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Abstract—Vertical load is the power flow between electrical 

transmission and distribution networks. In the past, large-scale 

generators connected to transmission systems supplied 

consumers connected to lower voltage levels across distribution 

grids. Thus, vertical loads tended to be downward-oriented. 

This paper presents a spatiotemporal distributed energy 

resources (DER) diffusion model to analyze vertical load 

uncertainty resulting from different DER diffusion process 

representations currently used in the industry and academia. 

Network planners and operators can use such model to 

understand the long-term evolution of load at the T/D boundary.  

The proposal is applied to the Portuguese power system, 

combining, as first of its kind, highly granulated population 

census with georeferenced transmission and distribution 

network datasets. This application analyzes the 20-year 

evolution of such vertical load flows at the transmission-

distribution boundary under a strong uptake of DER embodied 

in lower voltage levels in Portugal. 

  Keywords—Diffusion of Innovations Theory, Distributed 

Energy Resources, Transmission system planning, 

Spatiotemporal modeling. 

I. INTRODUCTION 

A. Background 

The transformation towards low-carbon, decentralized 

power systems go hand-in-hand with a rapid uptake of new 

distributed energy resources (DER) that are increasingly 

connected to electricity distribution networks. Consecutively 

substituting centralized generation that used to be connected 

to the higher voltage levels (transmission) with low-/medium 

voltage installations, a large-scale adoption of DER is about 

to affect the vertical load exchange between transmission and 

distribution (T/D) networks [1].  

As many power systems recently implemented 

unbundling policies, there is no institutional connection of 

transmission and distribution system planning anymore. The 

resulting stop of information flows as well as the spatial 

stochasticity of DER adoption patterns call for actualized 

methods that can frame the growing uncertainty in T/D grid 

planning [2].  

This work presents the spatial methodology to 

characterize the uncertainty in load flows between the 

transmission and distribution boundary due to the DER 

diffusion, considering a high level of spatial and temporal 

granularity. Such load flows have been called vertical load, 

equivalent to the “the sum, positive or negative, of all power 

transferred from the transmission grid through directly 

connected transformers and power lines to distribution grids 

and final consumers” [3].  

The application of the proposed spatiotemporal DER 

diffusion model relies on highly granular census data (over 

17,000 census cells for Continental Portugal) and is used to 

forecast EV and PV adoption on a 20-year horizon. Model 

outcomes are net-load curves for each of the distribution 

network’s HV/MV transformer service areas. From these 

outcomes and using the information on the physical 

connection of each HV/MV substation to a transmission 

system entry point, the vertical load diagram between the 

distribution and transmission interface can be computed. In 

addition to research presented in [4], the results of four 

different DER allocation techniques are compared.  

B. Research Gap and Article contributions 

The article contributes to the emerging body of literature 

dedicated to the analysis of future, coordinated transmission-

distribution network operation and planning through: 

• An extensive review of transmission-

distribution (T/D) cooperation schemes and 

network expansion planning under DER 

diffusion. 

• The application of a spatiotemporal DER 

diffusion model to electricity network planning. 

• The establishment of two new planning criteria 

that describe the system’s net-load behavior at 

the T/D interface (total reverse flow hours and 

total peak load addition). 

• A comparison of results retrieved across four 

typical DER allocation techniques commonly 

applied for grid impact studies. 

Eventually, the presented model will serve distribution 

and transmission network planners to downscale global DER 

diffusion forecasts and assess the impact of technology 

diffusion dynamics on network planning. While comparing 

the outcomes of four different DER allocation techniques, 

one can obtain an improved understanding of the uncertainty 

in case only one DER allocation technique used to be applied.  
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II. LITERATURE REVIEW 

A. Representation of DER diffusion in network studies 

With the rise of DER adoption in power systems, an 

increasing amount of research has been dedicated assessing 

the impact of such technologies to distribution or 

transmission networks. However, little evidence has been 

accumulated on how different ways of representing DER 

uptake in transmission or distribution networks affect 

network expansion and investment forecasts. As shown in 

[4], strong differences in such outcomes can be achieved 

under the currently most utilized DER allocation techniques.  

Typically, current techniques do not consider 

consumer/population distributions within the test networks 

analyzed. Popular approaches are shown below (Table I) and 

include equal or random assignment of DER across all 

busbars, or extrapolation on installed busbar capacities or 

demand peaks. In this paper, we analyze the effects of 

different allocation techniques on load diagram results that 

describe the vertical flows between the distribution and 

transmission system in Continental Portugal. 

 

B. Spatial net-load forecasting in transmission planning 

New trends such as the uptake of DER can change 

consumer habits and thus, peak-load behavior. Hence, 

planners must analyze, in a spatial and temporal form, 

consumer locations that might develop consumption habit 

changes under DER adoption [5]. 

The spatial prediction of electricity demand and its 

change over time is the domain of spatial load forecasting 

(SLF). A detailed review of SLF and recent developments can 

be found in [6]. In the past, studies of spatial load forecasting 

at the level of power transmission networks had little use as 

stochastic factors of the electric demand were less influential 

over the planning horizon in these studies [7]. However, due 

to the high concentration of DER in some regions of the 

electrical power system especially in the first years of DER 

technologies diffusion, the simplistic load growth scenarios 

previously considered need to be refined [8]. 

The results of spatial load forecasting at the level of 

electrical distribution systems can provide useful information 

for the study of load growth that must be met by the 

transmission networks. In the literature, first works that 

introduced higher spatial granularity to transmission planning 

[9], an introduction of the spatially resolved vertical load 

concept  [10] and DER diffusion forecasting models [8] have 

been presented. However, an approach that displayed how to 

integrate all mentioned aspects has been absent so far. 

C. Vertical flows at the Transmission/Distribution interface 

The increasing penetration of DER across distribution 

grids and its impact on the vertical load has become an 

operational and planning challenge for both distribution and 

transmission system operators (DSO and TSO). Technical 

problems (e.g., voltage problems, branch congestion) will 

occur more frequently in both networks due to the arising of 

reverse power flows. Ensuring the quality of service and 

security of supply will thus be a hard task for network 

operators that need to account for the uncertainty associated 

to these resources and the lack of T/D power flow 

coordination.  

Traditionally, the TSO carries the main responsibility for 

ensuring overall system security. Therefore, the existing 

coordination mechanisms between her and the DSO 

regarding most grid operation challenges (e.g. congestion 

management, voltage support) are scarce [11], [12]. 

However, the paradigm change associated with an “active” 

distribution grid is a clear sign that cooperation procedures 

such as the estimation of load vertical uncertainty are of 

utmost importance [13]. 

In [14], an attempt to estimate the active and reactive 

power vertical flow limits has been presented. The work 

considered a real French distribution test network and the 

results highlighted the capability of these types of studies.  

Despite previous efforts, the impact analysis of DER 

uncertainty on these vertical loads has not yet been studied. 

This paper focuses exactly on this aspect and the final 

conclusions might be very useful for studies like the one 

described in [14]. 

  

D. Transmission expansion under DER adoption 

As DER adoption has the potential to meet the 

distribution system load, the transmission network may 

become less congested depending on the level of the adopted 

local capacity. For these reasons, studies on transmission 

planning under DER adoption have been developed over the 

last years. The work in [15] presents an approach to choose 

an optimal portfolio of DER services that allows to reduce 

required transmission expansion investments. The results of 

this approach prove the benefits of security services provided 

by DER and their advantages in postpone transmission 

investment. 

The modifications of the load patterns caused by 

distributed generation and anticipated flexibility additions at 

the transmission-distribution boundary have been presented 

in [16]. Results indicate that the penetration of distributed 

generation (PV) can provide added value to system through 

the reduction of operation costs, transmission losses and CO2 

emissions. Nevertheless, PV systems may not, on an isolated 

way, contribute to alleviate the demand seen by transmission 

networks in peak load periods (where TEP is generally 

conducted). On the other hand, growing electrification of the 

transport sector is posing additional complexity to 

transmission planning. Here, first research outcomes showed 

that a concerted use of EV charging policies can constrain 

transmission expansion investments [17]. 

Table I. DER allocation methods in distribution networks [4] 
 

Type DER Allocation technique 

Deterministic - Extrapolation using busbar capacities 

- Extrapolation using peak demand 

Randomized  - Single-step random allocation  

   (e.g. equal assignment) 

- Multi-step iterative allocation 

   (e.g. using Monte Carlo) 

 



III. METHODOLOGY 

A. A spatial model of the T/D interface 

One innovation of this paper is the computation of 

transmission service areas, using HV/MV transformer 

positions (a) and tabular information of the linkage of those 

to a certain transmission entry point (Fig. I). Approximating 

HV/MV transformer service areas as a first step (b) through 

a Voronoi diagram as in [18], the retrieved spatial polygons 

are further merged (c) based on the information of their 

connection to each transmission entry point, available in [19]. 

The resulting polygons (c) are consecutively linked with the 

census data-set through spatial operations (overlaying). That 

way, each transmission entry service area is linked to detailed 

information of the population subgroup alimented by each 

specific transmission entry node. 

B. Spatiotemporal DER diffusion model 

The presented approach builds on a 6-step 

spatiotemporal model, described in [4]. The model builds on 

census data with high spatial granularity and global 

technology adoption scenarios and simulates spatial 

technology adoption patterns. In this article, the model is used 

to estimate the impact of EV/PV adoption onto vertical load 

diagrams, that is the load flow between distribution and 

transmission network.  

The load diagrams are computed for each of the 63 entry 

points to the transmission network. The extensive discussion 

of the technology diffusion model is outside the scope of this 

paper. An interested reader may find a more detailed 

explanation in [4] and its application to case studies in [20]. 

Its 6 subroutines are described below: 

 

i. Geolocation routine that relates census polygons 

with varying spatial extent and population 

characteristics to HV/MV service areas. 

ii. Spatial routine that computes the HV/MV substation 

service areas around transformer locations (XY 

coordinates) using Voronoi diagram.  

iii. HV/MV transformer service area aggregation and 

capacity estimation at each T/D connection point. 

iv. A diffusion pattern generator that forecasts EV and 

PV adopter locations using census cells as input. 

v. A net-load analysis that considers hourly load, EV 

charging and PV generation time series. 

vi. Vertical load flow analysis routine that uses the 

hourly net-load time (NL) series (8760 h). 

 

C. Vertical load diagram analysis 

This paper contains a thorough analysis of various large-

scale DER allocation techniques (at) and their resulting 

vertical load flow estimates. The presented model is 

eventually used to quantify a range of indicators that 

characterize the load flows at the T/D boundary of the 

continental Portuguese power system.  

As in [4], the netload for each HV/MV service area (sa) 

and each hour (h) is calculated, subtracting a PV curve (PV) 

from the addition of load (L) and EV charging (EV). 

 

           𝑁𝐿𝑠𝑎,ℎ =  𝐿𝑠𝑎,ℎ +   𝐸𝑉𝑠𝑎,ℎ − 𝑃𝑉𝑠𝑎,ℎ       (1) 

 

For each transmission service area, all NL values for 

each connected HV/MV substation is added. Peak-load 

coincidence behavior is neglected. The impact assessment 

includes time-series analysis on the changes of load 

diagrams, including the change in flow directions 

(distribution->transmission and distribution <- transmission) 

and peak-load behavior at each T/D connection point. The 

following metrics are analyzed: 

 

𝑅𝐹𝑎𝑡 =  ∑ {
1 𝑖𝑓 𝑁𝐿ℎ < 0
0 𝑖𝑓 𝑁𝐿ℎ ≥ 0

}8760
ℎ=1                    (2) 

 

Here, RF is an hour where reverse flows are experienced 

in a given transmission service area. RF hours has parallels to 

the Loss of Load Expectation (LOLE) concept, summing the 

occurrences of specific situations while neglecting 

magnitude. RF are calculated for each transmission service 

area as well as DER allocation technique. 

A second indicator used in this work is the peak load 

added (PA) under each DER allocation technique for every 

transmission service area. In absence of any information of 

the transmission system configuration and components (no 

line or transformer loading calculations possible), this metric 

provides indication of the peak load added to the reference 

value (peak load in year 0 of the natural load).  

 

𝑃𝐴𝑎𝑙 =  ∑ (𝑃𝐿𝑌𝑒𝑎𝑟 20 −63
𝑠𝑎=1 𝑃𝐿𝑌𝑒𝑎𝑟 0)    (3) 

 

The metric is calculated subtracting peak values after 20 

years of EV/PV adoption from natural load peak values. Such 

differences are retrieved for each transmission service area 

(sa) and across all DER allocation techniques (at). 

IV. INPUT DATA 

The presented model relies in four different data sources 

that are detailed below: 

 

• Census dataset that originates from 2011 [21]. It 

contains a detailed description of the Portuguese 

population through a set of over 120 socio-

demographic and building-related census variables 

(age, education, employment status, building type 

and apartment size). The census variables come with 

 

 
 

Figure I. Retrieval of spatial T/D network service areas 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III. EV diffusion for different EV allocation 

techniques, where a) max, b) min and c) maximum 

difference 

 

 

 

 

 



a spatial dataset that contains over 17,000 census 

tracts (neighborhoods). 
 

• EV/PV adoption scenarios for 2035, respecting a 20 

year planning horizon and 2015 as base year [22]. 
 

• Distribution network information such as HV/MV 

substation characterizations (location, peak load, 

installed capacity) and the linkage of substations to 

each of the 63 transmission entry points [19], [23]. 
 

• Typical natural load (assumed to incorporate already 

adopted EV/PV) MV, EV charging and PV 

generation time series. Respective time series have 

been normalized to peak values and are stretched to 

the forecasted EV/PV capacities at each HV/MV 

transformer (per capita PV potential was estimated 

as 0.4 kWpeak/capita; EV adopter charge at a rate of 

5.9kW under a 0.5 simultaneity rate). 

 

The global EV/PV forecast was derived using the Bass 

model [24]. Chosen coefficients are shown below (Table II). 

As this report aggregates both large-scale and dispersed PV 

installations in residencies, the forecast was reduced using the 

current ratio of dispersed PV to overall PV installations in 

Portugal as stated in [25]. The calculation of the total EV and 

PV potentials (m) at all residencies were based on [26] and 

[4]. The model coefficients p and q have been retrieved, 

calibrating the model with historical uptake values. 

V. RESULTS 

Results reveal the large differences in EV and PV 

distributions within transmission service areas that result 

from the use of different DER allocation techniques. Looking 

at the maximum deviation for all previously introduced 

algorithms, predicted EV charging power forecasts might 

differ by magnitudes of up to 48 MW per service area, 

whereas residential PV installation forecasts may vary even 

up to 97 MW per service area. Minimum, maximum and 

range of both EV charging and PV installation forecasts are 

shown in Figure II and Figure III respectively.     

 

This underlines the sensitivity of transmission and 

distribution network planning to the type of DER diffusion 

model (or, allocation technique) that is used once a global 

  

Figure II. EV diffusion for different EV allocation techniques, where a) max, b) min and c) maximum difference 

 

 

 

Figure III. PV diffusion for different PV allocation techniques, where a) max, b) min and c) maximum difference 

 

Table II. Bass model parameters of the proposed methodology 

Technology p q m 

Electric vehicles 0.000618 0.873600 1,305,055 

Photovoltaics 0.000618 0.873600 3,759,570 

 



forecast is downscaled. Such effects are demonstrated in the 

figures below. 

Figure IV displays load curves for two transmission 

service areas that exhibit either the maximum amount of 

reverse flow hours (a) and maximum addition to its existing 

peak load value (b). Situation a) occurs in a small area in the 

North of Portugal – under an equal-share DER allocation. 

Here, given a low natural peak load (before DER adoption 

occurs), the application of the equal DER allocation 

technique leads to a strong stretching of the initial load curve 

(Figure IV.a) through added roughly 20 MW EV charging. 

Likewise, such approach would allocate almost 60 MW of 

PV installations to the respective transmission service area, 

resulting in frequent reverse flow estimates (Figure IV.a).  

 

Situation b) locates in a populated southern zone inside 

Lisbon Metropolitan area and represents the case of 

maximum peak load addition under all DER allocation 

techniques and service areas considered. The respective DER 

forecast has been retrieved relying on a diffusion study 

approach that is sensitive to the population counts connected 

to each transmission service area. Results are shown both in 

Figures IV.b and V.b and validate the intuition that under 

conditions with high peak loads, reverse flows are less likely. 

 
 

Figure VI. Estimated reverse flow hours (a) and peak-load 

increments (b) over the transmission system under  

different DER allocation techniques 
 

Likewise, newly introduced, global indicators for the 

vertical load (the flow between transmission and distribution) 

have been derived (Figure VI). These include the annual 

expected amount of reverse flow hours (from distribution to 

transmission) and the total expected peak addition for each 

transmission service area. While latter are expected to grow 

similarly under all DER allocation techniques on a global 

perspective, reverse flow hour estimates vary strongly, 

between roughly 5,000 and 30,000 hours for all transmission 

service areas combined (Fig. VI). 

 
 

Figure IV. Load curves for transmission service area with most frequent reverse flows (a) and maximum peak increment (b) 

 
 

 
 

Figure V. Load duration curves for transmission service area with most frequent reverse flows (a) and maximum peak increment (b) 
 

 

 



VI. CONCLUSIONS AND FUTURE WORK 

The presented paper compared four commonly used 

techniques that model the uptake of DER in transmission and 

distribution networks. A global DER forecast on a 20-year 

horizon is used to unveil the differences that can occur if one 

or another technique is used. 

As a first innovation, the presented paper estimates the 

spatial extent of transmission service areas, based on HV/MV 

transformer locations and their connectivity to transmission 

entry points only. Results show that the choice of DER 

allocation algorithm can heavily affect load diagrams 

retrieved. For example, regional deviations of up to 48 MW 

residential EV charging and even 98 MW household-based 

PV installations could be observed across the transmission 

system service areas. Likewise, newly introduced, global 

indicators for the vertical load (the flow between transmission 

and distribution) have been derived. 

 These include the annual expected amount of reverse 

flow hours (from distribution to transmission) and the total 

expected peak addition for each transmission service area. 

While latter both are expected to grow similarly under all 

DER allocation techniques on a global perspective, reverse 

flow hour estimates vary strongly, between roughly 5,000 and 

30,000 hours for all transmission service areas combined. 

As a principal take-away, outcomes call for improved 

granularity and careful calibration of DER forecast to 

enhance transmission expansion and investment decisions. 
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