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Abstract Deep transfer learning emerged as a new

paradigm in machine learning in which a deep model is

trained on a source task and the knowledge acquired is then

totally or partially transferred to help in solving a target

task. In this paper, we apply the source–target–source

methodology, both in its original form and an extended

multi-source version, to the problem of cross-sensor bio-

metric recognition. We tested the proposed methodology

on the publicly available CSIP image database, achieving

state-of-the-art results in a wide variety of cross-sensor

scenarios.

Keywords Transfer learning � Deep neural networks �
Source–target–source � Optimization � Cross-sensor

biometrics

1 Introduction

Transfer learning is an approach in which the knowledge

acquired in solving one task is used to solve a new target

task without having to perform the whole training proce-

dure. It is anticipated that new tasks and concepts are

learned more quickly and accurately by exploiting past

knowledge. Such approach gains an increased interest

given that the learning of each task in isolation represents

an expensive process, requiring large amounts of both time

and data. With this idea in mind, the focus of transfer

learning falls on the leveraging of information from

existing sources to train new models with increased

efficiency.

Transfer learning has found a series of practical appli-

cations in a vast array of research fields, such as text

classification from one writing style to another [1], cross-

domain video concept detection [2], customers sentiment

classification over time [3], biomedical labeling for genes,

proteins and biological entities [4] or sensor-based location

estimation [5].

Another possible application of transfer learning tech-

niques is the extension of the biometric recognition prob-

lem to multiple sensor scenarios. In information

technology, biometrics refers to the quantitative measure

and analysis of human anatomical or behavioral charac-

teristics, such as DNA, fingerprints, eye retinas and irises,

voice patterns, facial patterns and hand measurements, for

authentication purposes.

With the increasing popularity and availability of

mobile devices, capable of performing the whole biometric

recognition framework, from data acquisition to final

decision, a new obstacle is presented to the development of

such systems: the need to adapt to the wide variety of

available sensors and the resulting heterogeneity with

regards to image quality. The question of whether or not

sensors from different manufacturers show a high degree of

interoperability allowing, for example, for an individual to

be enrolled in a single system and, then, be successfully

recognized in a vast variety of alternative devices, is of

growing importance in the research field of biometrics.

With this formulation in mind, it is trivial to understand

how the principles of transfer learning may be adopted for

this rising challenge.
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With recent studies showing that cross-sensor matching,

where the test instances are verified using data enrolled

with a different sensor, often lead to reduced performance,

we attempt to overcome this challenge by making use of

transfer learning principles and, thus, achieve state-of-the-

art performance for a large variety of acquisition scenarios.

For that purpose, we explore and extend the source–target–

source (STS) approach, first proposed in [6], while apply-

ing it to the specific challenge of cross-sensor periocular

recognition. STS is a recent alternative that has shown

increased performance in computer vision object recogni-

tion tasks, as well as a significant gain in processing speed.

The remainder of the paper is organized as follows:

Sect. 2 details the evolution of both transfer learning

techniques and cross-sensor biometrics, while outlining

some of the most relevant recent works in the field; Sect. 3

presents the transfer learning techniques that were imple-

mented to tackle the cross-sensor biometric recognition

problem, with increased focus on the proposed multi-

source STS (MS-STS) approach; Sect. 4 outlines the main

results observed for performance assessment carried out in

a series of experimental setups; finally, the main conclu-

sions and suggestions for future work can be found in

Sect. 5.

2 Related work

The issue of learning from few training instances has

motivated several works on classification in recent years.

The NIPS-95 workshop on Learning to Learn unveiled the

need for machine learning methods that retain and reuse

previously learned knowledge, thus initiating the devel-

opment of a vast array of transfer learning (TL)

algorithms.

In [7], the author introduced the notion of multitask

learning where the knowledge from a task is improved by

using the information contained in the training instances of

other related tasks. This methodology enables the learning

of multiple tasks in parallel, by taking advantage of shared

representations, thus simultaneously improving general-

ization for all learnt tasks. The TL algorithm known as

lifelong learning [8] is based on the assumption that a

learner faces multiple learning problems during its lifetime.

Thus, when learning the n-th task, a learner can reuse

knowledge gathered in the previous n � 1 tasks to boost the

generalization ability. The cross-domain learning or do-

main adaptation (see [9–12]) TL algorithm in which a

machine learns to perform a task on training instances

drawn from a source problem and then performs the same

task on a target problem, whose instances are drawn from a

related distribution. Domain adaptation expects that the

closer the distributions are, the better the features trained

on the source problem will perform on the target problem.

Deep transfer learning (DTL) is a framework that

combines deep learning models with the transfer learning

algorithms (see [13–15]) in which deep learning networks

are used for training the source problem, and then, layer-

by-layer feature transference is performed to solve a target

problem in either a supervised [13] or an unsupervised [15]

setting. The advantage of DTL is that it offers a far greater

flexibility in extracting high-level features that are trans-

ferred from a source to a target problem while, unlike the

classical approach, not being affected by expert’s bias [16].

The practical problem of cross-sensor biometrics has also

been the focus of many works in recent years, highly moti-

vated by the growing variety and availablity of mobile sen-

sors. The most commonly found works concern mostly iris

recognition. Connaughton et al. [17] performed a comparison

between three commercially available iris cameras, with the

aim of assessing the interoperability between them and the

impact of some state-of-the-art recognition algorithms in both

single- and cross-sensor scenarios. The authors arrived at

some fulcral conclusions, namely the fact that the relative

performance of a given algorithm in a variety of single-sensor

scenarios does not relate reliably to the performance of the

same algorithm when tested in cross-sensor scenarios. Fur-

thermore, performance observed for all cross-sensor scenarios

was consistently worse than their single-sensor counterparts.

This idea is also corroborated by the conclusions of Monteiro

et al.’s work [18], where two state-of-the-art recognition

algorithms fail to cope with the variations introduced to their

input data when faced with cross-sensor scenarios.

Another recent work in the field of iris recognition,

proposed by Pillai et al. [19], attempted to adapt iris

instances acquired with one sensor to the characteristics of

a new sensor, in an attempt to mitigate the performance

drop commonly observed in cross-sensor scenarios. Both

Santos et al. [20] and Jilela and Ross [21] propose methods

based on information extracted from the periocular region.

It is common to describe the periocular region as the region

in the immediate vicinity of the eye, as depicted in Fig. 1,

whose potential as a biometric trait can be motivated as a

representation in between face and iris recognition. The

periocular region has been shown to present increased

performance when only degraded facial data or low-quality

iris images are made available, and even in mobile appli-

cation scenarios, it does not require rigid capture or
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complex imaging systems, thereby making it easy to

acquire even by an inexperienced user [18]. While Santos

et al. propose a framework based on multiple descriptors to

work on periocular data on multiple mobile sensors, Jilela

and Ross attempt to match iris and face images from the

same individual, acquired with distinct sensors, using

periocular traits to help in the recognition process.

With the marked advantages of periocular recognition

over its iris and face counterparts becoming more widely

accepted and researched, especially when unconstrained

acquisition settings are considered, the present work will

focus on exploring transfer learning alternatives to peri-

ocular recognition in order to attenuate the problems

commonly associated with cross-sensor scenarios.

3 Deep transfer learning frameworks

Traditionally, the goal of transfer learning (TL) is to

transfer the knowledge (learning) obtained from a source

domain S to one or more target domains T, in order to

efficiently develop an effective hypothesis for a new task,

domain or distribution [11]. A variety of divergence levels

may exist across different pairs of source domain and target

domain data. Brute-forcing knowledge from the source

domain into the target domain, irrespective of their diver-

gence, may cause a certain performance degeneration, or,

in even worse cases, break the original data consistency in

the target domain [23].

With this in mind, a series of specific transfer learning

techniques have been designed to meaningfully perform

knowledge transfer between the source and target problem’s

domains. Such knowledge transfer techniques are based on

the nonnegative matrix trifactorization framework, with the

transfer learning phase being performed via dimensionality

reduction [23]. The most widely used methods transfer not

only features but also parameters to the target domain. The

knowledge learnt from a problem, or a set of problems, is

then reused to help in solving the new problem(s) more

effectively. Inside this broad definition of TL, various

methodologies that have been previously explored in the

context of deep neural networks are outlined next.

3.1 Established frameworks

Given a dataset D ¼ fðxi; yiÞgN
i¼1 drawn from input space X

and a set of labels Y, a classifier is any function f ðxÞ :
X ! Y that maps instances xi 2 X to labels. Our classifier

is a deep network with K layers: K � 1 hidden layers and

one output classifier layer (logistic regression). The deep

network is thus composed of a set of features W ¼
fw1;w2; . . .;wKg where wk is an Mk�1 � Mk weight matrix,

Mk is the number of neurons in the kth layer and M0 is the

number of inputs of the network. We define the baseline

classifier (BL) as the one trained directly to solve the target

problem without any type of transference, thus starting

from a random initialization of the weight matrices. Clas-

sifier performance measures such as prediction accuracy or

computation time are measured on a test set Xtest.

3.1.1 Transfer learning supervised (TLs)

We assume that the ‘‘source’’ dataset DS with input space

XS and a set of labels YS is drawn from a distribution

PS Xð Þ, and the ‘‘target’’ dataset DT with input space XT and

a set of labels YT is drawn from a distribution PT Xð Þ. Such

PS Xð Þ and PT Xð Þ may be either equal or different.

In TLs, we transfer fine-tuned source problem features

to the target network. Figure 2 depicts such transference

approach between the first layers of both source and target

Fig. 1 Example of periocular regions from both eyes, extracted from

a face image [22]

Fig. 2 TLs for first-layer feature transference
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networks. As a first step, we randomly initialize each layer

of the network using a uniform distribution [10]:

wk
S ¼ U �

ffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mk�1 þ Mk

p ;

ffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mk�1 þ Mk

p
� �

ð1Þ

Next, we apply greedy layerwise pre-training Uð�Þ until

the K � 1th hidden layer using unlabeled samples from the

source data as represented below:

Uðw1
S; . . .;w

K�1
S Þ ð2Þ

After pre-training, we fine-tune Sð�Þ these unsupervised

features with the source problem labeled instances as given

in Eq. (3):

SðUðw1
S; . . .;w

K�1
S Þ;wK

S Þ ð3Þ

Feature transference is then applied by mapping the fine-

tuned source features to the target network. In the case due

to a different number of classes between the problems, the

logistic regression layer from the source problem cannot be

reused. A new randomly initialized logistic layer is then

used for the target problem. Finally, we fine-tune this entire

deep network as a multilayer perceptron using back

propagation.

3.1.2 Source–target–source (STS)

In our previous work, we proposed a source–target–source

(STS) approach [6]. As previously discussed, the main idea

of transfer learning is that the knowledge (features) learnt

in a source problem may provide a good initialization for

the learning task in a target problem, serving as an

improvement over random initialization of the learning

parameters for the target domain. In [6], we proposed an

iterative learning between both domains. The intuition is

that, like in typical metaheuristics in optimization (i.e.,

tabu search and simulated annealing), moving the learning

process from one domain to the other will ‘shake’ the

current local optimal solution, allowing us to keep

exploring the space of solutions and, ideally, reaching a

better solution in the process. The solutions reached in each

iteration are kept, and only the global best solution

achieved is considered. Further technical details and pre-

liminary results using this approach may be found in [6].

3.2 Proposed multi-source source–target–source

framework

In the present work, we extend the STS transfer learning

methodology presented in the last section, by reusing

knowledge learnt by a model trained on multiple sources.

As previously mentioned in Sect. 2, two different

approaches have attempted to account for the reuse of

multiple sources for TL: (a) lifelong learning [8] and

(b) multitask learning [7]. Both approaches are based on

specific TL scenarios and assume that the data and the

tasks are related.

Both previously mentioned approaches suffer from

serious limitations. For example, if two tasks are negatively

correlated, the learning process will cause degradation of

the generalization performance of both tasks. In order to

avoid such issues, a strong task selection is required in

order to constrain the application of such methods to a

limited set of positively correlated problems. The multi-

source source–target–source (MS-STS) approach improves

generalization performance over multiple problems, with

no need for prior task selection.

The MS-STS approach is briefly explained in the

pseudocode presented in Algorithm 1. Consider a pool,

Pool, containing multiple datasets from a similar problem

or particular application, Pool ¼ fDA;DB; . . .;DZg drawn

from PAðXÞ;PBðXÞ; . . .;PZðXÞ, where Z is number of

datasets. We select a deep neural network architecture and

initialize the weights of each layer of the network using a

uniform distribution under the limits defined in step 1 of

Algorithm 1. Initializing the weights through this method

narrows down the gradient search parameter, thus speeding

up the training of the network [10]. Heuristically, we set

the maximum number of cycles to 10. This value may

suffer variations according to the nature of the problem. In

step 2, we select a desired target dataset DdT from the Pool

for which we intend to have the best overall accuracy.

During each of H cycles, a target dataset DT is selected

among the pool of datasets, for which we apply the deep

transfer learning approach discussed in Sect. 3.1 as well as

the source–target–source approach as discussed in [6] by

selecting layers to transfer and/or to lock in the new

network.

The new network is trained and tested as a regular deep

network for the selected DT . A list of best accuracies for

each cycle is maintained for every dataset in the pool. If the

current cycle test accuracy for the desired target dataset

DdT is greater than the average of the top test accuracies,

for the desired target dataset DdT , we break the cycle and

store the final weights of the network. By training and

testing serially on multiple datasets, we improve the

domain generalization property of the approach, while by

focusing on the desired target dataset, we aim to improve

the domain specialization property.
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Algorithm 1 Pseudocode for MS-STS
1: Randomly initialize the weights of every layer of the network using uniform

distribution:

wk ∼ U
[ −√

6√
Mk−1 +Mk

,

√
6√

Mk−1 +Mk

]

2: select a desired target dataset DdT from the Pool = {DA, DB , . . . , DZ}.
3: for h in H cycles do
4: for p in Pool do
5: DT = p {set p as target dataset}

{transfer features to new network as discussed in the transfer learning ap-
proach [6] and select which of the layers to transfer and which of the layers to
lock, out of K layers}

6: for k in K do
7: wk

S ⇒ wk
T {transfer selected layers}

8: wk
S � wk

T {lock selected layers}
9: end for
10: train and test the new network with DT

11: update the test accuracy list
12: if accuracy of DdT > avg(top 3 best test accuracy in DdT accuracy list) then
13: BREAK
14: end if{Continue MS-STS step 3 till global optima is reached for the DdT .}
15: end for
16: end for

It is necessary to clarify exactly what is meant by MS-

STS, as all of the above-mentioned methods also take

advantage of multiple sources to train the network. MS-

STS proposes to extend the established STS methodology

with multiple sources instead of a single source. The

intuition is that by providing multiple initialization points

for exploring the space, we may reach a solution closer to

the optimal. This search may result in an increase of the

computational cost, but if a trade-off can be found between

classification performance, system robustness and compu-

tational complexity, this might not end up as a significant

limitation.

4 Cross-sensor recognition results and discussion

In the present work, we explore the approaches outlined in

the previous section as an alternative to tackle the cross-

sensor biometric recognition problem. This problem can be

understood as the problem of successfully performing

biometric recognition on a specific image acquisition

device without the need of performing a new enrollment

phase for the new device specifically. This interpretation

can be easily extrapolated to the domain of the afore-

mentioned approaches if both devices are understood as the

target (where recognition is to be performed) and the

source (where enrollment was carried out). In the following

sections, we outline the experimental setups designed to

assess the performance of the proposed methodologies in

the specific practical problem of cross-sensor periocular

recognition.

We start by detailing a baseline algorithm, first proposed

by Monteiro et al. [24], that has presented state-of-the-art

performance for multiple single-sensor scenarios, as well

as a commonly used feature representation technique—

GMM supervectors—which will be explored for stacked

denoising autoencoders (SDA) approaches. We then pre-

sent the experimental setup under which each of the tested

methodologies was assessed as well as the performance

metrics chosen for such process. Finally, we present the

most significant results as well as a detailed discussion

concerning the relative performance of each method for

each of the proposed challenges.

4.1 Tested methodologies

4.1.1 GMM-universal background model (GMM-UBM)

The GMM-UBM algorithm for periocular recognition, first

proposed by Monteiro et al. [24], is schematically repre-

sented in Fig. 3. During the enrollment, a set of I models

describing the unique statistical distribution of biometric

features for each individual i 2 1; . . .; If g is trained by
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maximum a posteriori (MAP) adaptation of an universal

background model (UBM). The UBM is a representation of

the variability that the chosen biometric trait presents in the

universe of all individuals. MAP adaptation works as a

specialization of the UBM based on each individuals bio-

metric data. The idea of MAP adaptation of the UBM was

first proposed by Reynolds [25], for speaker verification.

The tuning of the UBM parameters in a maximum a pos-

teriori sense, using individual-specific biometric data,

provides a tight coupling between the individual models

and the UBM, resulting in better performance and faster

scoring than uncoupled methods, as well as a robust and

precise parameter estimation, even when only a small

amount of data is available.

The recognition stage is carried out through the pro-

jection of the features extracted from an unknown sample

onto both the UBM and the individual-specific models

(IDSM) of interest. A likelihood ratio between both pro-

jections outputs the final recognition score. Depending on

the functioning mode of the system—verification or iden-

tification—decision is carried out by thresholding or

maximum likelihood ratio, respectively. The use of a

likelihood ratio score with an universal reference works as

a normalization step, mapping the likelihood values in

accordance with their global projection. Without such step,

finding a global optimal value for the decision threshold

would be a far more complex process.

Gaussian mixture models (GMM) were chosen to model

both the UBM and the individual-specific models (IDSM).

From the most common interpretations, GMMs are seen as

capable of representing broad hidden classes, reflective of the

unique structural arrangements observed in the analyzed

biometric. The original work was proposed using SIFT key-

point descriptors as the only features, but a more recent ver-

sion [26] proposed a score-level fusion of multiple descriptors

(SIFT, HOG, LBP and GIST), resulting in improved

performance.

The original work was designed with single-sensor

recognition in mind, i.e., the source and target data are the

same. In the present work, we also assess the performance

in cross-sensor scenarios, where training of models and

classification are carried out on distinct data sources. Some

preliminary results for such setup have already been

reported in a follow-up work by the original authors [26].

The present work will more thoroughly analyze and discuss

such results, as well as presenting a comparative analysis

with alternative approaches.

4.1.2 GMM supervectors (SV-SDA)

With the previous methodology, recognition was carried

out through a likelihood ratio between a target IDSM and

the UBM. Recently, a significant amount of works have

explored the use of an alternative GMM representation—

GMM supervectors—as the input for classification algo-

rithms, with some promising results being reported in the

literature [27]. Supervector notation consists on concate-

nating in a single vector all the parameters describing a

GMM (weights, means and covariance matrices). For

example, the mean values of the UBM can be concatenated

to form a single mean supervector, mu, given by

mu ¼ ½lT1; lT2; . . .; lTj�, where j is the total number of

mixtures in the UBM [28]. A similar representation can be

extracted for the IDSM parameters. In the SV-SDA

Fig. 3 Schematic representation of the GMM-UBM periocular recognition algorithm proposed by Monteiro et al. [24]

Neural Comput & Applic

123



approach, we describe each training image t belonging to

subject i, Imt;i, by its supervector representation, obtained

by MAP adaptation of the UBM parameters using the

feature data extracted solely from Imt;i. SIFT is used for

feature description.

We then perform training, validation and classification

using stacked denoising autoencoders (SDA) for both TLs

and STS approaches. SDAs are multiple layer networks

where each individual layer is trained as a denoising

autoencoder (dA). The training of a SDA model is com-

prised of two stages: an unsupervised pre-training (PT)

stage followed by a supervised fine-tuning (FT) stage.

During PT the network is generated by stacking multiple

dA one on top of each other, thus learning unsupervised

features, represented as a vector U(w), of optimal weights

and biases. Then a logistic regression layer is added on top

and the whole network is fine-tuned, in a supervised way,

learning a set of K supervised features w ¼ ðw1; . . .;wKÞ,
where K is the number of layers [29].

4.1.3 CNN

A methodology based on Convolutional Neural Networks

(CNN) was also carried out, for TLs, STS and MS-STS

approaches, using raw pixel intensity values. CNN take

advantage of the fact that the input consists of images to

constrain the neural network (NN) architecture in a more

sensible way. In particular, unlike regular NNs, the layers

of a CNN have neurons arranged in three dimensions:

width, height and depth. (Note that the word depth here

refers to the third dimension of an activation volume, not to

the depth of a full Neural Network, which can refer to the

total number of layers in a network.) The CNN architecture

reduces the full image into a single vector of class scores,

arranged along the depth dimension.

CNNs exploit spatially local correlation by enforcing a

local connectivity pattern between neurons of adjacent

layers. This architecture thus ensures that the learnt neu-

rons produce the strongest response to a spatially local

input pattern. Also, sharing weights increases the invari-

ance of learnt filters by replicating each of them across the

entire visual field. These replicated filters share the same

parameterization (weight vector and bias) and form a fea-

ture map. Replicating units in this way allows for features

to be detected regardless of their position in the visual field.

Additionally, weight sharing increases learning efficiency

by greatly reducing the number of free parameters being

learnt. The constraints on the model enable CNNs to

achieve better generalization on image-based problems.

We used three main types of layers to build CNN archi-

tectures: convolutional layers (conv), pooling layers (pool)

and fully connected layers (FC). We will stack these layers to

form a full CNN architecture with a logistic regression

classifier (LR). The architecture of our 5-layer CNN model is

composed of ½Conv � Pool� � 3 � FC � LR. We first crop

the image to a fixed dimension of 200 � 120 and then convert

the image to gray scale to work as the input. Convolution

with 30 different first-layer filters, each of size 12 � 12,

using a stride of 1 in both x and y, is then carried out. The

resulting feature maps are then pooled in (maximum within

2 � 2 regions, using stride 1) to give 30 different 94 � 54

element feature maps. Similar operations are repeated with

60 and 90 different layer filters in second and third layers,

respectively. The fourth layer is fully connected, taking

features from the top convolutional layer as input in vector

form. The final layer is a c-way logistic regression classifier,

c being the number of classes. All filters and feature maps are

square in shape. A schematic representation of the developed

structure may be observed in Fig. 4.

Fig. 4 Schematic representation of the developed CNN architecture
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4.2 Tested dataset

The methodologies outlined in the previous sections were

assessed on the cross-sensor iris and periocular (CSIP)

dataset. The CSIP database, created for the assessment of

the algorithm proposed by Santos et al. [20], is a recent and

publicly available dataset, designed with the main goal of

gathering periocular images from a representative group of

participants, acquired using a variety of mobile sensors

under a set of variable acquisition conditions. Given the

heterogeneity of the camera sensors and lens setups of

consumer mobile devices, ten different setups were used

during the dataset acquisition stage: four different devices,

some of which had both frontal and rear cameras, and LED

flash. This variety of sensors confers a strong appeal to the

CSIP database regarding its potential use for the assess-

ment of algorithms under a highly heterogeneous set of

conditions. A summary of the details concerning each of

such setups may be observed in Table 1, while a visual

example of an image for each subset of the same individual

is depicted in Fig. 5. Each participant was imaged using all

of the presented setups.

To simulate the variable noise associated with on-the-go

recognition, participants were not imaged at a single

location, but instead, they were enrolled at multiple sites

with artificial, natural, and mixed illumination conditions.

In total, 50 participants were enrolled, all Caucasian and

mostly males (82 %), with ages ranging between 21 and

62 years (l� r ¼ 31:18 � 3:15 years). For each periocular

image acquired by the mobile devices, a binary iris seg-

mentation mask was also produced. The masks were

obtained automatically using the state-of-the-art iris seg-

mentation approach proposed by Tan et al. [30], which is

particularly suitable for uncontrolled acquisition condi-

tions, as demonstrated by its first-place ranking at Noisy

Iris Challenge Evaluation—Part 1 (NICE.I) [31].

4.3 Experimental setup

4.3.1 Image preprocessing

Images from the CSIP database were converted to gray

scale and resized so as to present a fixed number of pixels,

necessary for the implementation of all the approaches

based on the CNN methodology. Resizing was carried out

in such a way that geometrical proportions were kept from

the original images.

Table 1 Technical details concerning the acquisitions setups used for each subset of the CSIP database

Setup ID AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DF0 DR0

Device A B C D

Manufacturer Sony Ericsson Apple ThL Huawei

Model Xperia Arc S iPhone 4 W200 U8510

O.S. Android 2.3.4 iOS 7.1 Android 4.2.1 Android 4.3.3

Camera Rear Frontal Rear Frontal Rear Frontal Rear

Resolution 3264 2448 640 480 2592 1936 2592 1920 3264 2448 640 480 2048 1536

Flash No Yes No No Yes No No Yes No No

Fig. 5 Examples of images from each subset of the CSIP database. From a–j, respectively: AR0, AR1, BF0, BR0, BR1, CF0, CR0, CR1, DF0

and DR0
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4.3.2 Data partitioning

In order to achieve a fair and meaningful comparison

between the tested methodologies, a common experimental

setup was designed. The set of all images of the CSIP

dataset was divided as follows: 50 % of the images per

individual and per subset were kept for model training,

25 % were chosen for validation of the trained models, and

the remaining 25 % were used to assess performance.

Train, validation and test subsets were randomly selected,

and all experiments were cross-validated ten times.

4.3.3 Evaluation metrics

Performance was evaluated only for identification prob-

lems, where, given a biometric sample from an unknown

source, the p most probable identities are assessed. For

such problems, the most commonly found performance

metric is the rank-1 recognition rate, which refers to the

ratio of correctly assessed identities, when p ¼ 1.

4.4 Cross-sensor recognition performance

The main results obtained for the experimental setups

detailed in the last section are summarized in Tables 2, 3,

4, 5, 6, 7 and 8. Discussion of these results will be carried

out, from this point onwards, starting with the BL and TLs

approaches, followed by an analysis on how the STS

strategy may improve performance in cross-sensor sce-

narios and, finally, on the effect that multiple sources of

information may present.

4.4.1 Baseline and transfer learning

The baseline results for each tested methodology (GMM-

UBM, SV-SDA and CNN) are presented in the diagonal

Table 2 Rank-1 recognition rates, in %, observed for the GMM-UBM

algorithm for all possible cross-sensor scenarios in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 94.4 57.8 34.1 76.8 45.9 41.8 52.8 40.7 65.6

AR1 64.6 97.1 26.5 47.9 83.6 25.5 35.4 66.8 33.7

BF0 33.1 23.1 78.2 21.1 19.4 30.8 24.0 19.8 16.0

BR0 67.4 39.6 19.7 92.4 54.2 36.5 42.3 34.3 67.7

BR1 31.8 62.3 12.0 48.1 95.5 28.3 25.6 52.5 35.3

CF0 36.4 29.1 34.7 36.5 30.8 89.8 55.8 39.8 46.3

CR0 59.5 30.2 24.4 58.1 36.4 59.3 80.3 45.7 71.9

CR1 42.6 64.9 21.2 47.8 70.8 47.5 50.5 90.0 49.0

DR0 41.3 18.0 17.4 53.0 23.1 30.3 39.8 24.8 88.7

Table 3 Rank-1 recognition rates, in %, observed for the SV-SDA

methodology and TLs approach for all possible cross-sensor scenarios

in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 81.8 39.3 33.4 79.3 14.1 27.7 52.5 20.0

AR1 35.4 76.7 22.7 24.6 77.3 15.9 20.9 61.6 17.6

BF0 43.8 81.4 41.4 27.3 80.1 22.3 17.8 59.7 21.5

BR0 35.2 79.0 35.8 25.6 77.3 14.6 21.8 45.9 22.1

BR1 32.4 78.4 37.7 25.1 82.1 22.1 18.0 55.6 23.0

CF0 32.4 79.8 36.4 24.1 75.3 12.1 16.3 50.6 24.6

CR0 41.5 79.0 36.6 24.8 81.6 16.1 23.5 51.7 23.9

CR1 28.7 79.0 36.6 22.1 78.0 16.4 18.2 57.9 22.4

DR0 28.9 80.4 39.0 29.0 72.2 15.0 22.0 52.5 19.7

Table 4 Rank-1 recognition rates, in %, observed for the CNN

methodology and TLs approach for all possible cross-sensor scenarios

in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 61.5 84.2 54.0 69.0 91.0 64.4 63.9 92.0 65.3

AR1 60.8 82.1 52.0 66.0 88.5 58.1 63.9 92.0 56.7

BF0 65.9 84.5 50.0 68.5 89.5 62.6 67.4 92.3 65.3

BR0 63.0 82.6 52.4 63.5 88.0 61.8 67.0 92.0 56.7

BR1 63.0 85.0 52.4 60.5 85.5 60.4 64.3 90.3 57.3

CF0 64.4 85.0 50.8 63.5 91.5 54.8 66.1 93.0 58.0

CR0 62.2 86.8 51.2 66.5 90.5 60.7 67.9 93.3 62.7

CR1 61.4 82.9 50.4 66.5 89.5 57.8 65.2 88.0 57.3

DR0 60.0 83.2 53.2 62.0 86.5 55.2 68.7 90.0 53.3

Table 5 Rank-1 recognition rates, in %, observed for the SV-SDA

methodology and a single cycle of the STS approach for all possible

cross-sensor scenarios in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 89.1 54.4 31.1 90.6 16.0 27.7 59.6 27.3

AR1 40.8 76.7 42.1 29.2 92.2 17.0 25.4 68.9 32.0

BF0 42.3 91.6 41.4 30.3 90.8 16.5 22.8 63.9 29.3

BR0 43.1 88.7 48.2 25.5 90.6 14.0 27.9 62.5 25.7

BR1 41.8 90.0 50.3 28.4 82.1 16.8 23.5 64.1 26.0

CF0 39.2 88.0 47.4 30.0 89.4 12.0 25.4 63.9 25.0

CR0 42.6 88.0 50.9 30.0 93.1 16.5 23.5 66.1 26.7

CR1 37.4 89.6 50.0 28.9 90.0 18.3 25.1 57.8 26.0

DR0 41.8 88.4 53.2 30.2 90.0 16.8 25.6 61.6 19.7
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values of Tables 2, 3 and 4, respectively. By the sole

analysis of these results some conclusions may already be

drawn. First of all, it is easily discernible how the GMM-

UBM methodology, specifically designed to solve the

single-sensor periocular recognition problem, outperforms

both alternatives in such conditions. Even for the CSIP

subsets that, in theory, offer the least challenging condi-

tions (AR1, BR1 and CR1), the performance drop observed

is non-negligible. Taking AR1 as a specific example a

relative performance drop of 26.6 and 18.3 % is observed

in the SV-SDA and CNN methodologies, respectively. This

effect is, however, reversed when cross-sensor scenarios

are taken into consideration.

If we consider a single target dataset, it is readily

observable that the variance in performance is a lot less

pronounced for the CNN and SV-SDA methodologies than

for GMM-UBM. Furthermore, it also notorious how the

significantly better single-sensor scenario results of the

GMM-UBM are severely degraded when a more complex

challenge is presented to the algorithm. A trivial conclu-

sion can be taken from such observations: Even though the

GMM-UBM presents the best baseline results, as expected

from an algorithm tailored for that specific challenge, the

application of transfer learning to both CNN and SV-SDA

methodologies results in a considerably lower variance in

the performance values observed for a single target dataset,

regardless of the chosen source. A valid deduction, fol-

lowing such conclusions, is that improving the baseline

performance of such methodologies will also result in an

increased cross-sensor performance. Given that the chal-

lenge of cross-sensor biometric recognition is mostly

concerned with the performance loss observed in such

cases, the global behavior of the tested methodologies

seems to, at least, motivate further research seeking to

improve the baseline performance.

In the next section, we explore the effect that the

source–target–source approach presents over the simpler

TLs alternative.

4.4.2 Source–target–source

As detailed in Sect. 3, we propose a cyclic source–target–

source (STS) approach for classification using the CNN

and SV-SDA methodologies. Tables 5 and 6 present the

STS results observed for the SV-SDA methodology for a

single cycle (STS1) and for a total of ten cycles, respec-

tively. Analogous results for the CNN methodology may be

observed in Tables 7 and 8. For a simpler analysis the

baseline results are kept on the diagonal of each table, as in

the last section.

The first observation to be taken from the analysis of the

aforementioned tables is how even a single cycle of STS

can significantly improve some of the baseline results. The

CF0 baseline for example, presents a relative improvement

of 18.2 % for the CNN methodology, and most of the

observed results already exceed those observed for the

Table 6 Rank-1 recognition rates, in %, observed for the SV-SDA

methodology and the STS approach for all possible cross-sensor

scenarios in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 38.0 91.3 54.4 38.7 90.6 19.0 30.9 59.6 32.7

AR1 40.8 76.7 42.1 29.7 93.9 19.8 25.4 71.6 32.0

BF0 48.5 91.6 41.4 32.2 90.8 19.8 23.5 65.9 31.7

BR0 43.1 88.7 48.2 25.5 90.6 17.3 27.9 62.5 31.7

BR1 43.1 90.0 50.3 29.5 82.1 19.0 26.1 64.3 30.3

CF0 40.0 88.0 47.4 33.8 89.4 12.0 26.1 63.9 28.7

CR0 44.4 88.0 50.9 32.2 93.1 19.8 23.5 66.1 29.3

CR1 37.4 90.0 50.6 28.9 92.2 18.3 25.1 57.8 30.0

DR0 43.3 88.4 53.2 31.9 90.0 16.8 29.1 61.6 19.7

Table 7 Rank-1 recognition rates, in %, observed for the CNN

methodology and a single cycle of the STS approach for all possible

cross-sensor scenarios in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 61.5 84.5 55.2 70.0 87.5 63.0 68.3 92.3 59.3

AR1 64.4 82.1 50.4 66.5 88.5 59.3 68.7 91.0 60.0

BF0 63.7 84.0 50.0 67.5 88.0 64.8 66.1 92.0 57.3

BR0 62.2 84.0 54.0 63.5 89.5 64.1 67.0 92.0 61.3

BR1 64.4 84.2 52.4 65.0 85.5 60.4 70.9 93.3 54.7

CF0 61.5 84.5 53.6 64.0 88.0 54.8 69.6 90.7 62.0

CR0 63.3 84.5 52.0 67.5 88.5 63.0 67.9 90.0 62.0

CR1 65.2 85.3 52.8 68.5 86.5 64.1 68.7 88.0 64.0

DR0 63.7 85.5 50.4 65.5 89.0 62.6 64.8 91.7 53.3

Table 8 Rank-1 recognition rates, in %, observed for the CNN

methodology and STS approach for all possible cross-sensor scenarios

in the CSIP database

Source Target

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DR0

AR0 61.5 88.7 58.4 72.5 91.0 70.0 67.8 92.3 70.0

AR1 71.9 82.1 55.2 69.5 92.5 66.7 70.9 92.0 66.7

BF0 73.3 90.3 50.0 71.5 91.5 70.7 69.1 92.0 71.3

BR0 72.6 89.0 57.6 63.5 90.5 69.6 70.4 92.7 72.0

BR1 71.5 90.8 54.8 69.0 85.5 64.4 72.2 93.3 64.7

CF0 72.6 90.5 57.2 72.5 91.5 54.8 70.0 92.3 69.3

CR0 72.2 90.8 58.4 73.5 91.0 68.9 67.9 92.3 69.3

CR1 70.7 92.1 56.4 72.5 90.5 65.9 70.4 88.0 68.0

DR0 71.1 89.7 57.2 70.0 91.0 67.0 68.7 92.3 53.3
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simpler TLs approach. This improvement is even more

discernible when multiple STS cycles are carried out. The

results presented in Tables 6 and 8 depict this behavior.

Here, and taking the same CF0 baseline result as referred

before, the performance, comparing to the baseline, is

increased to 29.0 %. It is interesting to note how the sta-

bility observed in the last section, when a single target

dataset is considered, is also observed in this approach,

with the addition of significantly increased performance.

The same conclusion can, thus, be achieved: If a stronger

baseline performance is achieved, STS approaches to

classification seem to present the capability of both

improving the baseline performance and guaranteeing the

maintenance of such performance when different acquisi-

tion scenarios are considered.

Another consideration to be taken from the analysis of

these results is how significantly worse the results using

supervector-based SDA classification are when compared

with their CNN counterparts. This observation can also be

made from the analysis of Tables 2, 3 and 4 from last

section. The most obvious explanation concerns the fact

that the supervector representation based on the GMM

modeling of SIFT keypoint descriptors might not present

enough discriminative information for accurate SDA clas-

sification, except in some specific cases. For example, the

datasets composed by higher quality images (AR1 and

BR1) present considerably better performance, even sur-

passing the performance of their CNN counterparts. These

results show that some discriminative power exists, even

though it seems severely compromised when the quality of

the input images decreases. Regardless of that, the STS

behaviors described above still remain relevant for the

SDA methodology, and may earn some further research

regarding the use of more adequate feature representation

techniques.

As a final approach we also explored the effect of using

information from multiple sources in order to improve the

performance of the cyclic STS algorithm. The main results

and observations regarding this approach will be outlined

in the next section, in an attempt to summarize all the

results and observations obtained in the present work.

4.4.3 Multiple source STS

Figure 6 summarizes both the results obtained for the STS

algorithm using multiple sources (MS-STS) and the most

relevant results presented in the last sections. The main

goal of MS-STS is to achieve a high degree of domain

generalization, in order to allow the trained classifiers to

perform well for the widest possible variety of scenarios.

For the multiple source examples, we chose the flash

subsets (AR1, BR1 and CR1) as the sources and all other

no-flash datasets as the targets. This choice can be

motivated by the fact that the three flash datasets consis-

tently presented the best absolute performance among all

the experiments that we carried out. Such observation

seems to indicate that the intrinsic discriminative power of

such datasets might be higher than the remaining alterna-

tives, thus conferring them, at least in theory, a marked

advantage as choice for source datasets. We also chose to

work only with the CNN methodology, as the vast majority

of the results observed in the last section seemed to point

toward its better fit for the problem at hand.

So as to better visualize and understand the effect of the

MS-STS approach over the approaches presented in the last

sections, we decided to present the results in the radial plot

representation that can be observed in the six images from

Fig. 6. For each image, a series of features can be

observed:

• Source and Target Datasets: Each of the axis of the

radial plot represents the rank-1 recognition rate (in %)

for the chosen target (positive vertical axis) as well all

the three source datasets.

• BL, TLs, STS1 and STS: The BL label represents the

baseline performance as already presented in the

diagonal values of Tables 2, 3 and 4. TLs and STS1/

STS, on the other hand, represent the best results for

each of the 4 depicted datasets (3 sources and 1 target),

for each of their individual TLs and STS1/STS exper-

iments (bold values in Tables 3, 4, 5, 6, 7, 8). STS1

represents the performance after a single cycle of the

STS approach, whereas STS1 refers to the best perfor-

mance observed after ten cycles.

• STS (3 sources): This label depicts the best perfor-

mance observed for the target dataset, for its individual

STS1/STS experiment, considering only AR1, BR1 and

CR1 as a possible source. We chose to include this label

in order to achieve the fairest possible comparison

between the MS-STS performance and the optimal

single-source experiment.

• MS-STS1 and MS-STS: The two polygons, in blue and

red, respectively, represent the first cycle and optimal

performances, after ten repetitions of the whole multi-

source cyclic process, for each of the source and target

datasets.

By the analysis of the plots, independent of the chosen

target dataset, a few interesting conclusions can be drawn.

First, there seems to be no significant performance change,

regarding the target dataset, between the MS-STS (after ten

cycles) approach and the analogous results for STS using

only the best single source from the AR1;BR1;CR1½ � set of

sources. What the MS-STS offers is a way of achieving this

optimal performance without the need of an empirical

choice of the best source subset, thus conferring a more

robust nature to the whole process. This is also the main
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advantage of the multiple source approach when compared

to the optimal STS performance obtained when considering

all eight possible sources for a specific target: As the only

way to achieve the best individual performance for a given

target dataset is to extensively test all possible sources and,

then, choosing the best, the real-word applicability of an

approach based on STS will be limited by the amount of

available data sources. By using the proposed multiple

Fig. 6 Graphical representation

of the MS-STS rank-1

recognition rates obtained for all

the no-flash subsets of the CSIP

database using all the flash

datasets as sources, plotted

against the respective BL, TLs

and STS results
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source approach, we can achieve, with high confidence, a

performance for the chosen target similar to the individual

best observed among all the chosen sources. This obser-

vation, however, does not compensate the fact that by

manually choosing a single optimal source, the perfor-

mance observed for the chosen target dataset is consistently

better or, in the worst case, in a similar range to the one

observed for MS-STS. Further research is needed in order

to optimize the choice of source datasets so as to reduce

this performance gap.

Another interesting observation concerns the effect of

the order in which the sources AR1;BR1;CR1½ � are con-

sidered during the cyclic evolution of the MS-STS process.

In order to assess whether this order had any discernible

effect over the observed performance, we chose to

run, for each target dataset, a set of six variants of

the original results, changing the order in which the

three sources are organized during a single cycle:

A;B;C½ �; A;C;B½ �; . . .; C;B;A½ �½ �. The performance plots

from Fig. 7 seem to point to the conclusion that the per-

formance in all four datasets converges to a set of values in

very similar ranges, regardless of the chosen organization

of source datasets along the MS-STS pipeline. This

observation leads to the conclusion that, if the best sources

are found, there is no need to optimize their order.

Whereas, the presented example was considerably simple,

with a very small number of sources, and in a practical

application, there is no guarantee that the number of

combinations becomes unfeasible for a brute force opti-

mization step of their organization. The observed results

seem to indicate that this optimization process might be

less relevant, especially in scenarios such as the tested,

where all sources present a relatively similar nature (flash

illumination in this specific case). It is still unclear, due to

the preliminary nature of this study how increasing vari-

ability in the source dataset conditions would affect these

observations. The focus of future research should, thus, fall

on the optimal choice of sources so that the most complete

domain generalization is achieved. With this in mind, the

aim of future work would be to accurately and intelligibly

perform classification under highly variable scenarios,

especially using more heterogeneous sets of source

information.

5 Conclusions and future work

In the present work, we proposed an extended version of

the source–target–source approach to deep transfer learn-

ing, making use of multiple sources of information. We

successfully applied the developed algorithm to the specific

problem of cross-sensor biometrics, a recent field of

research that aims to mitigate the performance drop

observed when training and testing acquisition conditions

are considerably heterogeneous.

We observed that, when compared to a state-of-the-art

algorithm designed for single-sensor scenarios, the pro-

posed STS and MS-STS approaches revealed a worse

baseline performance, but managed to present a very

interesting cross-sensor stability regardless of the nature of

the data used in the training process. It is trivial to deduce

that an improvement in the baseline performance of any of

the proposed methodologies—CNN or SV-SDA—would,

necessarily, result in a stable increase of performance in all

Fig. 7 Graphical representation of the MS-STS rank-1 recognition rates obtained for all the six possible orders of the chosen source datasets.

Results concern to a AR0 and b CR0 as targets
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cross-sensor scenarios. Some ideas to achieve such

improvement would necessarily consist on exploring

alternatives to the SIFT description chosen for the super-

vector generation, or on the development of ensemble or

joint strategies capable of making the most of the pros of

both GMM-UBM (or any other state-of-the-art single-

sensor methodology) and STS strategies to simultaneously

achieve good baseline and cross-sensor performance.

Achieving a tight coupling between both methodologies

will, most certainly, represent a very significant step in the

field of cross-sensor biometrics.

Concerning the CNN methodology, it must be noted

that, traditionally, this strategy is explored when large

datasets are available, so as to achieve the most robust

modeling possible. In the current work, we used only two

training instances from each source dataset, thus, theoret-

ically, limiting the potential of achieving good results for

the problem at hand. With this observation in mind, we can

conclude that testing the proposed approaches on a larger

cross-sensor periocular dataset would probably result both

in higher baseline and higher cross-sensor performances.

One must note, however, that the availability of large

amounts of data to perform the enrollment step is not

guaranteed in real-life applications. This limitation should,

therefore, be overcome in the long run if this strategy is

expected to be implemented in more practical solutions.

Another focus of future work for CNN would be using

information from all three RGB channels instead of gray

scale transformation used on the present work.

Regarding the MS-STS, we may conclude that even

though the optimal STS performance managed to outper-

form its multi-source counterpart in almost all scenarios,

the reasoning for this behavior is both expected and neg-

ligible for practical applications. As we are manually

choosing the best-performing source when presenting the

STS results, whereas in the MS-STS, we are fixing the

same set of sources for all experiments, it is expected that

optimal performance is not achieved in the situations where

the best-performing single source is not included on the set

of chosen sources. From a practical point of view, testing

the universe of all possible sources to empirically choose

the best one is not a viable possibility. The focus of future

work should therefore fall on the automatic choice of the

fittest sources to achieve the highest degree of domain

generalization during the MS-STS learning process and,

thus, cause the convergence of the MS-STS performance to

the best possible STS result. As a future work, some testing

is still needed to assess MS-STS using SV-SDA with

instance weighting and pre-training the network with

unlabeled biometric data.
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