training sets, especially for the initial training sequence, when the
estimates were fairly biased. However, priming online boosting
with an initial batch training was shown to perform comparably to
batch boosting over the whole course of learning. In the study of
[19], online boosting was also found to yield inferior accuracy
compared to online bagging.

A slightly improved version of online boosting, called Online
Coordinate Boosting [22], stems from an approximation to the
AdaBoost's loss minimization, given a training set that grows one
example at a time. While in Oza and Russell's online boosting
algorithm the update rule is broken down to two cases, one for the
correctly and one for the incorrectly classified examples, in Online
Coordinate Boosting a single update rule is used: This rule takes the
average of the old weight and the newly updated weight that one
would get by using AdaBoost's exponential re-weighting. In an
experimental evaluation, it was shown that by greedily minimizing
the approximation error of each base classifier, Online Coordinate

Boosting is able to approximate the batch AdaBoost performance
better than Oza and Russell's online boosting algorithm.

2.4. Online random forest

With the availability of an online bagging method and various
online decision tree learning algorithms, a host of methods for
learning online RandomForest ensembles have emerged [23–25,17].
The online random forest method of [25] uses online bagging to
create an ensemble of Hoeffding Naïve Bayes trees. A Hoeffding Naïve
Bayes tree is a leveraged Hoeffding tree that has Naïve Bayes
classifiers in the leaf nodes [4]. When performing a prediction, the
leaf will return the Naïve Bayes prediction whenever it has been
estimated to be more accurate than the majority vote prediction. In
the online random forest method, the trees are grown using a
modified version of the algorithm in which splits are allowed only
on

ffiffiffiffiffi
m

p
attributes, randomly chosen at each node (here m is the

number of attributes). Their experimental findings suggested that the
online random forest performed faster, but was evaluated to have 5%
lower accuracy than the bagged Hoeffding Naïve Bayes trees.

Another interesting idea in the line of randomizing the learning
process is the work of Bifet et al. [25] where they propose using
random error-correcting output codes. The way that error-
correcting output codes work is as follows. Every class is assigned
a random binary string of length n, where each position in the
string is learned by a single binary classifier. At prediction time,
the testing instance is assigned the class whose code is closest to
the combined prediction of the n classifiers. Since every classifier
learns and predicts a different function the diversity of the
ensemble is expected to increase.

2.5. Stacked generalization with restricted Hoeffding trees

Stacked generalization or stacking [26] learns to combine multi-
ple models by applying a higher level meta-learner in a space
whose inputs are the predictions, confidences or distributions of
the base models. There are many different ways to implement
stacked generalization. The most common implementation com-
bines the predictions of multiple models learned by different
methods.

Like bagging, stacking is ideal for parallel computation. The
construction of the base models can proceed independently,
requiring no communication among the learning processes. While
bagging usually requires a considerable number of base models,
because it relies on the diversity of the training data used to
induce the base models, stacking can work with only two or three
base models [27]. Therefore, it seems natural to think of stacking
in the context of online learning, if one can determine a suitable
online meta-learning algorithm. In this context, [28] proposed a
method for learning an ensemble of restricted Hoeffding trees
based on stacking. Each decision tree is learned in parallel from a
distinct subset of attributes. Their predictions are further com-
bined using perceptrons whose weights can be updated using an
online update rule. The authors propose to enumerate all
attribute-subsets whose number is predetermined k, and learn a
Hoeffding tree from each subset.

The computational complexity of this method depends on the
value of k, which defines the size of the ensemble. For a number of
m attributes there are ðmk Þ possible subsets of attributes. The
authors propose k¼2 for datasets with relatively large number
of attributes. Acceptable runtime can be also obtained with k¼4
for m¼10. Compared to online bagging of Hoeffding trees, this
method was shown to have excellent classification accuracy on
most of the datasets used in the experimental evaluation. It was
also shown that stacking can improve upon the accuracy of online
bagging without increasing the number of trees in the ensemble.
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3. Ensembles of Hoeffding-based trees for online regression

In this section, we present two novel ensemble learning
methods for online regression. Both of these algorithms use online
bagging to randomize the training data.

3.1. Online bagging of Hoeffding-based trees for regression

The first ensemble learning method, named OBag learns an
ensemble of FIMT-DD model trees through the use of the online
bagging sampling algorithm. FIMT-DD [6] is an online any-time
algorithm for learning regression and model trees from evolving
data streams. The algorithm is able to incrementally induce model
trees by processing each training example only once in the order
of its arrival. The incremental process of learning a tree constitutes
of making split selection decisions, each on a different sub-sample
of the training data. The size of the sample can be determined
approximately by applying the Hoeffding bound on the probability
to erroneously render a split to be better than its competitor.
FIMT-DD is parameterized with a level of confidence δ, used in the
formula of the Hoeffding bound (ϵ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=δÞ=2� Seen

p
) where

Seen is the number of processed examples, and a chunk size nmin,
used for a periodic evaluation of splits.

Like the existing Hoeffding-based algorithms for classification,
FIMT-DD starts with an empty leaf and reads examples in the
order of their arrival. The algorithm does not require any training
examples to be stored. The only memory needed is for storing the
sufficient statistics in the leaves and the tree structure itself. FIMT-
DD monitors the accuracy of every sub-tree in the induced model
tree and alarms when a significant increase in the error is detected
by an online change detection test. As a result, the model tree is
adapted automatically in real-time according to the most recent
changes in the data stream. The details of the drift detection and
adaptation methods used in FIMT-DD are presented by [6].

While growing the tree, the algorithm simultaneously com-
putes linear models in the leaves. The linear models are computed
using adaptive least mean squares (LMS) filters, where the
coefficients of the linear model are equal to the weights of the
corresponding LMS filter. This process is of a linear complexity. To
allow for mixed types of inputs, the categorical attributes need to
be previously transformed into a set of binary attributes. This
transformation is necessary only for the linear models.

By plugging these adaptive model trees into the online bagging
procedure, we get a dynamic ensemble of model trees which is
learned incrementally from a data stream and adapted appropri-
ately when changes in data occur. The pseudo-code of the
resulting OBag algorithm is given in Algorithm 1. The algorithm
starts by initializing a set of model trees each with a LMS adaptive
filter, whose weights are set randomly in the range [0,1]. The
ensemble is built by online bagging of Tmax instances of the FIMT-
DD algorithm, each initialized with a corresponding one-leaf
model tree, as described in Section 2.1. Each model tree provides
a single prediction per testing example, which at the end of each
training trial is combined with the remaining predictions through
non-weighted averaging.

Algorithm 1. The algorithm OBag.

Input: Tmax – number of base models, δ – confidence
parameter, nmin – chunk size.

Output: p – prediction from the current OBag ensemble.
for i¼ 1-Tmax do
Mi ¼ InitializeTreeðÞ

end for
for 1 do
e’ReadNextðÞ

for i¼ 1-Tmax do
k’Poisð1Þ
for j¼ 1-k do

pi’FIMT�DDðMi; e; δ;nminÞ
end for

end for
p’AVGðp1; p2;…; pTmax

Þ return p
end for

3.2. Online random forest, for any-time regression

In this section we present ORF, an Online Random Forest
algorithm, which is an online variant of the Random Forest [29]
algorithm for the task of regression. As our base learner we use a
randomized version of the FIMT-DD algorithm, called R-FIMT-DD.
The pseudo-code of R-FIMT-DD is given in Algorithm 2.

Algorithm 2. The algorithm R-FIMT-DD: randomized FIMT-DD.

Input: RootNode, e – training instance, δ – confidence
parameter, nmin – chunk size, (α; λ) – parameters used
in the Page–Hinkley test.

Output: p – prediction from the current hypothesis.
Leaf’TraverseðRootNode; eÞ
Counter’SeenAtðLeaf Þ

if Counter ¼ 0 then
q’SelectAttributesAtRandomðLeaf Þ
InitializePerceptron(Leaf)

end if
Counter’Counterþ1
p’GetPredictionðLeaf ; eÞ
UpdateStatistics(Leaf)
UpdateLMS(Leaf)
if Counter mod nmin ¼ 0 then

q’SelectAttributesAtRandomðLeaf Þ
for i¼ 1-q do
Si ¼ FindBestSplitPerAttributeðiÞ
Sa’BestðS1;…; SqÞ
Sb’SecondBestðS1;…; SqÞ
if Sb=Sao1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=δÞ

2�Counter

q
then

MakeSplitðLeaf ; SaÞ
end if

end for
end if
t’GetTargetValueðeÞ
Δ’ABSðt�pÞ
BackPropagateðΔÞ
return p

In the randomized FIMT-DD, whenever a new leaf is created, q
attributes are chosen at random from the set of d possible
attributes. For each of the chosen attributes, the required statistics
{N, ∑y, ∑y2} (corresponding to the count of instances processed,
the sum of target attribute values and the sum of squared target
attribute values per split-side (for all the splits)) will be initialized
to zero and incrementally maintained until the moment of split
construction. This procedure is based on a special type of a data
structure called extended binary search tree (E-BST), described in
detail by [6].

Each split evaluation happens after a minimum of nmin exam-
ples have been observed in a leaf node. We use the same
probabilistic estimates based on the Hoeffding bound, with a
user-defined confidence level δ, as described by [6]. The main
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difference is in the fact that only the previously chosen q attributes
will be considered as possible candidates in the split evaluation
performed with the FindBestSplitðiÞ procedure, for i¼ 1;…; q. In
sum, each terminal node will have an independently and ran-
domly chosen set of attributes which define the set of possible
directions to search the hypothesis space. Since statistics will be
maintained only for these q attributes, where q¼

ffiffiffi
d

p
, the memory

allocation is significantly reduced. In addition to this, each leaf will
contain an adaptive least mean squares filter (LMS) with a number
of inputs equal to the number of numerical attributes plus the
number of binary attributes resulting from the transformation of
the categorical ones into binary.

Each node of the randomized model tree has an online change
detection mechanism based on the Page–Hinkley test. The change
detection test continuously monitors the accumulated absolute
error given every example that goes through the node. This is
performed through the BackPropagate procedure that takes as input
the absolute error Δ¼ ABSðt�pÞ for a given example e, whose true
target value is t and predicted value p (the latter obtained with the
GetPredictionðLeaf Þ procedure). GetPredictionðLeaf Þ returns either
the estimated mean or the output computed by using the least
mean squares filter in the corresponding leaf node. The choice is
made given the accuracy of the predictions from the least mean
squares filter estimated with a weighted prequential squared error.
As each tree is equipped with change detection units, the base
models can be kept independently and automatically up-to-date
with possible changes in the target function.

The pseudo-code of the final algorithm ORF is almost identical
to the OBag algorithm, except for the call to R-FIMT-DD as a base
learner (instead of FIMT-DD). Each call of R-FIMT-DD returns a
prediction for e. However, only the last one is considered in the
aggregation procedure. The final prediction is computed by aver-
aging the individual predictions fp1;p2;…; pTmax

g obtained from the
constituent model trees. Naturally, each of these processes can be
run simultaneously in parallel. Thus, the whole ensemble would
represent an autonomous self-sustaining dynamic learning unit
with a decentralized concept drift management.

Despite the fact that the ensemble has lower interpretability as
compared to a single model, the adaptation to concept drift or
changes in the target function is still performed in an informed
way. The detected changes in the tree structure can be represented
with a set of rules which can be matched for similarities or
dissimilarities. We believe that, given the fact that each model
can address a different aspect of the data, an ensemble of models
has the ability to bring more value and return more information
on the nature of changes than a single model tree.

4. Options for speeding-up Hoeffding-based regression trees

Hoeffding-based tree learning algorithms are very sensitive to
ambiguity or highly correlated attributes. While some candidate splits
exhibit strong advantage over the rest, there are situations in which
there is no clear difference in their estimated merits. The Hoeffding
bound is ignorant to the value of the mean or the variance of the
random variables and does not take into account situations of this
type. Therefore, when the value of the estimated mean difference is
zero, the algorithmwill not be able to make an informed decision even
if an infinite number of examples are observed.

This problem has been addressed using a tie-breaking mechanism.
The tie-breaking mechanism determines an amount of data which has
to be processed before any decision can be reached. As a result, a
constant delay will be associated to every ambiguous situation.

Ikonomovska et al. [8] propose an algorithm for learning online
option trees (ORTO) that arrises as a natural solution to this
problem. The main idea is to use option nodes as an ambiguity

resolving mechanism. Option trees replace the standard split
selection decision with a multi-split. If we think of tree induction
as search through the hypothesis space H, an option node is best
understood as a branching point in the search trajectory. Each
optional split represents a different direction that can be followed
in the exploration of the search space. When multiple splits are
allowed there is no need to wait for more statistical evidence to
choose between the highest ranked splits. As a result a split
selection decision will be reached sooner on the cost of a higher
estimation error. The hill-climbing search strategy is therefore
replaced with a more robust one, which will enable us to revise
the selection decisions when more evidence has been observed.

Being able to explore a larger sub-space of hypotheses H, an
option tree is expected to be more stable (in terms of the influence
of the choice of training data) and more robust compared to an
ordinary decision tree. In the same time an option tree represents a
compressed and connected set of multiple regression trees and as
such it is very interesting for comparison with ensemble methods.

Similarly to FIMT-DD, ORTO starts with an empty leaf and reads
examples from the stream in the order of their arrival. Each
example is traversed to a leaf where the necessary statistics (such
as N, ∑y, ∑y2) are maintained per side for each splitting point.
After a minimum of nmin examples have been observed in the leafs
of the tree, the algorithm examines the splitting criterion. If an
ambiguous situation is encountered the algorithm will proceed
with creating an option node. Otherwise, a standard splitting node
will be introduced and the procedure will be performed recur-
sively for the leaf nodes in which a modulo of nmin examples have
been observed. The details are given by [8].

The ORTO algorithm employs two different strategies to aggregate
multiple predictions per testing example: non-weighted averaging and
following the best path. The best path strategy selects a single “best”
prediction obtained by determining the best path to a leaf at a given
point in time. Details can be found in [8]. To make a distinction
between these two different prediction rules within ORTO, we will use
the following acronyms: ORTO-A (averaging) and ORTO-BT (following
the best path that represents the best tree).

5. Experimental evaluation

5.1. Algorithms and parameter settings

The following section describes the experimental evaluation
designed to evaluate the two new ensemble learning methods and
compare them to the base-line algorithms discussed previously.
Table 1 gives the list of the algorithms with their acronyms and a
short description.

For every experiment we set the common parameters to the
following values: The confidence parameter is set to δ¼ 10�6,
nmin¼200 (the minimal number of examples before a split
evaluation is done) and the decay factor df for the option trees is
set to 0.9 [30]. For the Page-Hinkley change detection test we set
the parameters α¼0.005 and λ¼50. The adaptive LMS filters use a

Table 1
The tree-based algorithms for online regression used in the empirical evaluation.

Algorithm Description

LMS Least mean squares adaptive filter
FIMT-DD, [6] Fast and incremental model tree with drift detection
ORTO-A, [8] Online option tree with averaging
ORTO-BT, [8] Online option tree with best model's prediction
OBag Online Bagging of FIMT-DD trees
ORF Online Random Forest of FIMT-DD trees
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decaying learning rate initialized to 0.1. These are the default
values.

The new parameters introduced here are set as follows. The
number of randomly selected attributes at each node for the ORF
algorithm is the square root of the number of descriptive attributes
for the given dataset. A separate set of experiments is performed
where some extra attributes are allowed in addition to the square
root of the total number of attributes. The maximal number of
trees Tmax is varied in the range between 10 and 30. For OBag and
ORF this parameter equals to the number of trees in the ensemble,
while for ORTO-A this it the number of different trees represented
by the option tree. The maximal depth of each tree lmax is limited
for all of the algorithms and varied from level 5 to level 7 by
increasing the level of maximal depth by one (the root is at
level 0).

5.2. Evaluation methodology

To obtain online estimates we opted for a procedure which can
be easily parallelized and decouples the testing data set from the
training data set. The evaluation procedure consists of ten rounds
of sampling with replacement by using the method of [18]. Each
round of sampling provides a different training dataset, but the
testing datasets remain the same which is important for a fair
comparison. If performed in parallel, the system is provided with
an online evaluation methodology applicable to the streaming
scenarios.

Periodical evaluation is done at pre-defined time intervals
using a separate holdout set of unseen testing examples. In
particular, the absolute error, the mean squared error and the root
relative mean squared error are computed periodically at prede-
fined time steps using a holdout type of sliding window estima-
tion. The holdout evaluation can be implemented by applying a
FIFO buffer over the data stream, which will continuously hold out
a set of training examples. At the end of every testing phase the
training examples will be used to update the model. This approach
facilitates comparison with streaming algorithms designed to run
over batches of examples.

5.3. Analytical tools

A very useful analytical tool for understanding the source of
error is a bias–variance decomposition of the error. Given a
training set {(x1,z1), (x2,z2), …, (xN ,zN)} the task of regression is
to construct an estimator that approximates an unknown target
function z¼ gðxÞ. The learning algorithms greedily (in our case)
construct a non-parameterized estimator f (a regression tree) that
minimizes the expected mean squared error:

eðf Þ ¼
Z

ðf ðxÞ�zÞ2pðxÞdðxÞ: ð1Þ

The bias–variance decomposition of the squared error is

Efðf ðxÞ�zÞ2g ð2Þ

¼ ðEff ðxÞg�zÞ2þEfðf ðxÞ�Eff ðxÞgÞ2g ¼ biasðf ðxÞÞ2þvarianceðf ðxÞÞ:
ð3Þ

For best performance, these two components of the error have
to be balanced against each other. The bias of an estimator reflects
its intrinsic ability to model the given unknown function g(x) and
does not depend on the choice of the training set. On the other
hand, the variance component measures the variability of the
models produced given different training sets, and does not
depend on the true target attribute values.

Ensembles are known to have best performance when ensem-
ble members show disagreement on certain data points. Such

disagreement is usually obtained by supporting diversity among
ensemble members. In the regression framework, the base models'
predictions are usually combined by simple averaging, which
allows us to clearly measure the amount of disagreement between
the base models.

Let f1, f2, …, fM denote M estimators, where the m-th estimator
is trained on a sample training set Zm, m¼1, …,M. To obtain a
single prediction for a given test instance x, the outputs of the
individual estimators are combined by a uniformly weighted
average:

yens ¼ f MensðxÞ ¼
1
M

∑
M

i ¼ 1
f iðxÞ: ð4Þ

If the ensemble is treated as a single learning unit, its bias–
variance decomposition can be formulated as previously. However,
as shown by [31], this decomposition can be extended for the case
of ensembles to take into account the correlation among ensemble
members: this extension is known as the bias–variance–covar-
iance decomposition of the error. Namely, the generalization error
of the ensemble estimator is affected by each factor of interest:
bias, variance, covariance, and noise.

The generalization error of the ensemble estimator given by (4)
can be decomposed into:

E ðyens�zÞ2
n o

¼ bias
2þ 1

M
varþð1� 1

M
Þcov: ð5Þ

This decomposition illustrates that, in addition to the bias and
variance of individual estimators, the generalization error of an
ensemble also depends on the covariance between the individuals.
A negative correlation among two ensemble members contributes
to a decrease in the generalization error. Conversely, a positive
correlation will increase the generalization error.

The bias–variance and the bias–variance–covariance decompo-
sitions are performed online and periodically using the same
holdout testing data set and at the same predefined time steps.
In this way, we are able to monitor the evolution of all the
components of the squared error over time. Note that, with the
described evaluation methods, there is no need to block the data
stream or lose any parts of the data. All of the examples used for
testing are buffered in the order of their arrival and sequentially
dispatched to the learning algorithm for further training.

5.4. Data sets

For the purpose of our study, we decided to use all the available
regression datasets of sufficient size, as we are interested in
studying how the learning methods behave in different scenarios.
From the UCI Machine Learning Repository [32], the Delve Repo-
sitory2 and the StatLib System's3 site, we chose the nine largest
available “benchmark“ datasets on which no concept drift has
been reported. Their characteristics are given in Table 2. We also
evaluate the studied approaches on three real-world datasets,
described below.

Infobiotics PSP data sets: The PSP repository4 contains real-
world tunable scalability benchmark datasets for protein structure
prediction. Each numerical attribute represents one value of the
Position-Specific Scoring Matrices (PSSM) profile of a single amino
acid from the primary protein sequence. The target attribute is the
structural feature of one of the amino acids, positioned at a
specified location in the chain sequence. The task is to predict
the structural feature of the target from the local context, that is,
given the window of neighboring amino acids. For the purpose of

2 http://www.cs.toronto.edu/�delve/data/datasets.html
3 http://lib.stat.cmu.edu/index.php
4 http://icos.cs.nott.ac.uk/datasets/psp_benchmark.html
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our study, we have used the largest and most difficult dataset with
380 numerical attributes, which corresponds to a window of 79
amino acids, positioned left and right of the target. The size of this
dataset is 257760 instances.

City traffic data set: This dataset was generated for the data
mining competition that was part of IEEE ICDM 2010.5 The task is
to predict city traffic congestion based on simulated historical
measurements. The training dataset was created for the purpose of
predicting traffic congestion at road segment 10 in direction 2 and
is described by 619 numerical attributes. In particular, we have
used the two values measured for a given time point and a given
road segment plus the corresponding lagged values measured in
the last half an hour, resulting in 30 values per direction. The size
of the training dataset is 59952 examples.

Airline data set: The last dataset represents a non-stationary
real-world problem and was created using the data from the
Data Expo competition (2009).6 The dataset consists of a large
number of records, containing flight arrival and departure details
for all the commercial flights within the US, from October 1987 to
April 2008. The dataset was cleaned and records were sorted
according to the arrival/departure date (year, month, and day) and
time of flight. Its final size was around 116 million records and 5.76
GB of memory. The target variable is Arrival Delay, given in
seconds. Given that plotting and analyzing such a large number
of evaluation results is difficult, we decided to use only a portion of
the dataset that corresponds to the records in the period from
January 2008 to April 2008. The size of this dataset is 5,810,462
examples.

6. Empirical evaluation

This section presents the results of our empirical comparison.
We first compare the algorithms in terms of generalization power,
using accuracy and tree size as metrics, and using error plots for
visualization.

A bias–variance analysis of the errors of the compared methods
is further presented. This is followed by a bias–variance–covar-
iance analysis. We then investigate the influence of the parameter
values, such as the maximum allowed tree depth and the number
of trees in the ensemble. We further measure and compare the
cost of using each of the algorithms in terms of memory and
learning time. Finally, we evaluate the responsiveness of each
learning method to changes in the target function.

6.1. Squared loss and model size

To assess the generalization power of each learning algorithm,
we have performed online holdout evaluation, which consists of a
periodical evaluation of the model at pre-defined time intervals,
using a separate holdout set of testing examples. In Table 3, we
give the measured mean squared error in the last hold-out
evaluation phase, averaged over 10 rounds of training and testing.
The size of the corresponding models in terms of the total number
of leaves is shown in Table 4.

Best accuracy overall was achieved by the methods which
combine averaging of predictions with an enhanced tree structure,
i.e., the option tree with averaging ORTO-A algorithm and the ORF
(online random forests) algorithm. However, simple randomiza-
tion came out to be a suboptimal diversification technique, as it
was shown to have best accuracy only for 3 out of 9 datasets.
Online bagging came also close to ORTO-A in terms of predictive
performance which mainly shows the base model FIMT-DD per-
forms better than its randomized version R-FIMT-DD. Another
important advantage of the ORTO-A algorithm over ORF, as well as
over OBag is the fact that the resulting models are smaller. The
option tree had the smallest number of leaves (predictive rules).
This makes it easier for the user to read and understand the model.

However, since the models are learned incrementally from the
data stream the predictive performance varies over time and with it
the advantage of option trees over the rest of the learning methods.
Fig. 1 depicts the mean squared error, computed using sliding window
holdout evaluation performed periodically for every 500 learning
examples processed, using a test set of size 1000. The figure also
shows the evolution of the models, i.e., the curve of models' size. Due
to space limitations we show plots only for the Wine Quality dataset.

It is expected that for all of the learning methods the accuracy
improves with the growth of the models but the relative improve-
ments can only show the advantage of one algorithm over another
over time. From the figure we can see that ORTO-BT and ORTO-A
perform best for the first 2500 examples, at which point best
performance starts to have OBag. For the House 8L dataset option
trees showed best accuracy at any time, while for the rest of the
datasets the general trend was that option trees show better
performance in the initial phase, thus being more resilient to the
cold start problem. Also, option trees use substantially smaller
number of rules compared to the ensemble methods. OBag per-
forms comparably, while ORF performs worst. ORF showed sig-
nificantly worse performance for the Mv Delve dataset.

6.2. Analysis of memory and time requirements

Next, we investigate and compare the space and time require-
ments. Table 5 gives the averaged learning time over 10 runs (in
seconds). ORTO-A is the fastest learning algorithm, excluding the
single-tree learning method FIMT-DD. ORTO-BT is slower than
ORTO-A because of the need to search for the best path every time
a prediction is computed. The ensemble methods are much slower
due to the sequential manner of updating the member hypotheses.
However, if parallelized, their running time would be approximately
10 times shorter (where 10 is the number of trees in the ensemble).

Table 6 further shows the average amount of allocated memory
(in MB). For most datasets ORF algorithm allocates the least
amount of memory, except for FIMT-DD which learns a single
model and thus allocates less memory. Fig. 2 gives the allocation of
memory for each algorithm over time for one of the datasets (Cal
Housing) in the left panel, and the corresponding curve showing
the learning time in seconds is shown in the right panel. Visibly,
the most expensive algorithm is OBag. Due to the fact the memory
allocation is mainly dependent on the number of leaves in the tree,
if an option tree has many option nodes (nested one below

Table 2
Characteristics of the datasets used for the experimental evaluation.

Dataset name Size Number of attributes Values of the target

Nominal Numerical Mean 7Std.

Abalone 4177 1 8 9.934 73.224
Cal housing 20,640 0 9 206855.817 7115395.616
Elevators 16,599 0 19 0.022 70.007
House 8L 22,784 0 9 50074.44 752843.476
House 16H 22,784 0 17 50074.44 752843.476
Mv Delve 40969 3 8 �8.856 710.420
Pol 15,000 0 49 28.945 741.726
Wind 6574 2 13 15.599 76.698
Winequality 4898 0 12 5.878 70.886

5 http://tunedit.org/challenge/IEEE-ICDM-2010
6 http://stat-computing.org/dataexpo/2009
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another) then its memory allocation might exceed the memory
allocation of an ensemble, especially if the size of the trees in the
ensemble is constrained to a pre-specified height.

6.3. Bias–variance analysis

In this section we present the bias–variance decomposition of the
error. Table 7 shows the bias component of the error for the last sliding
window holdout evaluation, averaged over 10 runs of sampling. The
corresponding variance component of the error is given in Table 8.

The algorithms that performed best on individual datasets had in
general the smallest bias component of the error. An exception is the
ORTO-BT algorithmwhich has a smaller bias component of the error
in general, compared to the winning ORTO-A, but at the cost of a
larger variance. The resulting difference in these deltas is such that
ORTO-BT was outperformed by ORTO-A. However, this tells us that
the option nodes indeed provide a better way to explore the search
space and find the best tree overall. The increase in the variance in
ORTO-BT is also due to the way the best tree is chosen. Namely, the
selection procedure is based on a weighted (faded) mean squared
error estimate obtained over the observed training examples at each
option node. As such, the diversification in the training data biases

the selection. On the other hand, in ORTO-A the predictions are
combined using averaging which decreases the variance and finally
accounts for best predictive performance.

Online bagging was observed to have the smallest variance, but
its bias components are larger. This is something to be expected,
since bagging in knows as a method that reduces the variance,
however an interesting discovery is that online option trees and
online random forest in general reduce the bias component of the
error. These methods improve the intrinsic ability of the learning
algorithm to model the phenomenon under study. While option
trees were able to also reduce the variance the online bagging
algorithm was much more successful in this task.

Fig. 3 shows the typical behavior on most of the datasets. The
figure shows that the bias component of the error is decreasing
over time for all of the learning algorithms. As the bias decreases
the variance increase correspondingly. This is natural, because
with the growth of the tree its predictions improve up till the
point the tree reaches optimal size. The larger the tree, however,
the greater is the risk of growing over the optimal size and thus
over-fitting. Additional figures showing the evolution of the bias
and variance components for the rest of the datasets can be found
in [33, (Appendix A.4 Figures 36 (a,b,c,d), 37 (a,b,c,d) and 38 (a,b))].

Table 3
Predictive performance (MSE) of the FIMT-DD algorithm and the ensemble methods for online regression. The averaged mean squared error
from 10 runs of sampling for the last holdout evaluation is given. The maximum tree depth is 5, the maximum number of trees is 10. The best
results are shown in boldface.

Dataset FIMT-DD ORTO-BT LMS

Abalone 6.69 70.31 6.25 70.43 7.14 70.63
Cal housing 8.70Eþ9 72.76Eþ9 5.24Eþ9 71.24Eþ9 8.86Eþ9 73.87Eþ7
Elevators 2.50E-5 71.57E�6 2.40E-5 71.66E�6 4.60E-5 76.43E�13
House 8L 1.32Eþ9 75.13Eþ7 1.18Eþ9 73.17Eþ7 2.33Eþ9 71.86Eþ6
House 16H 1.56Eþ975.20Eþ7 1.58Eþ9 75.04Eþ7 2.33Eþ9 71.88Eþ6
Mv Delve 18.04 73.25 18.33 72.99 43.23 73.96
Pol 273.63 722.30 292.57 776.32 1781.87 70.23
Wind 48.89 70.42 48.89 70.42 45.12 70.02
Winequality 0.5279.07E-3 0.53 70.02 0.53 70.02
Infobiotics 29.76 70.46 29.47 70.40 39.60 72.44E�3

Dataset ORTO-A OBag ORF

Abalone 5.91 70.42 6.84 70.08 5.6870.35
Cal Housing 5.14Eþ970.55Eþ8 7.82Eþ9 70.69Eþ9 6.51Eþ9 70.61Eþ9
Elevators 2.50E-5 71.59E�6 2.30E-5 75.44E�7 2.20E�571.15E�6
House 8L 1.11Eþ975.07Eþ7 1.30Eþ9 71.59Eþ7 1.53Eþ9 72.97Eþ7
House 16H 1.56Eþ974.34Eþ7 1.57Eþ9 76.08Eþ6 1.72Eþ9 71.98Eþ7
Mv Delve 17.1272.99 17.20 70.78 54.38 77.52
Pol 231.57716.74 265.99 77.41 1223.61 7123.07
Wind 48.89 70.42 48.65 70.27 22.0470.68
Winequality 0.5270.03 0.5277.35E�3 0.58 70.02
Infobiotics 28.3770.19 29.69 70.25 31.56 70.24

Table 4
The size of the tree models produced by the FIMT-DD algorithm and the ensemble methods for online regression. The averaged number of tree leaves from 10 runs of
sampling for the last holdout evaluation is given. The maximum tree depth is 5, and the maximum number of trees is 10. The best results (with smallest number of leaves)
among the ensemble methods (i.e., excluding FIMT-DD and ORTO-BT) are shown in boldface.

Dataset FIMT-DD ORTO-A ORTO-BT OBag ORF LMS

Abalone 6.6 70.9 42.5704.9 10.1 71.4 66.9 70.3 55.6 70.6 1.0 70.0
Cal housing 23.5 71.7 75.3710.3 25.9 70.9 231.9 70.6 212.5 70.8 1.0 70.0
Elevators 16.9 70.9 93.2727.5 16.7 74.2 162.1 70.5 185.6 70.9 1.0 70.0
House 8L 17.6 76.5 79.9724.9 24.9 72.0 145.5 71.5 236.9 71.2 1.0 70.0
House 16H 19.6 71.7 52.4708.4 22.0 70.9 192.7 70.3 209.7 70.5 1.0 70.0
Mv delve 30.9 71.2 70.7736.3 30.9 70.9 313.7 70.3 287.7 70.6 1.0 70.0
Pol 19.8 70.4 51.3714.9 20.3 71.8 199.8 70.3 148.3 70.7 1.0 70.0
Wind 7.6 71.4 7.6701.4 7.6 71.4 81.6 70.33 126.5 70.5 1.0 70.0
Winequality 9.2 70.9 48.8705.2 12.9 72.9 86.8 70.3 118.1 70.4 1.0 70.0
Infobiotics 31.3 70.9 140.5730.4 31.5 70.53 310.3 70.2 302.7 70.5 1.0 70.0
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6.4. Bias–variance–covariance analysis

As described previously, when the loss function is the mean
squared error one can successfully use the bias–variance–covariance
decomposition for an ensemble of models and examine the source
of the error, as well as, align it with the amount of correlation among
the models. However, this technique is not applicable for option
trees because the decomposition requires a separate prediction from
each base member for every example from the hold-out evaluation
dataset. The option tree will not necessarily provide multiple
predictions for every example. It can return multiple predictions
only for those examples that belong to the example space covered
by an option node. Further, the number of different predictions for
different examples does not need to be equal.

Here we present the results of the bias–variance–covariance
decomposition of the mean squared error for the OBag and ORF

algorithms. This analysis should provide some more insights into
the stability of the models, and the level of correlation between
the ensemble members, which can be correlated with the level of
diversity. The obtained results, i.e., the bias, variance and covar-
iance components of the error are given in Table 9. As trees are
growing larger they become more similar, which is evident from
the increase in correlation between the ensemble members.
Additional details on the evolution of the three error components
can be found in [33, (Appendix A.6 Figures 39 (a, b), 40 (a, b),
41 (a, b), 42 (a, b) and 43 (a, b))].

The ORF algorithm is essentially a randomized version of the
OBag algorithm. Thus, a comparison of their error components
should give us insights on the effects of randomization. What we
have observed is that the randomization method in general
reduces the bias component of the error. Few datasets were
however exception: the Mv Delve, Pol and Winequality datasets.
This is somewhat explainable if taking into account the fact that
random forests (and randomized methods in general) are expected
to improve performance when the dataset is described with many
features (each associated loosely with the target attribute). In
addition, best results for these were achieved with ORTO-A which
provides a strategy to better search the space of possible solutions.
On the other hand, for the Elevators and especially for the Wind
dataset introducing options was not able to advance the search of
the hypotheses space, mainly because the set of the “best” options
did not lead to a set of diverse and accurate hypotheses overall.

Randomizing the learning process naturally increases the var-
iance, while online bagging mainly decreases the variance. In general,
the randomization procedure in ORF typically decreases the bias for
specific types of datasets, as discussed above, at the price of an
increased variance. On the positive side, ORF in many cases also
brings a decrease in the covariance, which at the end results in more
accurate predictions. This happens for the cases when the bias
component is not too high. Since the covariance is a measure of
correlation among the predictions of the base ensemble models, if
we use correlation as a measure of diversity we can conclude that
randomization improves the diversity of the ensemble.

Although randomization might not always improve the accu-
racy, it still has several advantages over plain online bagging:
online RandomForest has smaller memory allocation, a shorter
learning time, and accuracy comparable to bagging.

To understand how the parameter k affects the predictive
performance of the ensemble, we varied this parameter by
systematically increasing the starting value by one. For each
dataset, the initial value chosen was the square root of the number
of descriptive attributes. What we have observed is that increasing
the number of randomly chosen attributes eventually harms the
accuracy, because of an increased correlation between the base
models' predictions. For some of the datasets, by increasing the
number of attributes the bias component of the error was

Fig. 1. Mean squared error (upper) and number of leaves (lower) measured
periodically using the holdout evaluation method for the Wine Quality dataset.

Table 5
The learning time for the single-tree method FIMT-DD and each of the ensemble methods, given in seconds as the average from 10 runs of sampling. The best results among
the ensemble methods (i.e., excluding the single-tree method FIMT-DD and LMS) are shown in boldface.

Dataset FIMT-DD ORTO-A ORTO-BT OBag ORF LMS

Abalone 0.05 70.01 0.1570.01 0.17 70.02 0.50 75.85E-3 0.20 70.61 0.04 70.01
Cal housing 0.44 70.04 2.67 70.57 2.82 70.81 4.50 70.01 2.3070.01 0.58 70.03
Elevators 0.61 70.06 4.50 71.19 4.40 71.12 6.10 70.02 3.9070.01 0.42 70.05
House 8L 0.52 70.04 2.5371.04 2.55 70.99 5.50 70.02 2.60 70. 02 0.54 70.06
House 16H 1.62 70.14 5.3971.88 5.55 71.63 16.20 70.04 7.30 70.01 1.65 70.09
Mv delve 1.24 70.07 3.5271.72 3.55 71.66 12.20 70.03 5.70 70.03 1.06 70.09
Pol 1.42 70.12 3.3770.84 3.44 70.83 14.00 70.03 8.00 70.02 1.49 70.07
Wind 0.22 70.02 0.2170.01 0.22 70.03 2.20 78.84E-3 1.00 76.76E-3 0.17 70.03
Winequality 0.09 70.02 0.3970.16 0.40 70.18 0.90 76.36E-3 0.50 75.81E-3 0.07 70.01
Infobiotics 2600.84 757.56 13443.29 71910.90 13526.00 71888.21 26508.70 748.07 3993.5075.02 1367.97 78.92
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significantly increased. This serves as an additional proof that the
diversity of the ensemble is a significant factor for improving the
performance.

Bifet et al. [25] have also studied the effect of randomizing the
input and the output components of the data stream on the
accuracy and the diversity of an ensemble of classifiers. Their
findings are similar to ours: when applying randomization to the
weights of the instances of the input stream one can achieve an
increase in accuracy. Another interesting approach in introducing
diversity to the ensemble of classifiers is to use trees of controlled
depth [19]. Although the main motivation was to address the
problem of learning drifting concepts, the method was shown to
increase the diversity, which can improve the accuracy even when
the concepts are stable.

6.5. Sensitivity analysis of ensemble performance

Here we present the results from the sensitivity analysis
performed to assess the influence of the parameters maximum
allowed tree depth lmax and number of trees in the ensemble Tmax.
Detailed results are given in the Appendix (Tables 34 and 35
in [33]).

When the ensemble size was fixed to Tmax ¼ 10, we observed
that varying the maximal tree depth from 5 to 7, which essentially
allowed the tree to grow bigger, improved the accuracy but not for
all of the datasets. In particular, it was interesting to see that by
restricting to a maximum of 6 levels, ORTO-A algorithm managed
to show better accuracy than FIRT-DD, especially on the House
16H dataset on which FIRT-DD was initially evaluated as better. For
the remaining algorithms, we observed significant increase in
accuracy for the Mv Delve and the Pol datasets. On the other

hand, for the Cal Housing, House 16H and Winequality datasets,
increasing the allowed tree level actually decreased the accuracy
of OBag and ORF. In general, for most of the datasets best results
were achieved when the maximum level of depth was set to
lmax ¼ 6.

With respect to the second parameter Tmax, increasing the
maximum number of trees of fixed depth resulted in slightly
improved accuracy for ORTO-A and ORF. While this trade-off is not
so expensive for ORTO-A, for ORF a small increase in accuracy
comes at a price of a substantially higher memory allocation. This
is one of the advantages of ORTO-A over ORF.

6.6. Responsiveness to concept drift

Finally, we examine the responsiveness of each learning algo-
rithm to changes in the target function. For this task, we used only
the last two datasets, i.e., the City Traffic and the Airline dataset, on
which concept drift might be expected. We have chosen to
evaluate the responsiveness to changes by observing the trend of
the mean squared error, i.e., its variation over time.

Fig. 4 shows (in the top and middle panels) the evolution over
time of the mean squared error and the evolution of the total
number of leaves for each ensemble method on the City Traffic
(left), and the Airline dataset (right). When looking at the evolu-
tion of the MSE best performance and thus best responsiveness to
the changes in the target function was observed for both FIMT-DD
and ORTO-A. ORTO-BT and ORF were observed to behave in a
highly unstable fashion, while OBag was somewhere in-between.
None of the algorithms detected concept drift on the City Traffic
dataset.

Table 6
The memory used by the single-tree method FIMT-DD and each of the ensemble methods, shown as the average allocated memory in MB over 10 runs of sampling. The best
results among the ensemble methods (i.e., excluding the single-tree method FIMT-DD and LMS) are shown in boldface.

Dataset FIMT-DD ORTO-A ORTO-BT OBag ORF LMS

Abalone 3.26 70.26 10.6971.87 10.69 71.87 34.10 70.09 11.80 70.09 3.79 70.01
Cal housing 26.20 71.08 130.43 713.38 130.29 713.21 267.20 70.23 78.6070.12 17.78 70.04
Elevators 9.45 70.27 67.57 714.28 67.56 714.27 90.70 70.16 28.30 70.14 3.42 76.32E-3
House 8L 41.55 72.57 181.29 757.02 181.22 756.94 425.40 70.73 114.80 70.25 45.29 70.06
House 16H 77.29 73.39 335.95 797.42 335.95 797.43 779.60 71.31 235.80 70.32 100.19 70.34
Mv delve 98.41 71.86 265.88 799.12 265.62 798.21 980.80 70.50 249.70 71.71 109.38 79.48E-3
Pol 9.54 70.39 52.29 714.03 52.11 713.74 94.70 70.12 29.60 70.09 4.03 75.27E-3
Wind 8.74 70.38 8.7470.38 8.74 70.38 87.30 70.10 26.10 70.11 5.32 70.02
Winequality 3.47 70.56 16.52 76.46 16.52 76.46 31.70 70.16 16.40 70.05 2.18 75.16E-3
Infobiotics 158.62 72.80 2178.51 7823.98 2192.16 7825.31 1581.80 71.09 271.10 70.38 29.94 70.00

Fig. 2. The allocated memory in MB (left) and learning time in seconds (right) evaluated periodically using a sliding window holdout evaluation method for the Cal Housing
dataset. Note that in the left panel, the curves for ORTO-A and ORTO-BT overlap.
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For the Airline dataset on the other hand all of the algorithms
detected large number of changes, which resulted in many
updates to the models. This can be seen in Fig. 4, in the middle
panel, where we can see the number of leaves for each method
measured in a periodical fashion. It is also visible that there is no
clear winner, however ORF performed worse than the other
algorithms. The memory allocation on these two datasets is given
at the bottom of Fig. 4.

7. Conclusions and future work

Noticing the apparent lack of algorithms for online learning of
ensembles for any-time regression, in this work we presented a
survey on the state-of-the-art methods for online learning of tree-
based ensembles for classification. We further designed, imple-
mented and empirically evaluated two new online ensemble
learning algorithms for any-time online regression: OBag and
ORF. The first method is an online bagging procedure of adaptive
online model trees built using the FIMT-DD algorithm. The second
method is an online random forest of randomized online adaptive
model trees built using the R-FIMT-DD algorithm presented here
for the first time.

We performed an extensive experimental comparison of the
two new ensemble learning methods to a baseline linear regres-
sion approach (adaptive LMS filter); online model trees induced
with the FIMT-DD algorithm; and online option trees with two
different prediction rules where ORTO-A uses non-weighted aver-
aging and ORTO-BT uses adaptively the best model's predictions.
We compared these methods on a variety of datasets along several
dimensions: predictive accuracy and quality of models, time and
memory requirements, bias–variance and bias–variance–covar-
iance decomposition of the error, sensitivity to parameter values
and responsiveness to concept drift. By using a bias–variance–
covariance decomposition of the error we investigated and pre-
sented theoretically supported method to measure the diversity of
an ensemble of models.

The results from the empirical analysis showed that online
option trees with averaging were the most stable and accurate
method for the majority of the datasets. Having the lowest bias
component of the error option trees were indeed shown to

provide a better way to explore the search space and find the best
possible tree. Online bagging of adaptive model trees as expected
was observed to reduce the variance component of the error.
Online random forests of randomized FIMT-DD trees on the other
hand improve the diversity of the ensemble, as well as the bias
component of the error.

The online option trees besides being most accurate were
also the fastest learning method, excluding the FIMT-DD and
R-FIMT-DD algorithms, which can only produce one model tree.
The ensemble methods are the slowest ones, although, if

Table 7
The bias component in the bias–variance decomposition of the error for the FIMT-DD and LMS algorithms, and the ensemble methods for online regression. Averages are
given from 10 runs of sampling for the last holdout .

Algorithm Abalone Cal housing Elevators House 8L House 16H Mv Delve Pol Wind Winequality Infobiotics

FIMT-DD 6.39 7.25Eþ9 2.60E-5 1.15Eþ9 1.39Eþ9 13.42 235.20 41.35 0.49 28.45
ORTO-A 5.59 4.75Eþ9 2.40E-5 1.05Eþ9 1.42Eþ9 13.86 191.08 41.35 0.49 27.87
ORTO-BT 5.74 4.47Eþ9 2.20E-5 1.07Eþ9 1.37Eþ9 13.16 207.75 41.35 0.48 28.11
OBag 6.53 6.37Eþ9 2.60E-5 1.18Eþ9 1.43Eþ9 11.96 227.20 41.02 0.51 28.44
ORF 4.63 4.54Eþ9 2.10E-5 1.25Eþ9 1.42Eþ9 36.44 927.18 15.07 0.52 29.62
LMS 6.61 8.86Eþ9 4.6E-5 2.33Eþ9 2.33Eþ9 41.85 1781.79 45.11 0.50 39.60

Table 8
The variance component in the bias–variance decomposition of the error for the FIMT-DD and LMS algorithms, and the ensemble methods for online regression. Averages are
given from 10 runs of sampling for the last holdout.

Algorithm Abalone Cal housing Elevators House 8L House 16H Mv Delve Pol Wind Winequality Infobiotics

FIMT-DD 0.29 1.45Eþ9 0.10E-5 0.17Eþ9 0.16Eþ9 4.62 38.44 7.54 0.02 1.31
ORTO-A 0.31 0.39Eþ9 0.30E-5 0.62Eþ8 0.14Eþ9 3.26 40.49 7.54 0.03 0.50
ORTO-BT 0.50 0.77Eþ9 0.40E-5 0.11Eþ9 0.21Eþ9 5.17 84.82 7.54 0.06 1.36
OBag 0.02 0.13Eþ9 0.00 0.12Eþ8 0.15Eþ8 0.38 3.87 0.59 0.00 0.11
ORF 0.09 0.17Eþ9 0.00 0.28Eþ8 0.28Eþ8 2.04 28.24 0.59 0.01 0.17
LMS 0.52 0.82Eþ5 0.00 0.92Eþ5 0.12Eþ6 1.38 0.08 0.98E-3 0.02 1.30E-5

Fig. 3. Relative bias and variance error components of the single-tree method
FIMT-DD and the different ensemble methods computed using a sliding window
bias–variance decomposition on the Mv Delve dataset.
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Table 9
The bias, variance and covariance components of the error from the bias–variance–covariance decomposition averaged across 10 runs of sampling for the last holdout on the
UCI and Infobiotics datasets.

Dataset Bias Variance Covariance

OBag ORF OBag ORF OBag ORF

Abalone 168.86Eþ00 121.04Eþ00 194.13Eþ00 307.81Eþ00 8.95Eþ03 5.43Eþ03
Cal Housing 1.58Eþ11 1.29Eþ11 6.16Eþ11 6.16Eþ11 1.88Eþ13 1.29Eþ13
Elevators 6.94E-04 5.79E�04 1.00E�03 2.00E-03 0.07Eþ00 0.08Eþ00
House 8L 2.37Eþ10 2.51Eþ10 8.49Eþ10 1.08Eþ11 3.37Eþ12 2.14Eþ12
House 16H 2.89Eþ10 3.02Eþ10 7.24Eþ10 9.29Eþ10 1.98Eþ12 1.21Eþ12
Mv Delve 374.59Eþ00 1004.13Eþ00 5.09Eþ03 5.81Eþ03 2.28Eþ05 1.11Eþ05
Pol 5.74Eþ03 2.33Eþ04 7.17Eþ04 8.11Eþ04 3.55Eþ06 5.89Eþ05
Wind 9.31Eþ02 4.67Eþ02 5.04Eþ03 2.54Eþ03 2.30Eþ05 6.61Eþ04
Winequality 1.18Eþ01 1.28Eþ01 1.57Eþ01 2.71Eþ01 4.72Eþ02 3.83Eþ2
Infobiotics 7.73Eþ2 8.27Eþ02 7.49Eþ02 7.30Eþ02 2.89Eþ04 1.84Eþ04

Fig. 4. Mean squared error (top), number of leaves (middle) and allocated memory in MB (bottom) for the single-tree method FIMT-DD, LMS, and the different ensemble
methods. Measured periodically using a sliding window holdout evaluation method for the City Traffic (left) and Airline (right) datasets.
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implemented through parallelization the running time would be
significantly reduced. In terms of the memory allocation, ORTO-A
is eligible for affordable trade-offs in terms of accuracy. For ORF
however, a small increase in accuracy obtained by increasing the
size of the trees comes at a price of substantially higher memory
allocation.
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