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Abstract—Reliable and smart information on the flexibility 
provision of Home Energy Management Systems (HEMS) 
represents great value for Distribution System Operators and 
Demand/flexibility Aggregators while market agents. However, 
efficiently delimiting the HEMS multi-temporal flexibility 
feasible domain is a complex task. The algorithm proposed in this 
work is able to efficiently learn and define the feasibility search 
space endowing DSOs and aggregators with a tool that, in a 
reliable and time efficient faction, provides them valuable 
information. That information is essential for those agents to 
comprehend the fully grid operation and economic benefits that 
can arise from the smart management of their flexible assets.  
House load profile, photovoltaic (PV) generation forecast, storage 
equipment and flexible loads as well as pre-defined costumer 
preferences are accounted when formulating the problem. 
Support Vector Data Description (SVDD) is used to build a 
model capable of identifying feasible HEMS flexibility offers.  
The proposed algorithm performs efficiently when identifying 
the feasibility of multi-temporal flexibility offers. 

Index Terms—HEMS multi-temporal flexibility, support vector 
data description, energy storage. 

I. INTRODUCTION  

The noteworthy proliferation of Distributed Renewable 
Energy Sources (DRES) in Low Voltage (LV) and Medium 
Voltage (MV) distribution grids is creating technical 
difficulties to the Distribution System Operator (DSO) which 
are prone to increase as DRES becomes more and more present 
in those grids supported by the price decrease in the 
Photovoltaic (PV) technology [1], [2]. With significant levels 
of PV integration within LV and MV conventional grids it is 
expected that problems related with violation of bus voltage 
limits arise especially at times of high PV production. 
Microgrids (MGs) are expected to allow for a more flexible 
operation by taking advantage of the embedded flexible loads, 
storage equipment and their intelligent management by means 
of Home Energy Management Systems (HEMS) combined 
with smart meters.  

From the DSO perspective, microgrids are valuable assets 
regarding their contribution for the system operation. The 
flexibility to be provided by microgrids and multi-microgrids 
systems [3] can be used for voltage control features at the 
MV/LV substation [4], for power losses reduction and to 

maximize DRES penetration and hosting capacity, which 
might translate into lesser environmental impacts and financial 
gains for prosumers. In the near future, significant low carbon 
technologies like small-scale embedded generators, energy 
storage, heat-pumps, electric-water heaters or even electric-
vehicles will certainly be common in residential buildings. 
This will allow for a greater operation flexibility by means of 
demand response programs, residential load aggregators 
working in the markets or even individual HEMS maximizing 
customers profits by providing flexibility capacity to meet the 
DSO operational needs [5]–[7]. 

Aiming at maximizing the penetration of DRES while 
maintaining the regulated levels of system’s reliability and 
quality of service new management/operation tools for the 
distribution grids will have to be developed which must 
include different types of flexibility provided by active demand 
management and storage units [8]. Having to account for all 
these new features, the problem formulation of typical DSO 
operational exercises, such as Optimal Power Flow (OPF) 
routines, increases dramatically when storage units are 
accounted, as inter-temporal constraints must be present when 
evaluating the flexibility to be provided by such equipment.  

This work pretends to develop an algorithm that models the 
HEMS multi-period flexibility, namely flexible loads such as 
Electric Water Heaters (EWH), as well as microgeneration 
sources (e.g., PV) and domestic storage units, and offers to the 
DSO the flexibility that can be provided. In this methodology, 
HEMS feasible flexibility provision offers for a certain number 
of periods ahead are computed and then used as training set in 
a Support Vector Data Description function. After that, the 
multi-temporal flexibility provision domain can be delimited. 
With this approach, reduced data regarding the HEMS 
flexibility provision potential is passed to the DSO. This way, 
the OPF complexity from the DSO perspective can be reduced 
as the HEMS internal equipment does not need to be modelled. 
This procedure can be repeatedly done as updated information 
becomes available, in a sliding-window mechanism.  
Additionally, current Demand Response aggregators or  future 
flexibility market agents bidding in grid ancillary services 
markets can used the proposed tool as the microgrid grid 
services provision becomes more commonly accepted and 
used. Having the HEMS multi-period flexibility search space 



defined aggregators can improve the estimation of the 
flexibility that their assets are able to deliver. In a strong 
market environment, reliable and optimally acquired 
information regarding the maximum range of flexibility 
provision can have significant value for such agents. The 
remaining of the paper is organized as follows: chapter II refers 
to the state of the art on DRES flexibility modeling; in chapter 
III the methodology adopted in this study is detailed, 
presenting the different steps of the algorithm being proposed; 
chapter IV presents the case study; and finally in chapter V the 
main conclusions and future work lines are presented. 

II. STATE OF THE ART 

There are recent and rather few research work focusing this 
area of HEMS flexibility provision [9]-[14]. In [9], Zhao et al. 
propose a geometric approach to aggregate flexibility modeling 
of thermostatically controlled loads (TCL). The set of 
admissible power profiles of an individual TCL is shown to be 
a polytope, and their aggregated flexibility is the Minkowski 
sum of the individual polytopes. To cope with computational 
burden, the authors adopt several approximations regarding the 
calculation of the Minkowski sums, the modeling of 
temperature evolution of the TCL, and by assuming a 
continuous power input of the TCLs instead of the actual 
binary nature. In this work, the modeling of aggregated TLCs 
for flexibility definition is addressed without considering the 
joint provision capacity that can arise from TCLs and storage 
units together within the HEMS concept.  

Polymeneas and Meliopoulos [10] aimed at derive an 
aggregated model of a distribution system composed by 
responsive distributed energy resources without including the 
modeling of individual devices. The main purpose was to 
approximate the variations in the feasible set as function of 
feeder consumption. To achieve that, the authors used a time-
moving ellipsoid to model those variations. Despite the 
computational burden decreases when aggregated models of 
the distribution system are used, there are no guarantees that 
the active and reactive power targets defined are feasible and 
whether or not it can be assigned to the actual devices in the 
system. 

Supported by the systems operators’ need to correctly 
evaluate and plan ahead the flexibility adequacy of power 
systems so that a feasible and economical operation is 
guaranteed, Nosair et al. [13] proposed flexibility envelopes to 
describe the flexibility potential of power systems and its 
individual resources. The authors study the intra-hourly output 
variation of DRES. An envelope that encompasses all possible 
intra-hourly deviation and variation of the RES is proposed 
while considering that for a certain sub-hourly time there is 
maximum output variability. By plotting the 95% percentile of 
the probability distribution of all the sub-hourly time steps 
produces an envelope which encompasses the majority of 
realizations of reserve ramping requirements for that hour and 
DRES. A similar process is proposed to define the flexibility 
envelope of each power system resource. HEMS are not 

considered neither are the resource owners operation 
preferences for their flexibility assets accounted when defining 
the flexibility envelopes. 

III. METHODOLOGY 

A. The concept of multi-period flexibility 

Accounting for the house inflexible demand, PV forecasts, 
expected hot water demand, State of Charge (SoC) of the 
storage units, and the temperature of the water in the EWH 
tank, a set of feasible trajectories related to the HEMS 
operating point can be constructed and correspond to a discrete 
representation of the feasible space of solutions in a predefined 
period of time.    

The visual representation of the flexibility space is not 
straightforward. In fact, when planning for more than three 
time steps ahead it becomes impossible to visually represent 
that type of information. It should be stressed that there is a 
difference between visually representing the hourly limits of 
the flexibility band (like the flexibility envelope in [11]) and 
the actual visual representation of such feasible domain. For 
illustration, let assume a single electric battery with 6.4 kWh of 
storage capacity, maximum charge/discharge power of 3.3 kW, 
initial SoC in 1.28 kWh (20%) limited to 0.96 kWh (15%). Fig. 
1 represents the hourly limits of the flexibility band that this 
battery can provided considering hourly time steps and the 
referred initial state. 

 
Figure 1. Hourly limits for flexibility search space. 

Fig. 1 must be interpreted as an hourly limit for flexibility 
provision by the battery, i.e., for hour 00:00 the maximum 
energy that the battery can accommodate is 3.3 kWh as it only 
leads to 4.58 kWh SoC considering the 1.28 kWh initial SoC. 
On the other hand, as the minimum allowed SoC is 0.96 kWh, 
the battery will only be able of providing 0.32 kWh of upward 
flexibility. From hour 01:00 onwards the hourly maximum and 
minimum flexibility provision limits equal the maximum and 
minimum charging and discharging limits, as it is always 



possible to select a feasible trajectory that in any of those hours 
is able of providing such flexibility without violating the SoC 
constraints. With that said, one can not imply that any 
trajectory composed by hourly values within the domain 
defined by those limits can be considered feasible. If, for 
instance, a trajectory composed by the hourly flexibility offers 
expressed in kW [0.0, 3.0, 3.0, 0.0] and presented in Fig. 1 is 
selected, the correspondent SoC (in kWh) would be [1.28, 
4.28, 7.28, 7.28], which is not feasible from hour 02:00 
onwards. Concluding, it is possible to visually represent the 
theoretical hourly flexibility provision limits, although these 
limits do not defined the domain of feasible flexibility 
provision that is the focus of this study. Unfortunately, the 
domain studied in this work cannot be visually represented for 
more than three time-steps decision problems, as it becomes at 
least a four-dimension representation. 

B. Modelling of the Flexibility Set 

By means of sampling routines using domain knowledge, a 
sufficient number of feasible trajectories can be built to define 
the flexibility (or feasible) space. After constructing a 
considerable number of feasible trajectories the flexibility 
provision search space that can be provided by the HEMS to 
the DSO or demand/flexibility aggregator can be delimited and 
defined by means of a Support Vector Data Description 
(SVDD) function. In this study a One-Class Support Vector 
Machine (SVM) function is used for the feasibility detection 
[15]. The use of SVDD was inspired by the methodology 
described in [16] for VPP application. This function is 
typically used for novelty detection where a given set of 
samples are provided to the function and a model is built by 
detecting the soft boundary of that set. The originated model is 
capable of classifying new points as belonging to that set or 
not. Fig. 2 represents the block-diagram of the proposed 
methodology. In the first block of the diagram are represented 
the two stages of the algorithm responsible to build feasible 
trajectories, which must respect technical and costumer’s 
preferences constraints. Customers’ preferences can be 
embedded into the proposed algorithm by modelling, per 
example, the desire of maximizing the PV generation 
consumption, which translates in using the most of the storage 
unit capacity to storage PV generation in times of PV surplus; 
or by pre-defining the hot water usage that the customer wants 
to assure is available at certain times of the day. Those feasible 
trajectories are then used as input in the second block where 
the learning of the feasibility domain occurs by means of the 
previously referred One-Class SVM function. At the end, 
represented in the third diagram block, the DSO uses the model 
created to validate flexibility set-points to send to HEMS that 
satisfy the flexibility needs that were previously identified. In 
order to assess the flexibility provision potential, the DSO, or 
aggregator, only needs to receive from its flexible assets 
(HEMS in this study) the support vectors identified by the 
One-Class SVM function. This way, all the HEMs equipment 
and problem formulation regarding the HEMS internal 
operation constraints does not need to be accounted by the 

DSO in its optimization software, reducing computational 
effort and time. 

 
Figure 2. Algorithm block-diagram. 

C. Generation of feasible trajectories 

In order to evaluate whether or not a trajectory is feasible, 
one must account for four variables: a decision variable which 
represents the power flow in the battery’s inverter, Pbat, (in 
this study a domestic electric battery was considered as electric 
storage), a decision variable regarding the operating status of 
the EWH, Pewh, a state variable that represents the SoC of the 
storage equipment, and another state variable representing the 
temperature of the water inside the tank of the EWH.  

The developed trajectory construction algorithm has two 
stages. In the first stage a random sampling routine is used to 
create the trajectories, which is able of providing diversity in 
the set of trajectories built. The constructed trajectory, traj, will 
be the result of the sum of the decision variables for all the 
time steps considered, following (1). For each 15 minute time 
step a random value ranged between the minimum and 
maximum battery power is chosen and the decision of turning 
on, or not, the EWH is made. Accordingly, the flexibility to be 
provided by the HEMS is limited to the battery’s charging and 
discharge powers (Pbatmax and Pbatmin) and the EWH nominal 
power (Pewhnom), (2) and (3) respectively. Afterwards, based 
on the conditions of the previous period, the battery SoC and 
the water temperature of the EWH are updated and one must 
assure that the values of correspondent decision variable do not 
lead to impractical battery’s state of charge (4) and (5). In case 
of constraint violation of the SoC limits, the decision variable 
is modified so that the SoC in the current time step is 
considered viable. 

Regarding the state variable related to the temperature of 
the water tank, θ, one must assure that a pre-defined 
temperature range is permanently guaranteed (6). If a violation 
of the water temperature range constraint occurs, the decision 
variable for the operating status of the EWH is changed in one 
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of two ways: if the original decision was to keep the EWH 
“off” leading to temperatures below the pre-defined minimum, 
then the new decision is to turn “on” the EWH for that time 
step; on the other hand, if the maximum temperature was 
reached as the original decision was to have the EWH with the 
“on” status, then the decision is changed to the “off” status. If 
at a certain time step, changing the EWH operating status is not 
enough to comply with the temperature constraint the 
algorithm automatically rejects the so far constructed trajectory 
and proceeds to the construction of the next trajectory. 
Equation (7) represents the water temperature variation during 
time, dependent on the volume of hot water used and Pewh. 
The physically-based load model adopted for the EWH 
modeling is aligned with the one used in [17].  

In the second stage of the algorithm, the customer’s defined 
preferences are evaluated, which for this study refers to the use 
of the battery to accommodate the PV generation surplus. In 
this study we used a 24 hours planning period with 15 minutes 
resolution. The evaluation function developed for this second 
stage makes use of both the decision and state variables. There 
is a need to identify the time steps where the PV generation 
surpasses the house’s static demand and to quantify by how 
much it does it. Then, for each time step, the developed 
function updates the state variable related to the battery state of 
charge if that time step had been pointed as one where there is 
PV surplus. This PV generation surplus is used to charge the 
battery and consequently increasing the SoC, taking into 
account the battery’s efficiency and restricted to its maximum 
charging power (8). Accordingly, (4) and (5) give place to (9) 
and (10). Basically, the maximum and physically possible 
amount of PV surplus energy that the battery can absorb 
without being used for flexibility provision must still be 
assured when defining the feasible trajectories for flexibility 
provision.  

௛݆ܽݎݐ  = ௛ݐܾܽܲ +  ௛ (1)݄ݓ݁ܲ

௠௜௡ݐܾܽܲ  ൑ ௛ݐܾܽܲ ൑  ௠௔௫ (2)ݐܾܽܲ

௛݄ݓ݁ܲ  = ൜0																			, ,			௡௢௠݄ݓ݁ܲݏݑݐܽݐݏ	off	ݎ݋݂ ݏݑݐܽݐݏ	on	ݎ݋݂  (3) 

௜௡௜ܥ݋ܵ  + ∑ ௛ு௛ୀଵݐܾܽܲ ൑  ௠௔௫ (4)ܥ݋ܵ

௜௡௜ܥ݋ܵ  + ∑ ௛ு௛ୀଵݐܾܽܲ ൒  ௠௜௡ (5)ܥ݋ܵ

௠௜௡ߠ  ൑ ௛ߠ ൑ ௛ߠ ௠௔௫ (6)ߠ = ௛ିଵߠ +	∆௧஼ ௛ିଵߠሺߙ−ൣ − ௛௢௨௦௘ሻߠ − ܿ௣ݒ௛ሺߠௗ௘௦ − ௜௡௟ሻߠ +  ௛൧ (7)݄ݓ݁ܲ

௛ݐܾܽܲ  + ܲ ௛ܸ௦௨௥ ൑ ,			௠௔௫ݐܾܽܲ ∀݄ (8) 

௜௡௜ܥ݋ܵ  + ∑ ௛ு௛ୀଵݐܾܽܲ + ܲ ௛ܸ௦௨௥ ൑  ௠௔௫ (9)ܥ݋ܵ

௜௡௜ܥ݋ܵ  + ∑ ௛ு௛ୀଵݐܾܽܲ + ܲ ௛ܸ௦௨௥ ൒  ௠௜௡ (10)ܥ݋ܵ

In (7), ∆ݐ is the time step [h], C is the thermal capacity 
[kWh/ºC] set to 0.117, ߙ is the thermal admittance [kW/ºC] set 
to -9.42-4, ߠ௛௢௨௦௘ is the house indoor temperature set to 20 ºC, ܿ௣ is the water specific heat [kWh/(ltr.ºC)], ݒ௛ is the hot water 
consumption at time h, ߠௗ௘௦ is the desired temperature for 
water consumption, and ߠ௜௡௟ is the inlet water temperature. 

Fig. 3 represents the home’s load and forecasted PV 
generation profiles (top) and the SoC variations before and 
after this second stage of feasibility evaluation. As one can 
verify from the figure analysis, the final SoC variation 
maintains the shape of the initial SoC variation but comes 
shifted up by the amount of PV energy surplus accumulated 
until each time step.  

 
Figure 3. Load and PV generation profiles (top); SoC variation due to PV 

Surplus (bottom). 

D. Black-box model for the HEMS flexibility 

Having constructed a sufficient large number of feasible 
trajectories with the method described in section III.C, the 
search space for the flexibility provision can be defined. To do 
so, those trajectories are used as input in a Support Vector Data 
Description function, namely a One-Class Support Vector 
Machine function available in the Scikit-Learn Python 
Library1. The model that is created by this function is able of 
delimiting and learning the feasibility boundary (or flexibility 
set) based on the input data. The model identifies the minimum 
number and the actual support vectors that describe the high-
dimension sphere representing the feasible domain and, 
applying (11), is able of classifying trajectories as feasible or 
not. Accordingly, it compares the radius in the high dimension 
domain that the trajectory represents and compares it to the 
defined radius of the referred sphere. If the radius of the 

                                                           
1 http://scikit-learn.org/ 



trajectory evaluated is equal or inferior to the sphere’s radius, 
then the trajectory is classified as feasible, as it falls into the 
feasibility domain. Equation (11) represents the formula to 
calculate the radius, where ݔ௜ and ݔ௝ are support vectors and ݔ 
is the trajectory being evaluated. Deeper information regarding 
this methodology can be consulted in [16]. 

 ܴଶሺݔሻ = 1 − 2∑ ,௜ݔ௜݇ሺߚ ሻ௜ݔ + ∑ ,௜ݔ௝݇൫ߚ௜ߚ ௝൯௜,௝ݔ 				(11) 

IV. CASE STUDY 

The proposed algorithm was used to validate the dispatch 
of the flexible resources of a MG when operating islanded. The 
considered MG algorithm schedules an emergency operational 
plan for the next hours, based on load and microgeneration 
forecasting, considering the possibility of an unplanned 
islanding. The plan consists in set-points for the MG 
controllable storage unit(s) providing secondary frequency 
regulation, considering its power and energy capacity. The 
main objective is to maximize the energy capacity of the grid 
forming storage unit(s) providing frequency and voltage 
regulation. When the MG power and energy reserve capacity is 
not sufficient to supply the loads, it will be necessary to 
explore the flexibility available at residential level. Based on 
an unbalanced power flow studies, the HEMS flexibility will 
be mobilized in the flexible nodes which are in the phase and 
feeder with the highest voltage deviation, being the active 
power dispatch of each HEMS validated by the black-box 
model for the HEMS flexibility, presented in III.D. Regarding 
the HEMS problem formulation, in (7) the desired temperature 
for water consumption, ߠௗ௘௦, is   set to 38 ºC, and the inlet 
water temperature,	ߠ௜௡௟, is set to 17 ºC. 

The considered MG emergency dispatch strategy was 
defined for a LV network endowed with three storage devices, 
where one provides primary frequency and voltage regulation 
(VSI) while the other two are current controlled (PQ units). 
The grid forming storage unit has a 60 kW / 30 kWh capacity 
and the other two have 10 kW/10 kWh capacity. It is assumed 
that some LV clients have installed microgeneration such as 
PV panels. An illustrative time horizon of two hours with 15 
min discretization was considered, corresponding to the 
maximum time the MG was initially planned to operate 
autonomously.  

The islanding event occurs in the beginning of the 
simulation (t=0 min). Before the islanding the MG storage 
devices SOC is respectively: VSI=70%, PQ1=20% and 
PQ2=10%. Considering the initial SOC, load, and 
microgeneration forecasts the dispatch strategy first defines the 
operational plan for the distributed storage devices. However, 
since the VSI hasn’t enough energy capacity to supply the MG 
loads during the two hours, the algorithm needs to mobilize 
flexibility. The active power requested to the HEMS connected 
to the MG is presented in Fig. 4. As shown in Fig. 5 without 
flexibility provision the VSI will fully discharge in the 
beginning of the second hour, meaning that the MG would 

blackout. However, if the HEMS flexibility is considered it is 
possible to maintain the VSI SOC above 20%. 

Currently, the efficiency assessment on the classification of 
new trajectories by the developed algorithm only considers as 
efficiency control set the feasible trajectories used as input for 
the One-Class SVM function. In future work, new feasible and 
non-feasible trajectory sets will be created for a more 
profoundly acknowledge of the algorithm efficiency. Basically, 
it is expected that the algorithm performs well not only on 
correctly identifying feasible trajectories, but also on correctly 
identifying non-feasible ones. 

 

Figure 4. Active power injected by the flexible controllable resources. 

 
Figure 5. VSI State-of-Charge variation. 

Depending on the type of samples that are provided to the 
function, the One-Class SVM function hyper-parameters, such 
as the kernel type that is used in the embedded algorithm or 
even the gamma kernel coefficient that is used (γ) must be 
properly defined. By experience it was found that the most 
suitable type of kernel for this study is the Sigmoid. 
Additionally, the pre-defined value for the γ and nu parameters 
can influence the efficiency of the created models. The nu 
parameter refers to an upper bound on the fraction of training 
errors and a lower bound of the fraction of support vectors. 
Results show that the Sigmoid kernel based model performs 
better that the others for γ = 0.05 and nu = 0.001. The 
evaluations were made on the original set of samples (feasible 
trajectories) used as input for the model construction. For these 
conditions, the error is of 1.3%, which results from the number 



of wrongly rejected trajectories out of the total number of input 
samples. 

After defining the function parameters that better fit the 
type of samples that are used, the resulting model is prepared 
to evaluate trajectories on being feasible or not. This kind of 
features can be used by the DSO when performing grid 
operational assessment regarding possible provision of 
flexibility in LV distribution grid in case of detecting local 
constraints in such grids. Receiving the constructed model 
from each HEMS, the DSO has means to understand and 
quantify the expected flexibility to be provided by them 
without having to know or model the home’s storage and 
microgeneration equipment, demand patterns and customer’s 
preferences, avoiding confidentiality problems and saving 
computational time. Similarly, demand/flexibility aggregators 
can also use the trained models provided by the HEMSs to 
prepare optimally computed offers to bid in the respective 
markets. 

V. CONCLUSION 

The use of reliable and smartly gathered information 
regarding the flexibility provision that can come from HEMS 
is of great value for DSOs and aggregators as market agents. 
Nevertheless, it is not a trivial task to efficiently delimited the 
HEMS multi-temporal flexibility feasible domain, especially 
when simultaneously considering microgeneration like 
domestic PV generation, energy storage equipment, EWH and 
costumer preferences regarding comfort constraints and 
operation strategy for its energy storage equipment. The 
proposed algorithm is able of efficiently learn and define the 
feasibility search space endowing DSOs and aggregators of a 
tool that, in a reliable and time efficient fashion, provides them 
valuable information. This information is essential for these 
agents to understand the fully grid operation and economic 
benefits that can arise from the smart management of their 
flexible assets. The algorithm shows very low errors when 
identifying the feasibility of multi-temporal flexibility offers. 

Uncertainty is becoming an indispensable topic in the 
operation of electric power systems, particularly at the LV and 
MV distribution grid level. Accordingly, a future version of 
this algorithm is already being planned in order to produce 
robust trajectories (i.e., feasible for diverse PV generation 
scenarios), using them as backbone in the construction of the 
flexibility search space to be provided to DSO or 
demand/flexibility aggregators. 
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